
Latency-aware Leader Election ∗

Nuno Santos
†

École Polytechnique Fédérale
de Lausanne (EPFL)

1015 Lausanne, Switzerland
nuno.santos@epfl.ch

Martin Hutle
École Polytechnique Fédérale

de Lausanne (EPFL)
1015 Lausanne, Switzerland

martin.hutle@epfl.ch

André Schiper
École Polytechnique Fédérale

de Lausanne (EPFL)
1015 Lausanne, Switzerland
andré.schiper@epfl.ch

ABSTRACT
Experimental studies have shown that electing a leader based
on measurements of the underlying communication network
can be beneficial. We use this approach to study the prob-
lem of electing a leader that is eventually not only correct
(as captured by the Ω failure detector abstraction), but also
optimal with respect to the transmission delays to its peers.
We give the definitions of this problem and a suitable model,
thus allowing us to make an analytical analysis of the prob-
lem, which is in contrast to previous work on that topic.

Categories and Subject Descriptors
C.2.4D [Computer-Communication Networks]: Distri-
buted Systems

Keywords
Analytical Analysis, Leader Election, Distributed Algorithms

1. INTRODUCTION
Leader election is an important service for fault tolerant

systems. Such a service is typically used in several consen-
sus algorithms, the so-called “leader-based” consensus algo-
rithms. In such algorithms the leader can be determined
either by a static rule (e.g., rotating coordinator), or can
be computed dynamically. In the latter case the leader is
selected by a distributed leader election algorithm. Leader
election is also sometimes called “implementation of the Ω
failure detector”. A lot of work on the topic has been pub-
lished in the recent years, e.g., [1, 2, 3, 6, 4]. One of the
goals addressed was to weaken as much as possible the syn-
chrony assumptions required for leader election. Another

∗Research funded by the Hasler Foundation under grant
number 2070.
†This author was partially funded by the Portuguese Foun-
dation for Science and Technology (FCT) (SFRH/BD/
17276/2004).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

goal was to have an algorithm with two important proper-
ties: (i) stability and (ii) low message complexity. Stability
means that the current leader is never demoted in favor of a
new leader without reason. Low message complexity refers
to the messages needed to monitor the leader. If the system
consists of n processes, we would like ideally the monitoring
to require only O(n) messages. All these approaches ignore
message latencies.

If the latencies of the different links in the system differ
significantly, it might make sense to elect a leader that has
links with low latency to the other processes in the system.
This is typically the case for leader-based consensus algo-
rithms in which the communication pattern is 1 to n, i.e.,
communication is only between the leader and the other
processes. Indeed in this case, choosing a leader with low
latencies to other processes increases the efficiency of the
leader-based consensus algorithm.

The idea of taking link latencies into account for leader
election has been considered in [9, 7, 8]. In [9], an adap-
tive consensus algorithm is given. The initial coordinator
is chosen to be a “fast” process based on measurements of
the time each process takes to answer when it is a coordina-
tor. In [7], the notion of “process order” is used to convey
information about the link latencies. For a consensus algo-
rithm based on 3S and the rotating coordinator paradigm,
the idea is to use the process order (instead of the process
id) for selecting the successive coordinators (which requires
global agreement on the matrix of latencies). For a consen-
sus algorithm based on Ω, the process order is used within
the implementation of Ω. However, the paper does not de-
scribe the implementation of Ω. In [8], a predictor is used
for estimating the best process, but the stochastic model in
which this predictor is supposed to work is not specified.

The contribution of the paper is to extend the above ideas
by considering a latency-based system model, which is pa-
rameterized with a constant ε. We assume that during a
stable period the latency of every link deviates only by ε
from some (unknown) fixed value (where the value can be
different for every link). The model allows an analytical
analysis of the leader election algorithm (in contrast to the
above best-effort approaches), and allows us to show that
the leader election algorithm guarantees that during a sta-
ble period the leader latency to a majority of processes is
optimal within 12ε. The optimal latency “to a majority”
is related to the fact that, with benign faults, leader based
consensus algorithms progress whenever the leader receives
replies from a majority.

