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ABSTRACT

Runtime enforcement is a powerful technique to ensure that
a program will respect a given set of properties. We extend
previous works on this topic in several directions. Firstly,
we propose a generic notion of enforcement monitors based
on a memory device and finite sets of control states and
enforcement operations. Moreover, we specify their enforce-
ment abilities wrt. the general safety-progress classification
of properties. Furthermore, we propose a systematic tech-
nique to produce an enforcing monitor from the automaton
recognizing a given safety, guarantee, or response property.
Finally, we depict a prototype toolbox implementing the fea-
tures proposed in this paper.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods, validation, reliability

General Terms
Verification, Theory

Keywords

runtime enforcement, monitor, property, safety-progress, syn-
thesis

1. INTRODUCTION

The growing complexity of nowadays programs and sys-
tems induces a rise of needs in validation. With the enhance-
ment of engineering methods, software components tend to
be more and more reusable. When retrieving an external
component, the question of how this code meets a set of
proper requirements raises. Using formal methods appears
as a solution to provide techniques to regain the needed con-
fidence. However, these techniques should remain practical
enough to be adopted by software engineers.
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Runtime monitoring falls it this category. It consists in su-
pervising at runtime the execution of an underlying program
against a set of expected properties. With an appointed mo-
nitor, one is able to detect any occurrence of specific pro-
perty violations. Such a detection might be a sufficient as-
surance. However, for certain kind of systems a misbehavior
might be not acceptable. To prevent this, a possible solution
is then to enforce the desired property: the monitor not only
observes the current program execution, but it also controls
it in order to ensure that the expected property is fulfilled.
Such a control should usually remain transparent, meaning
that it should always output the longest correct prefiz of the
original execution sequences.

Runtime enforcement monitoring was initiated by the work
of Schneider [17] on what has been called security automata.
In this work the monitors watch the current execution se-
quence and halt the underlying program whenever it devia-
tes from the desired property. Such security automata are
able to enforce the class of safety properties [10], stating that
something bad can never happen. Later, Viswanathan [20]
noticed that the class of enforceable properties is impacted
by the computational power of the enforcement monitor.
As the enforcement mechanism can implement no more than
computable functions, the enforceable properties are included
in the decidable ones. More recently [14, 15], Ligatti and
al. showed that it is possible to enforce at runtime more
than safety properties. Using a more powerful enforcement
mechanism called edit-automata, it is possible to enforce the
larger class of infinite renewal properties, able to express
some kinds of obligations used in security policies. More
than simply halting an underlying program, edit-automata
can also “suppress” (i.e., freeze) and “insert” (frozen) ac-
tions in the current execution sequence. To better cope with
practical resource constraints, Fong [9] studied the effect of
memory limitations on enforcement mechanisms. He intro-
duced the notion of Shallow History Automata which are
only aware of the occurrence of past events, and do not keep
any information about the order of their arrival. He showed
that such a “shallow history” indeed leads to some compu-
tational limitations for the enforced properties. However,
many interesting properties remain enforceable using shal-
low history automata. The runtime enforcement monitoring
approach was implemented in numerous tools, e.g. [7, 5].
Most of them are based more or less on security automata,
whereas [13] introduces a more expressive framework based
on edit-automata.

In this paper, we propose to extend these previous works
in several directions. Firstly, we study the enforcement ca-



pabilities relatively to the so-called safety-progress hierar-
chy of properties [3, 4]. This classification differs from the
more classical safety-liveness classification [12, 1] by offer-
ing a rather clear characterization of a number of interest-
ing kinds of properties (e.g. obligation, accessibility, jus-
tice, etc.). Thus, it provides a finer-grain classification of
enforceable properties. Moreover, in this safety-progress hi-
erarchy, each property ¢ can be characterized by a partic-
ular kind of (finite state) recognizing automaton A,. Sec-
ondly, we show how to generate an enforcement monitor for
¢ in a systematic way, from a recognizing automaton A,.
This enforcement monitor is based on a finite set of con-
trol states, and an auxziliary memory. This general notion
of enforcing monitor encompasses the previous notions of
security automata, edit-automata and “shallow history” au-
tomata. Moreover, we have implemented a prototype tool-
box to support the concepts introduced in this paper (in
particular the generation of enforcement monitors from rec-
ognizing automata). The underlying technology we chose to
implement the enforcement mechanism is based on Aspect
Oriented Programming. Indeed, inlining the enforcement
monitor seems to be one of the most promising approaches
for enforcement monitoring [6].

