
PIDL / Pascal: A Pascal-oriented Program Interface
Description Language And Its Applications

Xu Baowen

Department of Computer Science and Engineering

Nanjing Aeronautical Institute

Narijing, 210016

P. R. China

Abstract
This paper introduces a Pascal-orien~l grograra interface description lan#uage, PIDL /Pascal, which is

des~ned to sTecifv the interface reformation between grogram units so as to remedy the weakness o f some

design tools. We wilZ also discuss its design ideas, grogram structure and facilities, applications, and
checking tools.

1. Introduction
In software design stage, on.e should specify not only the functional description and data structure

details of each software component, but also the interfaces between all software components. At present,

the design representation tools mainly include flow charts, PAD charts, N-S chart , PDL language and so

on. There is a common weakness in these tools, that it is difficult or impossible to use them to specify the

interface information between software components, and the definition and use information of an enti ty

(identif ier) in a software component, e. g. , the information where and how a variable must or should be

used and where the variable must not be used. For example, in implementing a stack abstraction data type,

at least, there should be a procedure PUSH, a p~-ocedure or function POP, a function ISEMPTY used to

determine whether a stack is empty, a function ISFULL used to determine whether a stack is fu l l , a

function LENGTH used to indicate the number of the elements in a stack, a data structure STACK used to

represente a stack, and a pointer PTR pointing to the top of a stack. In order to maintain tile integrity and

consistency of operations on a stack, the ottler program components outside the stack definition could only

use (or call) the subprograms PUSt l , POP, ISEMPTY, ISFULL and LENGTH, but may not refer to

STACK and PTR directly! moreover, in the body of the function ISEMPTY, ISFULL or LENGTH,

STACK may not be used, and the value of PTR may not be changed. All of these are very difficult to be

specified in design representation tools or programming languages. Although some of them may be obtained

by means of analysing the desig n o r (and) the Pascal code, it is very difficult to analyse a large program,

let alone the informal design tools.

For this re~Lwon, we developed a Pascal-oriented program interface description language PIDL/Pascal

used to specify the interfaces between program components and the definition and use information of an

entity (idetitier) in a program component. Each PIDL/Paseal p rogram, including its program units(i , e. ,

procedures and funct ions) , comprises a definition part and a reference part. Tile definition part specifies the

use information of an entity (identifier) defined or declared at the corresponding place in the relevant PDL

program(or fl0w chart , PAD chart) or programming language program: where and how to use it! the

reference part specifies which enti t ies(identif iers) , defined or declared in the predefined environment and

the other program units (the main program and the subprograms), are used in the current program uni t , and

how they are used in the current uni t .

55 ACM SIGPLAN Notices, Volume 28, No. 5 May 1993

http://crossmark.crossref.org/dialog/?doi=10.1145%2F152819.152826&domain=pdf&date_stamp=1993-05-01

2. D e f i n i t i o n Parts
In a Pascal program (or a PDL/Pasca l program or a Pascal-oriented flow c h a r t) , if an enti ty

(ident if ier) E , defined or declared in a subprogram (or the main program) A , is used in another

subprogram (or the main program) B, the use approach may fall roughly into three categories as follows..

1. E must be used in B. e .g . , STACK and PTR must be used in subprogram PUSH and POP.

2. E may be used in B, but whether or not E is actually used in B depends on particular

implementations, e .g . , PTR may be used in the subprograms ISEMPTY, ISFULL and LENGTH. In the

real implementation, if the stack is represented with an array and there is no variable used as element

counter , PTR must be used in the three subprograms t if there is a counter , PTR must not be used in the

subprogram.
3. E can only be used in a set of subprograms, including B, at most. That is, the use range of E is

specified, and in an actual implementat ion, E may be used in all or some of the subprograms, or even in

none of them. e . g . , PTR can only be used in the subprograms PUSH, POP, ISEMPY, ISFULL and

LENGTH.