2. SYSTEM MODEL AND
PROBLEM DEFINITION

2.1 Model
We consider a model with n processes Π, which commu-

nicate over a fully connected network via message passing.
Up to f < n/2 processes may fail by crashing. We assume
each process has a local clock with no skew1 and that com-
putational steps take no time. The timing behavior of the
link from process i to process j is described by a function
δij(t), that is, if a message is sent from i to j at time t, it is
received at time t+δij(t). If at time t process i has crashed,
we define δij(t) := ∞. Since a process sends at most one
message to another process at a certain time, this function
is well-defined. If no message is sent at a time t, δij(t) has
no meaning, but to simplify presentation we assume that it
has the same value as the last time i sent a message to j.

We define further the function rtt ij(t) := δij(t) + δji(t +
δij(t)), which intuitively models the round trip delay of a
message if the peer process algorithm responds immediately
to this message. Additionally, RTT i(t) denotes the vector of
rtt ij(t) for a process i, sorted by ascending order of values.
Finally, we define majrtt i(t) := RTT i(t)[bn/2c + 1], which
models the time required for a two-way message exchange
between i and a majority of processes.

We assume that the transmission delays in our system
eventually stabilize. In more detail, we assume that there
is a time GST , so that for all times t ≥ GST the following
holds:

• All faulty processes have crashed.

• There is an a priori known value ∆, s.t. for each pair
of correct processes i and j, δij(t) ≤ ∆.

• All message transmission delays remain within a win-
dow of 2ε, i.e., ∀i, j ∃δ̄ij :

∣∣δij(t)− δ̄ij

∣∣ ≤ ε.
For a given run, for each link, fix one δij that satisfies the

third condition. Then, in compliance with the definitions
above, we can define rtt ij := δij + δji; RTT i as the vector
of rtt ij for process i, sorted by ascending order of values;
and finally majrtt i := RTT i[bn/2c+ 1].

We now show that after GST, the round-trip time between
two processes i and j remains within a window of 4ε centered
around rtt ij :

Lemma 1. For t > GST, we have
∣∣rtt ij(t)− rtt ij

∣∣ ≤ 2ε

and
∣∣majrtt i(t)−majrtt i

∣∣ ≤ 2ε.

Proof. From the definitions we get
∣∣rtt ij(t)− rtt ij

∣∣ =∣∣δij(t) + δji(t+ δij(t))− δij − δji

∣∣ ≤
∣∣δij(t)− δij

∣∣ +∣∣δji(t+ δij(t))− δji

∣∣ ≤ 2ε.
For the second result, let p1, p2, . . . , pn be the ordered list

of processes corresponding to RTT i, that is, the processes
ordered by increasing rtt ij from i; let q1, q2, . . . , qn be the
similar list forRTTi(t), and letm = bn/2c+1. By definition,
rtt ip1 +2ε ≤ rtt ip2 +2ε ≤ ... ≤ rtt ipm +2ε. Since after GST,
rtt ij(t) ≤ rtt ij + 2ε, we have rtt ipk (t) ≤ rtt ipm + 2ε, for all
k, 1 ≤ k ≤ m, and thus majrtti(t) ≤ majrtt i + 2ε. A
similar argument can be used to show that majrtti(t) ≥
majrtt i − 2ε, thus proving the result.

1The results can be adapted for clocks with skew.

Protocol (e.g., Consensus)

Leader Election

Local La-
tency Detector

Figure 1: The three layers of the system

2.2 Optimal Leader Election
The classical definition of leader election in the literature

is the following:

Definition 1 (Leader Election Problem). There
exists a correct process ` and a time t after which, for every
alive process p, leaderp = `.

We need to extend this definition with the notion of op-
timality. Since in our model, the variations even after GST
allow the optimal leader to change, the notion of an opti-
mal leader is somehow contradictory to the definition of a
leader. However, as we show later, we can guarantee that
the elected leader is within a small interval from optimality:

Definition 2 (σ-delay-optimal process at time t).
A process p is σ-delay-optimal at time t if there is no other
process q that has a majority latency majrttq(t) at time t
that is smaller than majrttp(t)− σ.

