. PIDL /Pascal; A Pascal-oriented Program Interface
Description Language And Its Applications

Updates

Xu Baowen

Department of Computer Science and Engineering
Nanjing Aeronautical Institute
Narijing, 210016
P. R. China

Abstract
This paper tniroduces a Pascal-oriented program tnterface description language, PIDL/Pascal, which is
designed to specify the interface tnformation befween program units so as to remedy the weakness of some
design tools. We will also discuss its design ideas, program structure and facilities, applications, and
checking tools.

1. Introduction

In software design stage, one should specify not only the functional description and data structure
details of each software componenf, but also the interfaces between all software components. At present,
the design representation tools mainly include flow charts, PAD charts, N-S chart, PDL language and so
on. There is a common weakness in these tools, tﬁat it is difficult or impossible to use them to specify the
interface information between software components, and the definition and use information of an entity
(identifier) in a software component, e. g. ,the information where and how a variable must or should be
used and where the variable must not be used. For example, in implementing a stack abstraction data type,
at least, there should be a procedure PUSH, a p}ocedure or function POP, a function ISEMPTY used to
determine whether a stack is empty, a function ISFULL used to determine whethéer a stack is full, a
function LENGTH used to indicate the number of the elements in a.stack, a data structure STACK used to
represente a stack, and a pointer PTR pointing to the top of a stack. In order to maintain the integrity and
consistency of operations on a stack, the other program components outside the stack definition could only
use (or call) the subprograms PUSH, POP, ISEMPTY, ISFULL and LENGTH, but may not refer to
STACK and PTR directly; moreover, in the body of the function ISEMPTY, ISFULL or LENGTH,
STACK may not be used, and the value of PTR may not be changed. All of these are very difficult to be
specified in design representation tools or programming languages. Although some of them may be obtained
by means of analysing the design or(and) the Pascal code, it is very difficuit to analyse a large program,
let alone the informal design tools.

For this reason, we developed a Pascal-oriented program interface description language PIDL/Pascal
used to specify the interfaces between program components and the definition and use information of an
entity (idetitier) in a program component. Each PIDL/Pascal -program, including its program units(i. e. ,
procedures and functions), comprises a definition part and a reference part. The definition part specifies the
use information of an entity (identifier) defined or declared at the corresponding place in the relevant PDL
program(or flow chart, PAD chart) or programming language program: where and how to use it; the
reference part specifies which entities (identifiers), defined or declared in the predefined environment and
the other program units (the main program and the subprograms), are used in the current program unit, and
how they are used in the current unit.

55 ACM SIGPLAN Notices, Volume 28, No. 5 May 1993

http://crossmark.crossref.org/dialog/?doi=10.1145%2F152819.152826&domain=pdf&date_stamp=1993-05-01

2. Definition Parts

In a Pascal program (or a PDL/Pascal program or a Pascal-oriented flow chart), if an entity
(identifier) E, defined or declared in a subprogram (or the main program) A, is used in another
subprogram (or the main program) B, the use approach may fall roughly into three categories as follows;

1. E must be used in B. e.g. , STACK and PTR must be used in subprogram PUSH and POP.

2. E may be used in B, but whether or not E is actually used in B depends on particular
implementations. e. g. , PTR may be used in the subprograms ISEMPTY, ISFULL and LENGTH. In the
real implementation, if the stack is represented with an array and there is no variable used as element
counter, PTR must be used in the three subprograms; if there is a counter, PTR must not be used in the
subprogram.

3. E can only be used in a set of subprograms, including B, at most. That is, the use range of E is
specified, and in an actual implementation, E may be used in all or some of the subprograms, or even in
none of them. e. g., PTR can only be used in the subprograms PUSH, POP, ISEMPY, ISFULL and
LENGTH.

4. E is not allowed in B. e.g. , STACK is not allowed in all subprograms except POP and PUSH.

There is a major difference beetween the second and third category as follows. In the second categoty,
the information tells us that an entity (identifier) may be used in other subprograms besides in the specified
subprograms. Therefore, this category of information has no use for actual consistency and integrity
checks, because it provides no message for automated tools; however, it is very usefull for the program
implementation and maintenance, because it can tell the original ideas of the designers to the implementators
and maintainers. In the third category, the scope of use for an entity (identifier)is limited to the specified
set of subprograms. There is a common characteristic in the two categoried, that is, the entity (identifier)
defined may not be used in all of the specified set of subprograms.