The remainder of this article is organized as follows. The
Sect. 2 introduces some preliminary notions for our work.
In Sect. 3 we recall briefly the necessary elements from the
safety-progress classification of properties. Then, we present
our notion of enforcement monitor and their properties in
Sect. 4. The Sect. 5 studies the enforcement capability wrt.
the classes of the safety-progress classification and Sect. 6
compares these results with similar works. In Sect. 7 we
give some insights about the prototype tool we developed to
experiment this approach. Finally, the Sect. 8 exposes some
concluding remarks.

A companion report [8] provides more details and com-
plete proofs of the theorems introduced in this paper.

2. PRELIMINARIES AND NOTATIONS

This section introduces some preliminary notations, namely
the notions of program ezvecution sequences and program pro-
perties we will consider in the remainder of this article.

2.1 Sequences, and execution sequences

Considering a finite set of elements E, we define notations
about sequences of elements belonging to E. A sequence o
containing elements of F is formally defined by a function
0 : N — FE where N is the set of natural numbers. We denote
by E* the set of finite sequences over E (partial function
from N), and by E“ the set of infinite sequences over E
(total function from N). The set E*° = E* U E“ is the set
of all sequences (finite or not) over E. The empty sequence
is denoted €. The length (number of elements) of a finite
sequence o is noted |o| and the (i + 1)-th element of o is
denoted by o;. For two sequences o € E*,0’ € E™, we
denote by o -0’ the concatenation of o and o', and by o < o’
(resp. ¢’ = o) the fact that o is a strict prefix of ¢’ (resp.
o’ is a strict suffix of o). The sequence o is said to be a
strict prefix of o/ € ¥*° when Vi € {0,...,|c| — 1} 0; = 0}.
When o' € E*, wenote 0 <o’ L o <o’ Vo =0

A program P is considered as a generator of execution
sequences. We are interested in a restricted set of operations
the program can perform. These operations influence the
truth value of properties the program is supposed to fulfill.
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Figure 1: The safety-progress classification of pro-
perties

We abstract these operations by a finite set of events, namely
a vocabulary ¥. We denote by Ps a program for which the
vocabulary is 3. The set of execution sequences of Ps is
denoted Exec(Ps) C X°°.

2.2 Properties as sets of execution sequences

A property ¢ is defined as a set of execution sequences,
i.e. @ C X%, Considering a given execution sequence o,
when o € ¢ (noted (o)), we say that o satisfies . A
consequence of this definition, noticed in [14, 17], is that
properties we will consider are restricted to single execution
sequences, excluding specific properties defined on powersets
of execution sequences (like fairness, for instance). Finally,
for a property ¢ and an execution sequence o we denote by
Pref(p, o) the set of prefixes of o that belong to ¢, and by
Maz<(Pref (p,0)) its longest element.

As noticed in [14], a property can be effectively enforced
at runtime only if it is reasonable in the following sense:
deciding if any prefix of an execution sequence satisfies this
property should be a computable function.

3. ASAFETY-PROGRESS CLASSIFICATION
OF PROPERTIES

This section recalls and extends some results about the
safety-progress [3, 4] classification of properties. In the origi-
nal papers this classification introduced a hierarchy between
properties defined as infinite execution sequences. We ex-
tend the classification to deal with finite-length execution
sequences.

3.1 Generalities about the classification

The safety-progress classification (SP classification, for
short) is constituted of four basic classes defined over in-
finite execution sequences. Informally:

e safety properties are the properties for which whenever
a sequence satisfies a property, all its prefizes satisfy
this property.

e guarantee properties are the properties for which when-
ever a sequence satisfies a property, there are some
prefizes (at least one) satisfying this property.

e response properties are the properties for which when-
ever a sequence satisfies a property, an infinite number
of its prefizes satisfy this property.

e persistence properties are the properties for which when-
ever a sequence satisfies a property, all its prefizes con-
tinuously satisfy this property from a certain point.



Furthermore, two extra classes can be defined as (finite)
boolean combinations of basic classes. The Obligation class
can be defined as the class obtained by positive boolean
combination of safety and guarantee properties. The Reac-
tivity class can be defined as the class obtained by positive
boolean combination of response and persistence properties.

Given a set of events 3, we note Safetys, (resp. Guarantees,
Responsey;, Persistences) the set of safety (resp. guarantee,
response, persistence) properties defined over 3.

The safety-progress classification is an alternative to the
more classical safety-liveness [12, 1] dichotomy. Unlike the
latter, the safety-progress classification is a hierarchy and
not a partition. It provides a finer-grain classification, and
the properties of each class are characterized according to
four views [3]. We will consider here only the automata view.