Note that there might be several σ-delay-optimal pro-
cesses. The goal is to elect a leader among these.

Definition 3 (σ-Optimal Leader). There exists a
correct process ` and a time t after which, for every alive
process p, leaderp = ` and ` is σ-delay-optimal for all t′ ≥ t.

3. σ-OPTIMAL LEADER ELECTION
We consider a two-layer implementation of our oracle as

depicted in Figure 1. The local latency detector layer pro-
vides to the leader election protocol a vector with the esti-
mation of the RTT times from the local process to all other
processes in the system. The leader election algorithm uses
this information when electing a new leader.

It is important to notice that the leader election module
uses the information of the latency detector only to opti-
mize the choice of leader but not to detect faulty leaders.
The latter is done by the leader election algorithm, where
the current leader sends heartbeat messages to every other
process. The reason for this approach is that measuring the
latencies of the system is quite costly: it requires O(n2) mes-
sages in general, while a communication efficient implemen-
tation of the leader election algorithm requires only O(n)
links to carry the periodical heartbeat messages. Separat-
ing these two issues, allows implementations to control the
tradeoff between the number of messages sent and the reac-
tion time to latency changes: faster reaction times can be
obtained at a cost of increased network load by measuring
the latencies more frequently. Implementations can there-
fore be tuned for each specific case, taking in consideration
the underlying network and the QoS requirements.

3.1 The Local Latency Detector
The lowest layer of our system is the local latency detec-

tor. A local latency detector module periodically outputs an
n-dimensional vector Li at each process i, where Li[j] repre-
sents the estimate of the round-trip time between process i
and process j. In contrast to previous approaches [7], there
is no global oracle that provides global latency information
to every process, but every process gets only an estimate
of the round-trip delays to its peers. However, since even
after GST round-trip delays may change, the output of the
latency detector has only limited accuracy.

The implementation of such an oracle is done by send-
ing every η time ping-pong messages between all processes
to measure round-trip times. The sampling period η is a
configuration parameter that controls the tradeoff between
network load (i.e., the number of messages per time period)
and speed of adaptation of the algorithm to changes in the
latency of the links. Then, from the system model we get
the following property:

Lemma 2 (local latency detector). Consider a la-
tency detector that is implemented by every process sending
pings to all every η time. Then we have

∀t > GST + η + 2∆, ∀i, j : |Li[j]− rtt ij(t)| ≤ 2ε.

Proof. After GST, the duration rtt of a round-trip which
started at some time t is bounded by |rtt − rtt ij(t)| ≤ 2ε.
Since each round-trip takes at most 2∆ and measurements
are done every time η, then the latest by GST + η+ 2∆ the
output of the detector is bounded.

Note that GST and rtt ij(t) are unknown system model
parameters, ε is a known system model parameter, and η
is an implementation-dependent parameter of the latency
detector.

3.2 Electing a leader
The leader election algorithm is given as Algorithm 1 and

Algorithm 2. In the following subsections, we explain the
three different ideas of the algorithm separately, although
in the algorithm they work closely together. The proof of
correctness is given in Section 4.

3.2.1 Leader Election
The leader election part of the algorithm is based on an

algorithm from [1]. The algorithm is organized as a sequence
of rounds, with the leader of round r being process r mod n.
Processes remain in round r as long as they believe process
r mod n should remain the leader, that is, it is correct and
optimal. The leader p sends Alive messages to all processes
every 2∆ time. If a process does not receive any message
from the leader for more than 3∆ time, it suspects the leader
to have failed and advances to the next round r+1 (lines 38–
40). It then sends a (Start, rp) message with rp = r +
1 to the leader of round r + 1 (line 9). Upon receiving
this message, the new leader advances to the new round
(lines 17–18) and sends Alive messages to all. This will
force all other processes to advance to round r + 1.