Let U be the set of all the subprograms
that can use an entity (identifier) E from the
angle of the pure scope, S1 be the set of the
subprograms that must use E, S2 be the set of
the subprograms that may use E, S3 be the set
of the subprograms where E can only be used,
and S4 be the set of the subprograms where E
can not be used, then the following relations
hold (see the right figure) .

S1ICSs2ES3C U
S3NSd=

In order to be consistent with a Pascal program, the definition part of a PIDL /Pascal program consists
of a constant definition part, a type definition part, a variable definition part, and a procedure and
function definition part, with each part including a number of definitions. The simplest form of a definition .
is as follows,

(identifier) : = t (reference program unit part)

where

(reference program unit part) ==
[(must reference program unit group)]
[¢may reference program unit group) |
[(only reference program unit group) |
[{must-and-only reference program unit group)]
[(never reference program unit group)]

56

(must reference program unit group) .. =
[mustin1((program unit name list));
(may reference program unit group) .. =
mayin((program unit name list));
{only reference program unit group) .. =
onlyin((program unit name list));
{must-and-only reference program unit group) .=
mustonlyin({program unit name list));
(never reference program unit group) .. ==
neverin({program unit name list));

If a program unit name list is composed of all the program units that can use the entity (identifier)
defined according to the scope rules, it can be replaced by the reserved word “all”.

2. 1 Constant Definition Parts
A constant definition specifies where a constant is used.
(constant definition part) .=
(null)

|const (constant definition) { (constant definition) }
(constant definition) ! =

constant (identifier) : = : (reference program unit part)

The constant identifiers described here do not include enumeration constant identifiers.

2. 2 Type Definition Parts
A type definition specifies where a type is used.
(type definition part) ;.=
(null)
[type (type definition) { (type definition) }
(type definition) .=
type (identifier) : == 1 (reference program unit part)

Enumeration constant identifiers are not involved in both constant definition parts and type definition
parts, because it is difficult to design everything in detail; similarly, record fields are also not involved in
both type definition parts and variable definition parts below.

2. 3 Variable Definition Parts
A variable definijtion specifies where and how a variable is used.
(variable definition part) ::=
{null)
|var (variable definition) { (variable definition) }
(variable definition) .=
(variable identifier) 1+ = t (reference progtam unit part)

There are three cases when a variable is used in a program unit; it is used as an r-value; @it is used
as an l-value; it is used as an I-value and an r-value. It is necessary to distinguish the three cases in
program designs. For example, the actions in the subprogram A may be decided by the value of a certain
variable assigned in the subprogram B; however, the value of V cannot be changed in A. To this end, the
syntax of reference program unit parts in variable definitions is augmented so as to distinguish the three
cases: if a variable can only be used as a constant in a certain subprogram, the subprogram name must be
followed by the reserved word “in”enclosed in parentheses in the reference program uhit part of the variable

57

definition of the variable; if a variable can only be assigned in a certain subprogram(e. g. , the variable can
used in the left- hand side of an assignment statement but cannot used in the right- hand side of an
assignment statement), the subprogram name must be followed by the reserved word “out” enclosed in
parentheses in the reference program unit part of the variable definition of the variable; if a variable can be
used in a unrestricted way in a certain subprogram, the subprogram name must be followed by nothing or
by the reserved words“in out”enclosed in parentheses. Therefore, a subprogram name (identifier) may
appear in more than one program unit groups in the same variable definition. For example,
V t =1 mustin(P1, P2(in), P3(out));
neverin(P2(out), P4);

The definition specifies that, V must be used as both a l-value and a r-value in P1, as a constant in P2, as
a l-value in P3, and cannot used in P4. Please note that this may not happen in a constant definition, a
type definition, or a subprogram definition.

2. 4 Procedure And Function Definition Parts
A procedure (or function) definition specifies where a procedure (or function) is used (called). A
procedure (or function) definition corresponds to a procedure (or function) declaration in Pascal. A
procedure (or function) definition describes not only where a212 procedure (or function), defined at this
place in the corresponding Pascal program, is used, but also which entity (identifier) defined externally is
used in the procedure (or function), and which entity (identifier) is defined in the body. The syntax of a
procedure definition is given as follows;
{procedure definition) :=
procedure (procedure identifier) ¢ = : (reference program unit part)
(reference part)
(parameter part)
(definition part)
end;
where

{parameter part) .=
(null)
| parameter

{parameter definition) {; (parameter definition) };
(parameter definition) ! =

(formal identifier) + = : (reference program unit part)

The parameter part is put before the definition part in order to be consistent with Pascal language; and
it is put after the reference part because the parameter type is predefined or defined externally.