3.2 The automata view

For each class of the safety-progress classification it is
possible to syntactically characterize a recognizing automa-
ton. We define here a variant of deterministic and complete
Streett automata ([18, 3]).

DEFINITION 3.1  (STREETT AUTOMATON). A Streett au-
tomaton is a tuple (Q, Ginis, 2, —, {(R1, P1), ..., (Bn, Pn)})
defined relatively to a set of events 3. The finite set Q is the
set of automaton states, where qinix € Q 18 the initial state.
The function —: Q X ¥ — Q is the transition function. In
the following, for q,q' € Q,e € & we abbreviate — (q,€) =
¢ byq - ¢. The set {(R1,P1),...,(Rm,Pm)} is the set
of accepting pairs, in which for all i < m, R; C Q are the
sets of recurrent states, and P; C Q are the sets of persistent
states.

We refer an automaton with m accepting pairs as a m-
automaton. When m = 1, a l-automaton is also called a
plain-automaton, and we refer R; and P; as R and P. In the
following (otherwise mentioned) o € ¥* designates an exe-
cution sequence of a program, and A = (Q™, g™, 2, — 4
A(R1, P1),...,(Rm, Pn)}) a Streett m-automaton.

The run of o on A is the sequence of states involved by
the execution of A when o is inputted. It is formally de-
fined as run(o, A) = qo-q - -- where Vi- (¢ € QA Agi ~> 4
Gi+1) N qo = q;nit““. Also, we consider the notion of infinite
visitation of an execution sequence ¢ on a Streett automa-
ton A, denoted wvinf(o,.A), as the set of states appearing
infinitely often in run(o, A).

For a Streett automaton, independently of the class of
recognized property, the notion of acceptance condition is
defined using the accepting pairs’.

DEFINITION 3.2  (ACCEPTANCE CONDITION (OVER X¥)).
We say that A accepts o € 3“ ifVi € {1,...,m}-vinf (o, A)N
R; # 0V vinf(o, A) C P.

By setting syntactic restrictions on a Streett automaton,
we characterize the class of properties recognized by such an
automaton.

e A safety automaton is a plain automaton such that
R = () and there is no transition from a state g € P to
a state ¢’ € P.

!There are several equivalent acceptance conditions for
Streett automata. Here we follow [3].

e A guarantee automaton is a plain automaton such that
P = () and there is no transition from a state ¢ € R to
a state ¢’ € R.

e A response automaton is a plain automaton such that
P=0.

e A persistence automaton is a plain automaton such
that R = 0.

We say that a Streett automaton A, defines a property ¢
if and only if the set of execution sequences accepted by A,
is equal to . Conversely, a property ¢ C X°° is said to be
specifiable by an automaton if the set of execution sequences
accepted by the automaton is ¢.

We extend the capability of Streett automata in order to
deal also with finite-length execution sequences. As infor-
mally stated in the introduction, when enforcing a property
on a program exhibiting an incorrect behavior, we want the
enforcement monitor to release a prefix (the longest) satis-
fying the property. Hence, we need a notion of acceptance
for finite execution sequences.

DEFINITION 3.3  (ACCEPTANCE CONDITION (OVER Y*)).
For a finite-length execution sequence o € X* such that |o| =
n, we say that the m-automaton A accepts o if (3qo, ..., qn—1 €
Q run(o, A) = qo - gn_1Ago = Guun™ andVi € {1,...,m}-
qn-1 € P; U RZ)

This acceptance condition matches the definition of fini-
tary properties defined in [3]. We can now define the safety-
progress classification for both finite and infinite sequences.

In the remainder of this article, we will only consider plain
Streett automata. Additional details for the following devel-
opments for general Streett automata can be found in [8].
As a consequence, we will only deal with the classes of safety,
guarantee, response and persistence properties.

DEFINITION 3.4. A property o that is specifiable by an au-
tomaton is a k-property if the automaton is a Kk-automaton,
where k € {safety, guarantee, response, persistence}

A graphical representation of the safety-progress classifi-
cation of properties is depicted on Fig. 1. This illustrates
the hierarchal organization of this classification, e.g. safety
properties are response and persistence properties, etc.

4. ENFORCEMENT MONITORS

A program P is considered as a generator of execution
sequences. We want to build an enforcement monitor (EM)
for a property ¢ such that the two following constraints hold:

soundness: any execution sequence allowed by the EM should
satisfy ;

transparency: execution sequences should be modified in
a minimal way, namely if a sequence already satisfies
¢ it should remain unchanged, otherwise its longest
prefir satisfying ¢ should be allowed by the EM.