The selection of an optimal leader is done in lines 32, 36–
37, where the current leader calls SelectLeader . This func-
tion encapsulates the election of an optimal leader, based on
rttMatrix . If it returns a process different than the current
leader, then the current leader advances to a higher round,

p1

p2

p3

2∆ 2∆

2∆

Figure 2: Messages exchanged by the algorithm,
where solid arrows represent Alive messages, dashed
arrows represent Report messages, and dotted ar-
rows represent Start messages.

forcing the election of the new process. SelectLeader is in-
dependent from the rest of the algorithm, and is explained
in Section 3.2.3.

3.2.2 Aggregating RTT information
In order to elect a leader, local knowledge about latencies,

i.e., the output of the latency detector is not sufficient. In
contrast to the approach in [7], we do not implement a global
oracle but the latency information is aggregated only at the
current leader.

Every 2∆ time, the leader sends Alive messages (lines 15,
32–34) and resets the latency matrix rttMatrix (line 13).
The other processes reply with a Report message (line 25).
The leader uses these messages to rebuild rttMatrix (line 19).
This way, 2∆ after sending Alive, the rttMatrix matrix of
the leader contains estimates that are no older than 2∆. If
the Alive messages are sent after GST +η+2∆, by Lemma 2
the rttMatrix is such that

∣∣rttMatrix [i][j]− rtt ij

∣∣ ≤ 2ε.
The Report message is sent after every Alive received,

even if the local rtt vector did not change. Rebuilding the
rttMatrix from scratch every 2∆ ensures that if some process
i crashes, after the next Alive cycle, for all j, we have
rttMatrix [i][j] =∞. Note that if old values were kept until
updated by a Report message, rttMatrix [i] would never be
updated.

Figure 2 illustrates the algorithm. Initially p1 is the leader.
After the first cycle, the rttMatrix built with the Alive mes-
sages from the other processes still indicates that p1 is the
most suitable process to be the leader, so p1 sends a new
cycle of Alive messages. In the meanwhile, new measure-
ments were taken by some process and the rttMatrix built by
p1 at the end of the second cycle shows that p3 is now better
suited to be the leader. So p1 advances to the next round
where p3 is the leader and sends a Start message to p3.
Upon receiving it, p3 advances rounds, assumes leadership
and starts sending Alive messages.

3.2.3 Selecting a σ-optimal leader
The protocol explained so far ensures that in a good pe-

riod (i) no faulty process is elected as leader and (ii) the cur-
rent leader periodically calls SelectLeader to verify whether
it is still the σ optimal one.

We describe now SelectLeader , see Algorithm 2. Note
that from Section 3.2.2, the leader gets a matrix L for which
Lemma 2 holds. SelectLeader starts by ordering each line
of the matrix by increasing latencies. As a result, for all i,
element (i, bn/2c+ 1) of the matrix gives an estimate of the
RTT of a majority of processes to process i.

Algorithm 1 Delay-aware leader election.

1: Initialization:
2: ∀p : localrttp[p]←∞
3: rp ← 1
4: StartRound(rp)

5: procedure StartRound(r)
6: rp = r
7: leader = rp mod n
8: reset timer to ∆
9: send (Start, rp) to q
10: if p = leader then
11: SendAlives()

12: procedure SendAlives()
13: ∀p, q : rttMatrixp[p][q]←∞
14: reset timer
15: send (Alive, rp) to all processes except p

16: upon receive (Report, r, rtt) from q with r ≥ rp

17: if r > rp then
18: StartRound(r)
19: rttMatrixp[q] = rtt

20: upon receive (Alive, r) from q
21: if r < rp then
22: send (Start, rp) to q
23: if r = rp then
24: reset timer
25: send (Report, rp, localrttp) to leader
26: if r > rp then
27: StartRound(r)

28: upon receive (Start, r) with r > rp

29: StartRound(r)

30: upon timer = 2∆
31: if p = leader then
32: newLeader ← SelectLeader(rttMatrixp, leader)
33: if newLeader = leader then
34: SendAlives()
35: else
36: r ← smallest k > rp s.t. k mod n = p
37: StartRound(r)

38: upon timer = 3∆
39: if p 6= leader then
40: StartRound(rp + 1)

41: upon new rttVector from latency detector
42: localrttp ← rttVector

Algorithm 2 Choosing a leader.