3. Reference Parts

A reference part specifies where and how an entity (identifier), defined in an enclosing program unit
or in the predefined environment, is used in the current program unit. That is, it both describes where an
entity (identifier), which will be used in the current program unit, is defined, and specifies where and how
the entity is used here. Similar to a definition part, a reference part consists of a constant reference part, a
type reference part, a variable reference part and a procedure and function reference part, each part
including a number of references. The general form of a reference is as follows,

(identifier) = .. (definition program unit part)
+ = t (reference program unit part)

where the definition program unit part is used to indicate where the specified entity is defined. If the entity

58

(such as BOOLEAN, PRED, WRITE etc.) is predefined, it is the reserved word “predefined”; if the
entity is defined in the other program unit, it is indicated by the name of the program unit;if the entity is
defined in the main program, it is indicated by the reserved word “ main ” or by the name of the main
program. for example.
(D const PI =:: main;
¢t = mustin(PROC],PROC3);
neverin (PROC2, FUNC6)
@ type BOOLEAN =:: predefined ;
1 =1 mayin(FUNC5);

4. An Example

Let’s consider the following.PIDL/ Pascal program named PROG which will be the name of a
corresponding Pascal program. The Pascal program includes a procedure named PROC and a function
named FUNC besides the subprograms on stack oprations, and needs to use some predefined types and
subprograms, such as integer type INTEGER, real type REAL, boolean type BOOLEAN, input-output
procedures READ and WRITELN. The data structure cannot be used in the main program and the
subprograms PROC and FUNC. The subprograms used to operate the stack can not be called in main
program. FUNC may only call the function ISEMPTY, ISFULL and LENGTH, but PROC can call all the
subprograms on stack operations. The PIDL/Pascal program is as follows;

program PROG (INPUT, OUTPUT);
reference

type
BOOLEAN

predefined
mustin (ISEMPTY, ISFULL);
mayin(PROC, FUNC, PROG);
INTEGER =:. predefined;
t = 1 mustin(PUSH, POP, ISEMPTY, ISFULL, LENGTH);
REAL =.. predefined;
+ = : mustin(PUSH, POP, PROC, PROG);
mayin (FUNC);
procedure READ == predefined;
t = 1 mayin(main, PROC);
neverin (PUSH, POP, ISEMPTY, ISFULL, LENGTH,
FUNC);
procedure WRITELN = . predefined;
t = : mustin(PROG);

onlyin(PROC);
definition

var

STACK : = : mustonlyin(PUSH, POP);

LEN 1+ =+ mustin(ISFULL, ISEMPTY);

onlyin(PUSH, POP);

PTR + =t mustonlyin(PUSH, POP, ISEMPTY, ISFULL, LENGTH);
procedure PUSH : = : mustonlyin(PROC);

reference

var

STACK =:: main; {In this program, main=PROG)

59

t = ¢ self(out);

PTR == main;
: = 3 selfy
type
REAL ==:. predefined;
1 =1 self;
parameter

INVALUE 1 = self(in);
end {PUSH} ;

function POP : = + mustin(PROC);
onlyin(main);
reference
var
STACK =:! main;
1 = self(in);

PTR = .. main;
+ =iselfy
type
REAL = predefined;
: =1 self;
return REAL;
end {POP};

function ISEMPTY ¢ = : mayin(POP, PROC, FUNC);

end {ISEMPTY } ;
function ISFULL t = : mayin(PUSH, PROC, FUNC);

......

end {ISFULL};
function LENGTH : = : onlyin(PROC, FUNC);

end {LENGTH)} ;
procedure PROC t = t mustonlyin (main);

end {PROC} ;
function FUNC : = : onlyin(main, PROC);

end {FUNC};
end {PROG}.

There are some points that should be explained with respect to this program.

(DPIDL languages is designed to specifies the relations between definitions and references in developing
large or middle sized softwares, and are not suitable to be used in small programming, especially in writing
exercise programs. This example is used to to explain the use of the language and thus seems to be longer
than the corresponding Pascal program. This will not happen in developing large or middle sized softwares;
Even though this happns, it would be necessary.