4. E is not allowed in B. e .g . , STACK is not allowed in all subprograms except POP and PUSH.

There is a major difference beetween the second and third category as follows, In the second categoty,

the information tells us that an ent i ty(ident if ier) may be used in other subprograms besides in the specified

subprograms. Therefore, this category of information has no use for actual consistency and integrity

checks, because it provides no message for automated toolsl however, it is very usefull for the program

implementation and maintenance , because it can tell the original ideas of the designers to the implementators

and maintainers. In the third category, the scope of use for an en t i ty (ident i f ie r) i s limited to the specified

set of subprograms. There is a common characteristic in the two categoried, that is, the en t i ty (iden t i f i e r)

defined may not be used in all of the specified set of subprograms.

Let U be the set of all the subprograms

that can use an en t i ty (ident i f ie r) E from the / ~

angle of the pure scope, SI be the set of the

subprograms that must use E, $2 be the set of

the subprograms that may use E, S3 be the set

Of the subprograms where E can only be used,

and $4 be the set of the subprogranls where E

can not be used, then the following relations

hold (see the right f igure) :

S1 _ q S 2 _ ~ S3 c U

s3 N s4 = O

In order to be consistent with a Pascal program, the definition part of a PIDL/Pascal program consists

of a constant definition part , a type definition part, a variable definition part , and a procedure and

function definition part , with each part including a number of definitions. The simplest form of a definit ion

is as follows:

(identifier) t = z (reference program unit part)

where

(reference program unit part) ." : .-~

[(must reference program unit group)]

[(may reference program unit group)]

[(only reference program unit group)]

[(nmst -and-on ly reference program unit group)]

[(never reference program unit group)]

56

(mus t reference program un i t group) : : =

E m u s t i n] ((program uni t n a m e list))

(m a y reference program uni t group) : : =

m a y l n ((program un i t name list)) l

(on ly reference program uni t group) : : =

o n l y l n ((program un i t name list)) ;

(m u s t - a n d - o n l y reference program un i t group) : : =

m u s t o n l y l n ((program uni t n a m e list)) !

(neve r reference program uni t g roup) : : =

n e v e r l n ((program uni t n a m e list)) !

If a program un i t n a m e list is composed of all the program uni ts that can use the e n t i t y (i d e n t i f i e r)

def ined according to the scope ru les , it can be replaced by the reserved word "a l l " .

2. 1 Constant Deflnltlon Parts
A cons tan t def in i t ion specifies where a cons tan t is used.

(cons tan t def ini t ion par t) : : =

(n u l l)

l eonst (cons tan t def ih i t ion) { (cons tan t def in i t ion)}

(cons tan t def in i t ion) : : =

cons lan t (ident i f ie r) ~ = : (reference program uni t par t)

The cons tant identifiers described here do not include e n u m e r a t i o n cons tan t identifiers.

2. 2 T y p e D e f i n i t i o n P a r t s

A type def in i t ion specifies where a type is used.

(type def in i t ion par t) : : =

(n u l l)

[type (type def in i t ion) { (type def in i t ion) }

(type def in i t ion) : : =

type (ident i f ie r) * = t (reference program uni t par t)

E n u m e r a t i o n cons tant identifiers are not involved in both cons tan t def in i t ion parts and type def in i t ion

par ts , because it is diff icul t to design every th ing in detai l ! s imi l a r ly , record fields are also no t i nvo lved in

both type def in i t ion parts and var iable def ini t ion parts below.

2 . 3 V a r i a b l e D e f i n i t i o n P a r t s

A var iable def in i t ion specifies where and how a var iable is used.

(var iab le def ini t ion part) : : =

(n u l l)

[va t (var iable def in i t ion) { (var iab le def in i t ion) }

(var iab le de f in i t ion) : : -~

(var iab le ident i f ier) ~ = s (reference program un i t par t)

There are three cases when a variable is used in a program uni t : (~)it is used as a n r - v a l u e ; (~)it is used

as a n l - v a l u e ! (~)it is used as an l -va lue and an r -va lue . It is necessary to dis t inguish the three cases in

program designs. For example , the actions in the subprogrnm A m a y be decided by the va lue of a cer ta in

var iable assigned in the subprogram BI however , the va lue of V canno t be changed in A. To this e n d , the

syn tax of reference program uni t parts in var iable def in i t ions is augmented so as to dis t inguish the three

cases: if a var iable can on ly be used as a cons tant in a certain subp rog ram , the subprogram n a m e mus t be

fol lowed by the reserved word " I n ' e n c l o s e d in parentheses in the reference p rogram un i t part of the var iab le