1: procedure SelectLeader(L, leader)
2: for all lines i ∈ {1, . . . , n} do
3: sort L[i] by increasing latencies
4: curRtt ← L[leader][bn/2c+ 1]
5: minRtt ← mini∈{1,...,n}{L[i][bn/2c+ 1]}
6: if minRtt < curRtt − 4ε then
7: return min{i ∈ {1, . . . , n} | L[i][bn/2c+ 1] = minRtt}
8: else
9: return leader

The key point here is that a new leader is elected only if
its majority-RTT is 4ε better than the current one (lines 6–
7). Since by Lemma 1 the majority-RTTs of processes vary
at most by ±2ε after GST, this prevents that the role of the
leader oscillates between two processes. Moreover, as shown
in the proofs, the selection rule ensures that if the leader
changes, the new leader is a process with a lower majrtt .

Thus, even if the leader changes after GST, this happens
only a finite number of times (the majrtt are fixed), and
thus eventually a single correct process is leader forever.
This process is an 12ε-optimal leader:

Proposition 1. Algorithms 1 and 2 solve the σ-optimal
leader election problem with σ = 12ε.

4. PROOF OF CORRECTNESS
We first prove that after GST + η + 2∆ the function

SelectLeader returns only processes whose majrtt is within
8ε of the optimal. Then, we prove that after GST once a
leader is elected the leadership will change only to another
process that has a lower majrtt . Therefore, the number of
possible changes is limited and the system eventually elects
a leader forever that is within 12ε of the optimal.

For the proofs below, let pm denote the process with min-
imal majrttpm

; if there are several such processes, the one
with the lowest id.

Definition 4. O = {p ∈ Π | majrttp ≤ majrttpm
+ 8ε}

Since for t > GST , |majrttpm
(t)−majrttpm

| ≤ 2ε, we have:

Corollary 1. Every process from O is 12ε-optimal at
any time after GST.

Lemma 3. The set O is non-empty and contains only cor-
rect processes.

Proof. Trivially, the set is non-empty because pm ∈ O.
By definition, if p has crashed, then for all process j, δpj =
∞ and thus majrttp =∞. Therefore, p /∈ O.

Lemma 4. Let M a matrix with
∣∣M [i][j]− rtt ij

∣∣ ≤ 2ε for
all i, j ∈ Π. Then SelectLeader(M, `) returns a process p
such that: (i) p ∈ O and (ii) if p 6= ` then majrttp < majrtt`.

Proof. For (i), lines 2 and 3 of Algorithm 2 order each
line of M in ascending order. Line 5 computes minRtt ,
which is the minimal majority value among the estimations
contained in M . Let q be the process with the lowest id such
that M [q][bn/2c+ 1] = minRtt .

From the assumption on M , we have M [pm][bn/2c+ 1] ≤
majrttpm

+2ε. And sinceM [q][bn/2c+1] ≤M [pm][bn/2c+1]
(because of the definition of q), we get

M [q][bn/2c+ 1] ≤ majrttpm
+ 2ε (1)

If the condition at line 6 is true, then SelectLeader returns
q and by (1) we have that q ∈ O. Else, if the condition is
false, SelectLeader returns `, and we have curRtt ≤ minRtt+
4ε, which is equivalent to:

M [`][bn/2c+ 1] ≤M [q][bn/2c+ 1] + 4ε. (2)

By assumption, we have majrtt` − 2ε ≤ M [`][bn/2c +
1]. Using this inequality on the left side of (2) and (1) on
the right side, we obtain majrtt` − 2ε ≤ majrttpm

+ 6ε ⇔
majrtt` ≤ majrttpm

+ 8ε. Therefore, ` ∈ O.
To prove (ii), since p 6= `, the condition on line 6 is true,

that is, minRtt < curRtt − 4ε, which is equivalent to:

M [p][bn/2c+ 1] < M [`][bn/2c+ 1]− 4ε (3)

By assumption, we have majrttp − 2ε ≤ M [p][bn/2c +

1] and M [`][bn/2c + 1] ≤ majrtt` + 2ε. Using these two
inequalities in (3), we obtain majrttp−2ε < majrtt`+2ε−4ε

and thus majrttp < majrtt`.