(@Although the prgram in this example specifies almost all the definitions and references of all entity
idetifiers, it is not required like this in the practical software developments but is required to specify the key

60

or important entity identifiers in the designs. For example, an entity identifier, defined in a subprogram
and used only in the statement part of the subprogram, is unnecessary to appear (in the definition part of
the subprogram definition) in the PIDL/Pascal program.
(®The procedure reference
procedure WRITELN = ! predefined;
1 = mustin(PROG);
onlyin(PROC);

is equivalent to

procedure WRITELN = :: predefined;
1 = mustin(PROG);
onlyin(PROG, PROC);

5. Applications
As a complementary representation tool to other design representation tools(e. g. , PDL/Pascal etc.),

PIDL/Pascal language may be used in the design, implementation, analysis and maintenance of softwares,
as follows,

5. 1 Design Consistency And Integrity Checking Tool

PIDL/Pascal may be used to check the integrity and consistency between the different parts of a design
ot code.

5. 2 Design And Code Understanding Tool

PIDL/Pascal formally specifies the definition and reference relations of all entities in a design or code,
and hence may be used to understand and analyse designs or codes effectively.

5. 3 Design Complexity Analysing Tool
PIDL/Pascal specifies the interfaces between the main program and the subprograms and between the

different subprograms, and hence may be used to analyse and evaluate the interface complexities of a design
so as to improve all or some parts of the design.

5. 4 Maintenance Tool

» PIDL/Pascal may be used to understand the structures of a design or code, and thus may be used in
the software maintenance.

6. Checking Tools
PIDL/Pascal may be used to check two types of consistency, i.e., the consistency within a design
(within a PIDL/Pascal program) and the consistency between a design and its céde. In order to check the
two types of consistency, we have developed a PIDL/Pascal checking tool.

6.1 Checking Consistency Within Design

To check the consistency within a design is to check the consistency within the corresponding PIDL/
Pascal program. Within a PIDL/Pascal program,

@ if the definition part of a subprogram P1, where an entity E is defined, specifies that E must or
may be used in another subprogram P2, or that P2 is one of the subprograms where E can only be used,
and the reference part of P2 specifies that E must be used there, it is considered to be consistent.or
compatible ;

@it the definition part of P specifies that E must be used in P2, and the reference part of P2 specifies
that E may be used there, it is considered to be quasi-consistent or not very consistent;

® if the definition part of P1 specifies that E is not allowed tobe used in P2, but the reference part of

61

P2 specifies that E must be used there, it is considered to be inconsistent.

There are other possibilities to be checked. When the checking tool runs, it will reports the quasi-
consistency and the inconsistency in the design or the Pascal code, which will be referred in checking or
modifying the design or the Pascal code.

6. 2 Checking Consistency Between Design And Code

The second type of consistency checking is to check the consistency between the a design and the
corresponding the Pascal code, so as to check whether or not the design requirements of the interfaces are
met in the Pascal ¢ode.

(@ if the definition part of a subprogram P1, where an entity E is defined, specifies that E must or
may be used in another subprogram P2, or that P2 is one of the'subprograms where E can only be used (or
if the refererice part of P2 specifies that E must or may be used there), and E is used in the corresponding
place in the Pascal code, it is cansidered to be consistent or compatible.

@ if the definition part of P1 specifies that E may be used in P2 (or if the reference part of P2
specifies that E may be used there), and E is not used in the corresponding place in the Pascal code, it is
considered to be quasi-consistent or not very consistent

® if the definition part of Pl specifies that E must be used in P2 (or if the reference part of P2
specifies that E must be used there, but E is not used in the corresponding place in the Pascal code, it is
considered to be inconsistent or incompatable; if the definition part of Pl specifies that E can only be used
in the subprograms P1,P2 and P3, but E is also used in the subprogram P4 in the Pascal code, it is
considered to be inconsistent; if the definition part of P1 specifies that E is not allowed to be used in the
subprogram P2, but E is used in the corresponding place in the Pascal code, it is also considered to be
inconsistent.

Thus, we may see that the case that an entity “may be used” is of no use for checking tools. The case
is designed to assist in understanding designs. The following situation may be encountered in designing
softwares ; it is uncertain whether or not an entity will be used in a subprogram when coding, but according
to the known information, the entity may quite be used in the subprogram. If this kind of information is
recorded in PIDL/Pascal programs, it is conductive to understanding and maintaining softwares.

References
[1] Jensen,K. et al, Pascal User Manual and Report, 3rd ed. , Springer,1985
(2] Xu,B., CRL/Pascal; A Pascal-oricnted Cross Reference Language, to appear.

62