57

definition of the variable; if a variable can only be assigned in a certain subprogram(e, g. , the variable can

used in the left-ha.tad side of an assignment statement but cannot used in the r i gh t -hand side of an

assignment s t a t emen t) , the subprogram name must be followed by the reserved word"ou t "ene lo sed in

parentheses in the reference program unit part of the variable definition of the variable I if a variable can be

used in a unrestricted way in a certain subprogram, the subprogram name must be followed by nothing or

by the reserved words Uln out"enelosed in parentheses. Therefore, a subprogram name (ident i f ier) may

appear in more than one program unit groups in the same variable definition. For example,

V : = : m u s t i n (P 1 , P2 (ln)~ P 3 (o u t)) ;

n e v e r h l (P 2 (o u t) , P4) ;

The definition specifies that , V must be used as both a l-value and a r -value in P 1 , as a constant in P 2 , as

a l -value in P3 , and cannot used in P4. Please note that this may not happen in a constant def in i t ion, a

type defini t ion, or a subprogram definition.

2. 4 P r o c e d u r e A n d F u n c t i o n D e f i n i t i o n Pa r t s

A procedure (or funct ion) definition specifies where a procedure (or funct ion) is used (cal led) . A

procedure (or func t ion) definition corresponds to a procedure (or func t ion) declaration in Pascal. A

procedure (or funct ion) definition describes not only where a212 procedure(or f u n c t i o n) , defined at this

place in the corresponding Pascal program, is used, but also which ent i ty(ident i f ier) defined external ly is

used in the procedure(or func t ion) , and which ent i ty(ident i f ier) is defined in the body. The s y n t a x of a

procedure definition is given as follows:

(procedure definit ion) : : ----

pttocedure (procedure identifier) : ---- = (reference program uni t part)

(reference part)

(parameter part)

(definition part)

e n d ;

where

(parameter part) : : =

(nu l l)

I p a r a m e t e r

(parameter definition) { ; (parameter definit ion) } ;

(parameter definit ion) : : -~

(formal identifier) : = : (reference program unit part)

The parameter part is put before the definition part in order to be consistent with Pascal language; and

it is put after the reference part because the parameter type is predefined or defined externally.

3. Reference Parts
A reference part specifies where and how an entity (ident i f ier) , defined in an enclosing program uni t

or in the predefined env i ronment , is used in the current program unit. That is, it both describes where an

entity (ident i f ie r) , which will be used in the current program un i t , is defined, and specifies where and how

the enti ty is used here. Similar to a definition part , a reference part consists of a constant reference par t , a

type reference part , a variable reference part and a procedure and function reference part , each part

including a number of references. The general form of a reference is as follows:

(identif ier) ---- : : (definition program unit part)

: _-- : (reference program unit part)

where the definition program unit part is used to indicate where the specified ent i ty is defined. If the ent i ty

58

(such as BOOLEAN, PRED, WRITE etc.) is predefined, it is the reserved word "predefined"; if the

entity is defined in the other program uni t , it is indicated by the name of the program urd t l i f the ent i ty is

defined in the main program, it is indicated by the reserved word " main' " or by the name of the main

program, for example:

(~) const PI = : : main ;

, _-- mus t i n (PROC1 ,PRO C3) ;

neve r in (PROC2, FUNC6) ;

(~) type BOOLEAN --~ : : predeflned ;

' = ' m a y i n (F U N C S))

4. An Example
Let's consider the following P IDL/Pasca l program named PROG which will be the name of a

corresponding Pascal program. The Pascal program includes a procedure named PROC and a funct ion

named FUNC besides the subprograms on stack oprations, and needs to use some predefined types and

subprograms, such as integer type INTEGER, real type REAL, boolean type BOOLEAN, input -output

procedures READ and WRITELN. T h e data structure cannot be used in the main program and the

subprograms PROC and FUNC. The subprograms used to operate the stack can not be called in main

program. FUNC may only call the function ISEMPTY, ISFULL and LENGTH, but PROC can call all the

subprograms on stack operations. The PIDL/Pascal program is as follows:

program PROG (INPUT, OUTPUT) ;

reference

type

BOOLEAN = ' "

INTEGER = : :

predefined

must in(ISEMPTY, ISFULL) !

may in (PROC, FUNC, P R O G) ;

predefined ;

mustin (PUSH, POP, ISEMPTY, ISFULL, LENGTH) !