4.1 Enforcement monitors

We define now the central notion of enforcement monitor.
Such a runtime device monitors a target program by watch-
ing its relevant events. On each inputted event its current
state evolves and an enforcement operation is performed.
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Figure 2: Constraints for enforcement on finite sequences

DEFINITION 4.1  (ENFORCEMENT MONITOR (EM)). An
EM A, is a 4-tuple (QAl,qimtAi,StopAl,HAl) defined
relatively to a set of events ¥ and a set of enforcement op-
erations Ops. The finite set Q™' denotes the control states,
QmacAi S QAl is the initial state and Stop"‘l is the set
of stopping states (Stop™ C Q™'). The function —Ap
QM x ¥ — Q™M x Ops is the transition function. In the

following we abbreviate — 4, (q,a) = (¢, ) by q MAL q.
We also assume that outgoing transitions from a stopping
state only lead to another stopping state: ¥Yq € Stop™ -Va €

¥ -VYoa € Ops - V¢ € QM -qﬂml ¢ = ¢ € Stop™t.

Typical enforcement operations allow the EM either to
halt the target program (when the current input sequence
irreparably violates the property), or to store the current
event in a memory device (when a decision has to be post-
poned), or to dump the content of the memory device (when
the target program went back to a safe behavior). We first
give a more precise definition of such enforcement opera-
tions, then we formalize the way an EM reacts to an input
sequence provided by a target program through the standard
notions of configuration and derivation.

DEFINITION 4.2  (ENFORCEMENT OPERATIONS). Each en-
forcement operation takes as inputs an event and a memory
content (i.e., a sequence of events) to produce a new memory
content and an output sequence: Ops C 2(EXT) = (7%=
In the following we consider a set Ops = {halt, store, dump}

defined as follows:
e halt(a,m) = (m,e),
o store(a,m) = (m.a,¢),
e dump(a,m) = (g, m.a).

DEFINITION 4.3  (EM CONFIGURATIONS, DERIVATIONS).
For an EM A| = (QAi7q;n;tAi7St0pAi,—>Al), a configu-
ration is a triplet (g, o, m) € Q' x ¥* x ©* where q denotes
the current control state, o the current input sequence, and
m the current memory content.

We say that a configuration (q',0’,m’) is derivable in one
step from the configuration (q,0,m) and produces the out-
put 0 € X*, and we note (q,0,m) <> (¢',0’,m’) if and only

ifo=a.0 Aq MAL qd Nala,m) = (m’,0).

We say that a configuration C' is derivable in several steps
from a configuration C' and produces the output o € 3%, and
we note C :O>Al C’, if and only if there exits k > 0 and
configurations Co, C1, ..., Cx such that C = Cy, C' = C,
C; &Ci.,_l forall0<i<k, ando=00-01" " 0k_1.

Also the configuration C' is derivable from itself in one step
and produces the output €, we note C = C.

4.2 Enforcing a property

We now describe how an EM can enforce a property on a
given program. The notion of enforcement is based on how a
monitor transforms a given inputted sequence into an output
sequence. For the upcoming definitions we will distinguish
between finite and infinite sequences. In the following, we
consider an EM A; = (Q*, g™, Stop™t, —a,).

DEFINITION 4.4
that:
The sequence o € 3X* produced by Ps is transformed by A,
into the sequence o € X*, which is noted (gini™t, o) a, o,
if 3g € QY ,m € X such that (qmi™!, 0, €) :O>Al (g,€,m).

The sequence o € X is transformed by A, into the se-
quence o € ¥°°, which is noted (g, 0) Ya, o, if Vo' €
¥ o' <o (30 e - (qm;tAi,U') a, o' Ao = o).

(SEQUENCE TRANSFORMATION). We say

We define the notion of property-enforcement by an EM.

DEFINITION 4.5 (PROPERTY-ENFORCEMENT). Let us con-
sider a property ¢, we say that A enforces the property ¢
on a program Ps; (noted Enf(Ay, ¢, Ps)) iff

e Yo € Ezec(Px) NX*,30 € ¥* - enforced(o,0, Ay, ¥),
where the predicate enforced(o,0,A|,,p) corresponds to
the conjunction of the constraints of Fig. 2.

e Yo' € Exec(Ps) NX¥,Vo < o’ - enforced (o, 0, Aje, ).