Lemma 5. After time GST+η+4∆, if SelectLeader(M, `)
is called,

∣∣M [i][j]− rtt ij

∣∣ ≤ 2ε for all i, j ∈ Π.

Proof. Let ` be the process that calls SelectLeader(M, `)
at time t ≥ GST +η+4∆ while in round r`. By Algorithm 1,
` is the leader for round r` and the last time it sent Alive
messages was at time t−2∆. At this time it reset all entries
of the matrix M to ∞. The Alive message is received by
all processes during the interval [t − 2∆, t − ∆]. All alive
processes answer with a Report message containing their
local vector. These messages are received by ` before time
t and are used to update the matrix M . If a process q is
crashed when it received the Alive message, then line M [q]
is not updated and remains equal to a vector of ∞.

Thus, the matrix M contains values that are no older than
2∆. Since t − 2∆ = GST + η + 2∆, by Lemma 2 we have∣∣M [i][j]− rtt ij

∣∣ ≤ 2ε for all i, j ∈ Π.

From (ii) of Lemma 4 and Lemma 5, and the fact that we
have a finite number of processes, we get:

Corollary 2. After GST + η + 4∆, the leader changes
only a finite number of times.

Next we show that if no new round is started after GST,
then the optimal leader is elected. The proof of Proposi-
tion 1 discusses the other case, when new rounds are started
after GST.

Lemma 6. If there is a time t after which the maximum
round reached by any process does not increase, then even-
tually a process from O is elected as leader.

Proof. This proof is in two parts: (i) show by contradic-
tion that a leader is elected, (ii) show that this leader must
be in O.

Let us assume that no leader is ever elected. Let rh be the
highest round of any process after t. Other processes might
advance to higher rounds if they are in lower rounds but,
by assumption, will never exceed rh. Since by assumption
processes cannot increase rounds forever, there is a time t′

after which no process advances to a new round anymore.
Let H be the set of processes in round rh after time t′. Let

p be the candidate leader for round rh (i.e., p mod n = rh).
If p ∈ H, then p sends Alive messages to all processes

every 2∆. Therefore, at most at t′ + 3∆, all processes will
have received an Alive message for round rh. Since by
assumption no process is in a round higher than rh, all alive
processes will accept this message and advance to round rh

if not already there. Therefore, p becomes the leader for all
alive processes, contradicting the assumption that no leader
is elected.

If p /∈ H, then processes in H will timeout waiting for
the Alive messages from the leader and will advance to a
higher round, contradicting the assumption that no process
advances to a new round after time t′.

To show (ii), let p be the process elected as leader. By as-
sumption, p remains leader forever and keeps sending Alive
messages every 2∆ time. Let t∗ be the first time that p sends
Alive messages after GST + η + 2∆. We can apply Lem-
mas 4 and 5 to show that by time t∗+4∆ a process ` ∈ O is
elected leader. If ` 6= p, then p advances to a higher round
which contradicts the fact that p remains leader forever.
Therefore, ` ∈ O.

The following lemma shows that after GST, once there
is a leader `, the leader will only change as a result of `

calling SelectLeader . Together with Lemmas 4 and 5 this
shows that the leader only changes to processes with better
performance.

Lemma 7. Let ` be a process that at time t > GST, is in
round r` for which ` is the leader. Let t′ be the time when
` sends the next Alive message. If all alive processes are
in a round not higher than r` when they receive the Alive
message from `, then (i) no process q 6= ` advances to a
round r′ > r` while ` remains in round r`, and (ii) ` only
advances to a new round if SelectLeader `(M, `) returns a
process different than `.

Proof. To prove (i), note that since we are after GST the
Alive message sent by ` at time t′ is ready for reception at
q the latest by time t′ + ∆. By assumption, at this time q
is in a round not higher than r`. If q is in a lower round, it
advances to r`. We now show that if ` remains in round r`,
then q does not advance to a round higher than r`.