REAL = : : predefined ;

, = , musf in (PUSH, POP, PROC, P R O G) ;

mayin (FUNC) !

p r o c e d u r e R E A D = : : predefined ;

, = , m a y i n (m a i n , PROC) ;

neverln (PUSH, POP,

FUNC) ¢

procedure WRITELN = : : predefined I

' = , m u s l i n (P R O G) !

onlyln (PROC) ;

definit ion

v a t

STACK

LEN

ISEMPTY, ISFULL, L E N G T H ,

, .~ , mus ton ly ln (PUSH, POP) !

, = , must ln(ISFULL, ISEMPTY);

on ly ln (PUSH, POP) t

PTR , = : mus ton ly in (PUSH, POP, ISEMPTY, ISFULL,. L E N G T H) ;

procedure PUSH , = , mus ton ly in (PROC) ;

reference

v a r

STACK • : : main ; {In this program, m a i n = P R O G }

59

s ---- t s e l f (o u t) ;

P T R ----- " " maIn ;

, = t s e l f ;

t y p e

R E A L = "" predef ined ;

t ~ t s e l f ;

p a r a m e t e r

I N V A L U E t = t

e n d { P U S H } ;

f une t i on P O P * = t

s e l f (I n) ;

musl in (P R O C) ;

o n l y l n (m a l n) ;

r e f e r e n c e

v a r

S T A C K = ' " m a i n !

t = s e l f (i n) ;

P T R ~ : : m a i n ;

t =:self ;

t y p e

R E A L = " " predef ined ;

: = t s e l f ;

re /u rn R E A L ;

end { P O P } ;

func t ion I S E M P T Y t = t m a y i n (p o p , P R O C , F U N C) ;

. . . ' . . ,

end { I S E M P T Y } ;

f unc t i on I S F U L L t .~ t m a y i n (P U S H , P R O C , F U N C) ;

. ,

e n d {ISFULL} ;

func t ion L E N G T H t = z o n l y i n (P R O C , F U N C) ;

. . . ° . ,

end { L E N G T H } ;

procedure P R O C t = s m u s t o n l y i n (m a i n) ;

e n d { P R O C } ;

func t ion F U N C ~ ---- t o n l y i n (m a i n , P R O C) ;

.

e n d { F U N C } ;

e n d { P R O G }.

There are some points that should be expla ined with respect to this p rog ram:

(~)PIDL languages is designed to specif ies the relat ions be tween defini t ions and re fe rences in deve lop ing

large or middle sized so f tware s , and are not sui table to be used in small p r o g r a m m i n g , especia l ly in wr i t ing

exercise programs. This examp le is used to to expla in the use of the language and thus seems to be longer

than the corresponding Pascal p rogram. This will not happen in developing large or middle sized so f twares ;

E v e n though this happns , it wou ld be necessary .

(~)Although the p r g r a m in this example specifies a lmost all the def ini t ions and re fe rences of all en t i ty

idet i f iers , it is not requi red like this in the practical sof tware deve lopments but is requi red to spec i fy the key

60

or important ent i ty identifiers in the designs. For example , an entity ident i f ier , defined in a subprogram

and used only in the statement part of the subprogram, is unnecessary to appear (in the defini t ion part of

the subprogram defini t ion) in the P IDL/Pasca l program.

(~)The procedure reference

procedure WRITELN .~ : : predefined)

z ---~ m u s l l n (P R O G) ;

only ln (PROC) !

is equivalent to

procedure WRITELN -~- : ." predefined ;

* ~ m u s t l n (P R O G) ;

only ln (P R O G , PROC) ;

5. Applications
As a complementary representation tool to other design representation tools(e , g. , PDL/Pasca l etc.) ,

P IDL/Pasca l language may be used in the design, implementa t ion , analysis and maintenance of sof twares ,
as fol lows:

5. i D e s i g n C o n s i s l e n c y A n d I n t e g r i t y C h e c k i n g T o o l

P IDL/Pasca l may be used to check the integri ty and consistency between the different parts of a design
or code.