(1) ensures soundness, while (2), (3), (4) ensure transparency
of A;. Indeed: (1) stipulates that the sequence o is trans-
formed by A| into a sequence o; (2) ensures that if o satisfied
already the property then it is not transformed; and in the
case where o does not satisfy ¢, if there exists a prefix of
o satisfying the property (3) ensures that o is the longest
prefiz of o satisfying the property, else (4) ensures that A|
produces €.

EXAMPLE 4.1 (ENFORCEMENT MONITOR). Considering
a set of events ¥ = {a,b,c},

e at the bottom of Fig. 3 is depicted an EM enforcing the
property expressed by the w-reqular expression b* -a™ -
b-X¥;

e and Fig. 4 (right-hand side) shows an EM enforcing
the property (a* - b)“.

S.  ENFORCEMENT WRT. THE SP CLAS-
SIFICATION

We now study how to practically enforce properties of the
safety-progress hierarchy (Sect. 3). More precisely, we show
which classes of properties can be effectively enforced by an
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EM, and more important, we provide a systematic construc-
tion of an EM for a property ¢ from the Streett automaton
defining this property. This construction technique is spe-
cific to each class of properties. We consider below a Streett
plain-automaton A, = (QA%" RS 3 — A, (R, P)).

5.1 Enforcement monitor synthesis

We define three general operations whose purpose is to
transform a Streett plain-automaton recognizing a safety
(resp. guarantee, response) property into an enforcement
monitor enforcing the same property.

DEFINITION 5.1  (SAFETY TRANSFORMATION). Let A,
a safety-automaton, and ¢ a reasonable safety property, we
define a transformation TSaf of this automaton into an EM
Ay = (QAve, g™ te, Stop™te, —a,,) such that Qhle =
Q'A“o, qinth‘W’ = qmitA¢ (UJZth qini;AL‘p (= P), StOpAl““’ = ?
The transition relation — a4, , is defined from — a4, as the
smallest relation verifying the following rules:

d .
o ¢, ifd €PAGga, q

a/halt . a
oq — a,q ifd¢PNg—u, ¢

We note A, = TSaf(A,).

An EM obtained via the TSaf transformation processes
the inputted execution sequence and enforces the expected
property. Informally it can be understood as follows. While
the current execution sequence satisfies the underlying pro-
perty, it dumps directly the input on its output. Once the
execution sequence deviates from the property, it halts im-
mediately the underlying program with a halt operation.

We now define a similar transformation for guarantee pro-
perties. The TGuar transformation uses the set Reach.a,, (q)
of reachable states from a state q. Given a Streett automa-
ton A, with a set of states Q*¢, we have Vg € Q*¢ -
Reach (@) = {4 € Q% | Aao (@)erq 04, 10 S,
aq)

DEFINITION 5.2  (GUARANTEE TRANSFORMATION).

Let A, a guarantee-automaton recognizing a pro-
perty ¢ € Guarantees. We define a transfor-
mation TGuar of this automaton into an EM
A, = (QAlS",q;n;tAW,StopAw,*»Aw) such that
QMY = QA g™ = qu??, and Stop™te = {q €
Qe |Aq € Reacha,(q) Nq' € R}. The transition relation
—a4,, IS defined from — a4, as the smallest relation
verifying the following rules:

d .
o ¢, d ifd €RANGga, q

a/hal .
o q /—>tAwq’zfq'gZR/\quq’q’A/Hq"ER'q"E
Reacha,(q')

a/store

o q —="a,d ifd ¢RNqg-"u, ¢ NI €ER " €
Reacha,(q')

Note that there is no transition from q € R to ¢ € R. And,
as P =0, we do not have transition from q € P to ¢’ € P.
We note A, = TGuar(A,).

Informally this can be understood as follows. While the
current execution sequence does not satisfy the underlying
property, it stores each event of the input sequence. Once,
the execution sequence satisfies the property, it dumps the
content of the memory and the events stored so far. Note
that an automaton resulting of this transformation satisfies
the enforcement monitor constraints (notably the stopping
states constraint). The following example illustrates this
principle.

EXAMPLE 5.1 (GUARANTEE TRANSFORMATION).
Considering a set of events ¥ = {a,b}, Fig. 3 (up-side)
shows a Streett automaton recognizing the guarantee pro-
perty expressed by b* -at -b- X%, Its set of states is {1,2,3},
the initial state is 1, and we have R = {3} and P = 0.
Below is depicted the EM enforcing the same property,
obtained by the TGuar transformation. One can notice
there is no stopping state.