We proceed by contradiction. Let q be the first process
to advance to a round higher than r`. Then either (a) q
received a higher round message, (b) the timer of q expired,
or (c) q called the procedure SelectLeader . (a) cannot hap-
pen because q is the first process to advance to a round
higher than r`. (b) is not possible either, because the Alive
messages from ` are received always with less than 3∆ of in-
terval. Finally, q cannot call SelectLeader because it is not
the leader for round r`.

To prove (ii), note that since ` is the leader, it will never
timeout on itself. Additionally, by (i) we know that no
other process will advance to a new round before `, so `
will never receive a higher round message. Therefore, the
only other way in which ` can advance to new rounds is if
SelectLeader `(M, `) returns a process different than `.

Lemma 8. Assume there is a process p and a round rp

such that p is the first process starting round rp at time t0,
t0 > GST + 4∆. Then before time t0 + 2∆ no process will
advance to a round r′ > rp.

Proof. We proceed by contradiction. Let us assume
there’s a process q 6= p that is the first to start a round
r′ > rp at time t′, with t0 < t′ < t0 + 2∆. This could have
happened in one of the following ways: (i) receiving a mes-
sage from a higher round, (ii) timeout on Alive messages
from the leader, and (iii) calling SelectLeader .

Case (i) is impossible, because q is the first process start-
ing round r′. In case (ii), q advances from round r′ − 1 to
round r′ when this timeout occurs. By Algorithm 1, q must
have been in round r′− 1 for at least 2∆, which means that
q started round r′ − 1 before time t0. Since r′ − 1 ≥ rp, we
get a contradiction with the assumption that p is the first
process starting round rp.

Finally, for (iii), let’s assume that q advanced at time t′

because of calling SelectLeader . This means that q was in
a round rq < r′ for which q is the leader, and after calling
SelectLeader it advanced to round r′. We’ll show that this
contradicts the assumption that p was the first process to
advance to round rp at time t0.

Process q was in round rq for at least 2∆, which is the
time a process waits after entering a round until calling
SelectLeader for the first time. Therefore, round rq was
started no later than t′ − 2∆. And since t0 < t′ < t0 + 2∆,
we have t′ − 2∆ < t0 < t′. From the above, it comes im-
mediately that rq < rp, because by assumption no process
started a round equal or higher than rp before t0.

Since q is the leader for round rq, it sends Alive messages
every 2∆ while in round rq. Since t′−2∆ is the latest that q
entered the round, q sent an Alive message between t′−4∆
and t′ − 2∆. Since t′ − 4∆ > GST , this message is received
by all alive processes between t′− 4∆ and t′−∆. If there is
any process in a round higher than rq when it receives the
Alive from q, it answers with a (START, r) message, which
is received before t′, forcing q to advance to a new round,
which contradicts the assumption that q calls SelectLeader
at time t′. Therefore, all processes are in a round r ≤ rq

when they receive the Alive message from q. Applying
Lemma 7, we conclude that no process will advance to a
new round until q calls SelectLeader . But by assumption
the next time this happens is at time t′, contradicting the
assumption that p advances to round rp at time t0 < t′.

Proposition 1. Algorithms 1 and 2 solve the σ-optimal
leader election problem with σ = 12ε.

Proof. We prove that eventually a permanent leader ` ∈
O is elected. Then, by Corollary 1 it comes that ` is 12ε-
optimal.

Let ts = GST +η+4∆. If after ts no new round is started,
then by Lemma 6, a process ` ∈ O is eventually elected. We
now prove the other case, where some new round is started
after ts. Assume there is a process p and a round rp such
that p is the first process starting round rp after ts at time
t0. We consider two cases: (i) p is the leader for round rp

and (ii) p is not the leader for round rp.
Starting by (i), p sends Alive messages to all processes

at time t0. These messages are received the latest by time
t0 + ∆. By Lemma 8 no process is in a higher round at this
time. We can now use Lemma 7 to conclude that no process
advances to a new round unless a call to SelectLeader made
by p returns a process different than p. Since t0 ≥ GST +η+
4∆, by Lemmas 4 and 5 we know that all future invocations
of SelectLeader will return a process ` ∈ O. If p /∈ O then
the first invocation of SelectLeader by p will return a process
` ∈ O, making p pass leadership to `. Otherwise, p may or
may not remain leader forever, but if the leader changes, it
will always be to a process in O. Either way, by Corollary 2,
the leader can only change a finite number of times after t0
and eventually a σ-optimal process is elected permanently.