5. 2 D e s i g n A n d C o d e U n d e r s t a n d i n g T o o l

P IDL/Pasca l formal ly specifies the definition and reference relations of all entities in a design or code ,

and hence may be used to understand and analyse designs or codes effect ively.

5. 3 D e s i g n C o m p l e x i t y A n a l y s i n g T o o l

PIDL/Pasca l specifies the interfaces between the main program and the subprograms and between the

different subprograms, and hence may be used to analyse and evaluate the interface complexities of a design

so as to improve all or some parts of the design.

5. 4 M a i n t e n a n c e T o o l

P IDL/Pasca l may be used to understand the structures of a design or code, and thus m a y be used in
the software maintenance.

6. Checking Tools
PIDL/Pasca l may be used to check two types of consistency, i. e. , the consistency within a design

(within a P IDL/Pasca l p rog ram) and the consistency between a design and its cede. In order to check the

two types of consis tency, we have developed a PIDL/Pasca l checking tool.

6 .1 Checking Consistency Wi th in Design

To check the consistency within a design is to check the consistency within the corresponding P I D L /

Pascal program. Within a PIDL/Pasca l p rogram,

(~) if the definition part of a Subprogram P1 , where an ent i ty E is def ined, specifies that E must or

m a y be used in another subprogram P 2 , or that P2 is one of the subprograms where E can only be used,

and the reference part of P2 specifies that E must be used there , it is considered to be cons i s t en t or
compatible t

(~)if the definition part of P1 specifies that E must be used in P2 , and the reference part of P2 specifies

that E may be used there, it is considered to be quasi-consistent or not very consistent;

(~) if the definition part of P1 specifies that E is not allowed tobe used in P2 , but the reference part of

61

P2 specifies that E must be used there, it is considered to be inconsistent.

There are other possibilities to be checked. When the checking tool runs , it will reports the quasi-

consistency and the inconsistency in the design or the Pascal code, which will be referred in checking or

modifying the design or the Pascal code.

6. 2 Checking Consistency Between Design And Code

The second type of consistency checking is to check the consistency between the a design and the

corresponding the Pascal code, so as to check whether or not the de.sign requirements of the interfaces are

met in the Pascal Code.
(~) if the definition part of a subprogram P1, where an enti ty E is defined, specifies that E must or

may be used in another subprogram P2 , or that P2 is one of the'subprograms where E can only be used (or

if the refererice part of P2 specifies that E must or may be used there) , and E is used in the corresponding

place in the Pascal code, it is considered to be consistent or compatible.

(~) if the definition part of P1 specifies that E may be used in P2 (or if the reference part of P2

specifies that E m a y b e used the re) , and E is not used in the corresponding place in the Pascal code, it is

considered to be quasi-consistent Or not very consistent !

(~) if the definition part of P1 specifies that E must be used in P2 (o r if the reference part of P2

specifies that E must be used there, but E is not used in the corresponding place in the Pascal code, it is

considered to be inconsistent or incomparable; if the definition part of P l specifics that E can only be used

in the subprograms P 1 , P 2 and P3 , but E is also used in the subprogram P4 in the Pascal code, it is

considered to be inconsistent! if the definition part of P1 specifies that E is not allowed to be used in the

subprogram P2, but E is used in the corresponding place in the Pascal code, it is also considered to be

inconsistent.
Thus , we may see that the ease that an entity "may be used" is of no use for checking tools. The case

is designed to assist in understanding designs. The following situation may be encountered in designing

softwares: it is uncertain whether or not an entity will be used in a subprogram when coding, but according

to the known information, the entity may quite be used in the subprogram. If this kind of information is

recorded in PIDL/Pascal programs, it is conductive to understanding and maintaining softwares.

References
[1] Jenscn,K. et al, Pascal U~r Manual and Report, 3rd ed. , Springer,1985
[2] Xu,B. , CRL/Pascalt A Pascal-oricntcd Cross Reference LaiqgLtage, to appear.

62