Finding a transformation for a response property ¢ needs
to slightly extend the definition of TGuar to deal with tran-
sitions of a Streett automaton leading from states belonging
to R to states belonging to R (since such transitions are
absent when ¢ is a guarantee property). Therefore, we in-
troduce a new transformation called TResp obtained from
the TGuar transformation (Def. 5.2) by adding a rule to deal
with the aforementioned difference.

DEFINITION 5.3  (RESPONSE TRANSFORMATION). Let A,
a response-automaton recognizing a property ¢ € Responsey;.
We define a transformation TResp of this automaton into
an enforcement monitor A, by adding the following rules
to the TGuar transformation to define —.a,, from —a,:

o g ifd ¢ RAG-a, d NI ER-¢" €

ly

Reacha,(q")

halt .
o ¢y d ifd ¢ RAqg—a, A Bd €R-¢" €

Reachoa,(q")



An EM obtained via the TResp transformation processes
the inputted execution sequence and enforces the originally
recognized property. Informally the principle is similar to
the one of guarantee enforcement, except that there might
be an alternation in the run between states of R and R.
While the current execution sequence does not satisfy the
underlying property (the current state is in R), it stores
each event of the input sequence. Once, the execution se-
quence satisfies the property (the current state is in R), it
dumps the content of the memory and the events stored so
far. On Fig. 4 we illustrate the TResp transformation of a
Streett response-automaton (left-hand side) recognizing the
property (a* - ) into an EM enforcing the same property.

Obligation properties. The more complex transformation
of obligation-automata into EMs can be found in the compa-
nion report [8] of this paper. Roughly speaking, this trans-
formation is based on the accepting pairs of Streett automa-
ton. It consists in applying the TSaf and TGuar transfor-
mations respectively on the persistent and recurrent states.

5.2 Enforcement wrt. the SP classification

Using the aforementioned transformations it is possible
to derive an EM of a certain property from a recognizing
automaton for this (enforceable) property. In the following,
we characterize the set of enforceable properties wrt. the
safety-progress classification. Fig. 1 delineates the enforcea-
ble classes of the safety-progress classification.

5.2.1 Enforceable properties.

The safety (resp. guarantee, obligation and response) pro-
perties are enforceable. Given any safety (resp. guarantee,
obligation, response) property ¢, and a Streett automaton
recognizing ¢, one can synthesize from this automaton an
enforcing monitor for ¢ using systematic transformations.
This also proves the correctness of these transformations.

THEOREM 5.1. Given a program Ps;, a reasonable safety
(resp. guarantee, response) property ¢ € Safetys, (resp.
¢ € Guarantees, p € Obligationy,, ¢ € Responsey,) is en-
forceable on Px, by an EM obtained by the application of the
safety (resp. guarantee, obligation, response) transforma-
tion on the automaton recognizing ¢. More formally, given
A, recognizing ¢, the following properties hold:

(¢ € Safetyy, A Ay = TSaf(Ay)) = Enf(Aje, ¢, Px)
¢ € Guarantees A4, = TGuar(A,)) = Enf(A,,,p, Ps)

(
(¢ € Obligations; A4, = TOblig(Ay)) = Enf(A, 4, ¢, Ps)
(

¢ € Responseg AA|, = TResp(Ay)) = Enf(Ay,, ¢, Ps)

5.2.2 Non-enforceable properties.

The persistence class contains non enforceable properties.
More precisely, pure persistence properties (i.e. properties
of Persistences, \ Obligationy,) can not be enforced by EMs?.

EXAMPLE 5.2 (NON-ENFORCEABLE PROPERTY). For an
alphabet X D {a}, an example of pure persistence property is
¥ - a” stating that “it will be eventually true that a always

2As the safety-progress classification is a hierarchy, the
classes of safety, guarantee, and obligation properties are
contained in the persistence one. Consequently, some per-
sistence properties are enforceable: properties of the enfor-
ceable classes.

GO0k
A\ {a}

Figure 5: Automaton recognizing the persistence
property X" - a”

occurs”. This property is recognized by the Streett automaton
depicted on Fig. 5 with vinf(o) C P, P = vinf (o) = {1}.

One can understand the enforcement limitation intuitively
using the following argument: if this property was enforcea-
ble it would have implied that an enforcement monitor could
decide from a certain point that the underlying program will
always produce the event a. However such a decision can
never be taken by a monitor without memorizing the entire
execution sequence beforehand. This is of course unrealistic
for an infinite sequence.