In case (ii), p sends a Start message to the leader q of
round rp and waits for 2∆ (Line 8 sets the timer to ∆ and
the timer expires at 3∆ for non-leader processes). Process
q may either be alive or crashed. If q is alive, then by time
t0 +∆, q receives the message and advances to round rp. At
the same time it sends Alive messages to all, which arrive
by time t0 + 2∆. By Lemma 8, no process is in a higher
round at this time. We are now in the same conditions as
in case (i), so the same reasoning applies. If q is crashed, p
will timeout at time t0 + 2∆ and advance to round rp + 1.
Since by Lemma 8, no process other than p advances to a
round higher than rp before t0 + 2∆, p is the first in round
rp + 1. We are again on the conditions of this Lemma, so
we can apply the same reasoning to conclude that p will
try to contact the leader for round rp + 1. Since there are
a maximum of f crashed processes, eventually p will reach
a round where the leader q is alive and we can apply the
same reasoning as above to conclude that a σ-delay-optimal
leader is elected.

5. CONCLUSION
In this paper, we have given a model where the latencies

of all links between correct processes eventually stabilize, so
that they are within an interval of ±ε around some fixed
value. We have given and proved correct an algorithm that
elects as leader a process that is 12ε-optimal after the global
stabilization time.

From a practical point of view, for algorithms like Paxos [5],
a leader needs to be the same only for a bounded time in-
terval to solve consensus. In such a system, the parameter ε
trades stability against optimality: with a small value of ε,
the algorithm adapts to smaller changes in the network and
thus selects processes that are closer to the optimal, risking,
however, frequent leader changes. A large value of ε on the
other hand favors long-lived leaders over optimality.

6. REFERENCES
[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and

S. Toueg. Stable leader election. In Proceedings of the
15th International Conference on Distributed
Computing (DISC’01), pages 108–122. Springer-Verlag,
2001.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. On implementing Omega with weak
reliability and synchrony assumptions. In Proceeding of
the 22nd Annual ACM Symposium on Principles of
Distributed Computing (PODC’03). ACM Press, 2003.

[3] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Communication-efficient leader election and
consensus with limited link synchrony. In Proceeding of
the 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC’04), pages 328–337, St.
John’s, Newfoundland, Canada, 2004. ACM Press.

[4] M. Hutle, D. Malkhi, U. Schmid, and L. Zhou. Brief
announcement: Chasing the weakest system model for
implementing Ω and consensus. In Proceedings of the
8th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS ’06), 2006.

[5] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
May 1998.

[6] D. Malkhi, F. Oprea, and L. Zhou. Ω meets paxos:
Leader election and stability without eventual timely
links. In Proceedings of the 19th International
Conference on Distributed Computing (DISC’05), pages
199–213, 2005.

[7] L. Sampaio and F. Brasileiro. Adaptive indulgent
consensus. In Dependable Systems and Networks (DSN
2005), pages 422–431, Yokohama, Japan, 2005. IEEE
Computer Society.

[8] L. Sampaio, R. C. Nunes, F. Brasileiro, and
I. Jansch-Pôrto. Efficient and robust adaptive
consensus services based on oracles. Journal of the
Brazilian Computer Society (JBCS), Special Issue on
Dependable Computing (2005), 2005.

[9] L. M. R. Sampaio, F. V. Brasileiro, W. Cirne, and
J. C. A. Figueiredo. How bad are wrong suspicions?
towards adaptive distributed protocols. In Dependable
Systems and Networks (DSN 2003), pages 551–560, Los
Alamitos, CA, USA, 2003. IEEE Computer Society.