6. COMPARING EMS WITH OTHER RUN-
TIME ENFORCEMENT MECHANISMS

To the best of the authors knowledge, edit-automata are
the most powerful (in terms of enforcement ability) enforce-
ment mechanism. It is worth noticing that the model of
enforcement monitor introduced in this paper is confined
with the same enforcement aptitude: with edit-automata
the enforcement capability is obtained through an infinite
set of states, whereas EMs have a finite set of control states
extended with a finite set of enforcement actions operating
on a (possibly unbounded) memory. However, this work still
brings original and interesting results regarding enforcement
monitoring.

First, we propose a systematic translation of a recognizing
automaton into an enforcing one. This systematic trans-
formation eases the definition of the enforcement mecha-
nism. Finding, and encoding an enforcement mechanism
using edit-automata is not an intuitive operation, and there
is usually a gap between the initial property and the asso-
ciated edit automata. Therefore, ensuring formally that the
edit automata obtained enforces the correct property is not
an easy task.

Moreover, our enforcement monitor model proposes a clear
distinction between control state (used for property recog-
nition) and the memory device (used for sequence memo-
rization). Advantages of such a partitioning are twofold.
Firstly, such a mechanism is much closer to implementation
issues. Therefore it facilitates the implementation process
and makes it more compatible with formal reasoning, pro-
viding more confidence. Secondly, this provides genericity
to our model. For example it allows to study other memo-
rizing policies (e.g, using a bag instead of a FIFO queue).
Varying the memory policies seems to us a good starting
point to tackle practical constraints of runtime enforcement
monitoring.

7. A PROTOTYPE IMPLEMENTATION

In this section we overview our prototype toolbox (de-
picted on Fig. 6) which implements the previously defined
approach. Our framework is implemented as a Java tool-
box, using Aspect Oriented Programming [11] as an under-
lying technique. Taking, as input, a property ¢ specified by
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Figure 6: Our prototype toolbox

<automaton P="null">
<alphabet name="sigma">

<symbol name=“a“/><symbol name=“b"/><symbol name="c"/>
</alphabet>

<state id="1" initial="true" R="false" >
<transition nextState="1">
<event value="a'"/>
</transition>
<transition nextState="2">
<event value="b"/> <event value="c"/>
</transition>
</state>
<state id="2" initial="false" R="true">
<transition nextState="2">
<event value="b"/>
</transition>
<transition nextState="1">
<event value="a"/>
</transition>
<transition nextState="3">
<event value="c"/>
</transition>
</state>
<state id="3" initial="false" R="false">
<transition nextState="3">
<event value="sigma"/>
</transition>
</state>
</automaton>

Figure 7: Streett automaton of Fig. 4 in XML

a Streett automaton Ay, encoded in XML, it produces an
(ASPECTJ) aspect to be weaved with a target Java program
P. The resulting program P’ then meets property ¢, in the
sense that this property is actually enforced.

On Fig. 7 is represented the Streett automata introduced
in Fig. 4 encoded in our XML format. The XML schema we
considered consists in two parts: the first one describes the
automaton alphabet and the second one gives list of states
and outgoing transitions.

7.1 Streett2EM: synthesizing EMs from Streett
automata

This tool consists mainly in implementing the aforemen-
tioned transformations in Sect. 5.1 (TSaf, Tguar, etc...).
Processing an inputted Streett automaton expressed in an
XML format, it produces a new XML file representing the
corresponding EM. To do so, we have chosen to use an XSLT
transformation to implement the transformations. First, the
Streett automaton is processed by a parser whose purpose
is to check its validity regarding an XSD grammar, and ve-
rify its soundness (since we consider only deterministic and
complete Streett automata).

Once these preliminary validations steps are completed,
the automaton is submitted to an XSLT transformation
in order to obtain the expected EM (described in XML).
To each synthesis transformation is associated a specific

<xsl:if test="$stateP=’null’ ">
<xsl:variable name="followingStateR">
<xsl:call-template name="return_state_R">
<xsl:with-param name="stateFollowing">
<xsl:value-of select="@nextState"/>
</xsl:with-param>
</xsl:call-template>
</xsl:variable>
<!--For guarantee automata-->
<xsl:if test="$stateR=’false’ ">
<xsl:if test=“$followingStateR=’true’ ">
<xsl:attribute name="value">dump</xsl:attribute>
</xsl:if>
</xsl:if>
<xsl:if test="$stateR=’true’ ">
<xsl:if test="$followingStateR=’true’ ">
<xsl:attribute name="value">dump</xsl:attribute>
</xsl:if>
</xsl:if>

Figure 8: Extract of the XSLT transformation used
in Streett2EM

XSLT transformation. On Fig. 8 is represented an extract
of this XSLT transformation. One can find the first rule for
the transformation of transition of a guarantee automaton.
From an abstract point of view, for each transition, a dump
operation is selected if the destination state of the transition
belongs to the recurrent states (variable $followingStateR).

This tool also generates a mapping skeleton whose pur-
pose is to link abstract events used in the automata (their
alphabet), to the corresponding concrete events on the un-
derlying Java program (e.g. method call, field access). It
consists in a list of event which are retrieved from the in-
putted Streett automaton. This skeleton should be filled by
the user (indicating the list of concrete events associated to
each abstract event).

7.2 Composing EMs

Not exposed in this paper, but in the companion report,
is the opportunity of composing EMs. When generating EM
one may want to compose it as to build more complex EMs.
The EMComposer implements general purpose operations of
composition (e.g. union, intersection). The formal principle
is detailled in [8]. Roughly speaking, to perform a binary op-
eration between two inputted EMs, the EMComposer builds
a product of the two underlying automata. Then it combines
the enforcement operations associated to each EM on a given
event. This general method of performing first the underly-
ing automata product, and then combining the enforcement
operation according to the semantics of the performed op-
erations is generic. Indeed, one is able to add easily its own
operator for EM combination. Adding a new composition
operator for EMs amounts to define the composition func-
tion Ops x Ops — Ops determining how to combine the
enforcement operations of the two operand EMs. This com-
ponent of the toolbox seems essential to us as it permits the
composition of EMs in order to enforce complex properties
which may arise from security policies.

7.3 EM2Aspect: synthesizing Aspect from EM

The last tool is used to generate an ASPECTJ Java as-
pect from an enforcement monitor. EM2Aspect processes
the XML files of the EM and the user-completed mapping
by first performing syntactic analysis of these two entities.
Then an abstract data structure is generated by picking up
information from the EM and the mapping. This datastruc-



ture is then translated into an aspect following this principle:
pointcuts are associated to each event of the automata, then
advices encode the enforcement operations (Ops) performed
by the EM on the underlying program upon occurrence of
relevant events.

7.4 GraphMaker: graphs for Streett automata
and EMs

We add to our toolbox an auxilliary component provid-
ing a mean to display a graphic representation of a Streett
automaton or an enforcement monitor. The GraphMaker
processes an inputted Streett automaton or EM in the XML
format previously depicted, and then use GraphViz [2] as an
underlying tool for graph generation. As an example, graphs
of Fig. 4 are obtained using the GraphMaker component.

8.  CONCLUSION AND PERSPECTIVES

In this paper our purpose was to extend previous works on
property checking through runtime enforcement in several
directions. Firstly, we proposed a generic notion of enforce-
ment monitors based on a memory device, finite sets of con-
trol states and enforcement operations. This notion of EM
encompasses previous similar ones: security-automata (and
consequently shallow-history automata) and edit-automata
in a rather obvious way. Moreover, we specified their en-
forcement abilities wrt. the general safety-progress classifi-
cation of properties. It allowed a fine-grain characterization
of the space of enforceable properties. Also, we proposed a
systematic technique to produce an enforcing monitor from
the Streett automaton recognizing a given safety, guaran-
tee, obligation or response security property. Finally, this
approach was implemented in a prototype toolbox and ap-
plied to simple case-studies.

An important working direction is now to make this run-
time enforcement technique better able to cope with prac-
tical limitations in order to deal with larger examples. In
particular it is likely the case that not all events produced
by an underlying program could be freely observed, sup-
pressed, or inserted. This leads to well-known notions of
observable and/or controlable events, that have to be taken
into account by the enforcement mechanisms. Moreover, it
could be also necessary to limit the resources consumed by
the monitor by storing in memory only an abstraction of
the sequence of events observed (i.e. using a bag instead
of a FIFO queue). From a theoretical point of view, this
means to define enforcement up to some abstraction pre-
serving trace equivalence relations. We strongly believe that
our notion of enforcement monitors (with a generic mem-
ory device) is a suitable framework to study and implement
these features.

Another current working direction is to further extend the
prototype tool. Indeed, it will be a good plateform to investi-
gate the impact of the aforementioned practical constraints.
Also, we are currently studying alternative rewriting tech-
niques (non based on aspects) to replace the EM2Aspect
tool (such as BCEL [19] technology, or dynamic binary code
insertion [16]). The benefits would be to perform runtime
enforcement from binary versions of the target program.
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