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Abstract
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scribed by a rewriting system (O, #), where O is the set of abstract origamis and # is a binary
relation on O, that models fold. An abstract origami is a structure (Π, v,�), where Π is a set
of faces constituting an origami, and v and � are binary relations on Π, each representing
adjacency and superposition relations between the faces.
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for the fold, and show how fold is expressed by a set of graph rewrite rules.
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1. Introduction

The art of paper folding, known as origami 2 , provides the methodology of construct-
ing a geometrical object out of a sheet of paper solely by means of folding by hands.
Computational origami studies the mathematical and computational aspects of origami,
including visualization by a computer [2]. By the assistance of a computer we will be able
to formalize origami with rigor and capability that are beyond the methods performed
by hands.

In this paper we give graph-theoretic formalization of origami. Our motivation of this
study is to give more abstract view of fold used in origami. Although origami fold appears
to be an easy operation to humans, even a näıve anatomy of origami reveals that it is not
the case from computational point of view. There are two distinct operations in paper
fold, i.e. division and reflection of origami faces. These operations lend themselves to dis-
tinct modes of computations: algebraic and numeric computation on geometrical objects,
e.g., finding intersection of lines and checking the overlap of two faces, on one hand, and
purely combinatorial computation on discrete objects, e.g., computing transitive closure
of the adjacency relation on faces, on the other.

These computations tend to be mixed when origami is analyzed mathematically [8].
Indeed the implementation of computational origami system Eos [9] relies very much
on algorithms which resort to mixtures of algebraic, numeric and symbolic computing.
Sometimes algorithms are hard to describe mathematically because of this complication.
There should be clearer separation of computations of discrete and continuous objects
in origami. When this has been done, we not only clarify the algorithms developed for
the implementation of Eos, but also are in a position to extend the capability of Eos to
allow for more complex origami constructions such as of 3D and modular origami, and
to reason about their geometrical and algebraic properties.

The rest of the paper is organized as follows. In Section 2 we will formalize origami
as an abstract origami system, which can be regarded as an abstract rewrite system.
In Section 3 we will elaborate the abstract origami system by giving to it more alge-
braic and geometrical structures, and then we will analyze the structures. Section 4 is a
short passage from the abstract description of origami to more algorithmic description
of origami. In Sections 5 and 6, we will explain the bases for graph-theoretic modeling of
origami. In Section 7, we show fold as a set of graph rewrite rules. In Section 8, we will
summarize the results and point out the direction of further research.

2. Formalizing origami

2.1. Preliminaries

In this subsection, we summarize the basic mathematical notations that we will use
throughout this paper. Given an arbitrary set A, a sequence of elements a1, . . . , an ∈ A
is denoted by 〈a1, . . . , an〉. If n = 1, the sequence is written as a1. In other words,
〈a〉 and a denote the same mathematical object. If A is an alphabet, the sequence of
elements a1, . . . , an(∈ A) is denoted by the juxtaposition of the elements, i.e. a1 · · · an.

2 The word ori-gami, meaning ori (fold) and gami (paper), is used in two ways in this paper as is
customary in Japanese. The former is the art of paper fold (used as an uncountable noun) and the other
is a sheet of paper (used as a countable noun).

2



The set of all the sequences of the elements in A is denoted by A∗. We use * in the
superscript position in the following ways, too. Namely, f∗ for a function f is defined
as: f∗(〈a1, . . . , an〉) = 〈f(a1), . . . , f(an)〉. R∗ for a binary relation R is the reflexive
and transitive closure of R. The transitive closure of R is denoted by R+. A sequence
〈a1, . . . , an〉 is called an R-sequence if a1 R a2 ∧ · · · ∧ an−1 R an. For an irreflexive R,
an R-sequence 〈a1, . . . , an〉 is called acyclic if ∀i < j ¬(aj R ai). The cross product of
sets A1, . . ., An is denoted by A1 × . . .×An. The element of A1 × . . .×An, i.e. n-tuple,
is denoted by (a1, . . . , an), where ai ∈ Ai for i = 1, . . . , n.

2.2. Origami at a glance

We begin an origami construction with a single sheet of paper, and repeat folding the
paper until it becomes a desired shape. We can observe that an origami can be modeled
as a set of faces. During the construction, some of the faces are divided by a fold line,
reflected along the fold line and become above or below the others. The faces form a
stack of layers. The stack of layers of faces exhibits a remarkable shape, which may be
regarded as a piece of art such as illustrated in Fig. 1.

The left origami in Fig. 1 is the top view of the constructed object. We see the faces
in two different colors in the figure. This is because the initial origami has two sides,
each colored differently. During the construction, some faces become up and the others
become down, resulting in the two colored object. We can imagine that this origami
models a cicada. The right is a 3D view of the same origami after stretching it vertically
and making superposing faces slightly far apart. From the shapes in Fig. 1, we will be
able to see that an origami can be formalized as a set of faces together with the relations
that express relative positions, horizontally and vertically, among the faces.

Fig. 1. Origami cicada: art piece (left) and stack of face layers (right)
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2.3. Abstract origami rewrite system

An origami can be modeled at several abstraction levels. A most abstract view is to
take an origami as an algebra (A,R), where A is a set and R is a binary relation on A,
where we identify a set of faces that constitute an origami with A, and a geometrical
relation on the faces with R. The origami construction is then a transformation of the
algebras viewed as an abstract rewrite system. We begin with this abstract view of
origami and gradually make our modeling concrete.

Our first attempt is as follows. We take a finite set Π of faces as the object of our study,
and introduce two binary relations on Π, expressing horizontal and vertical arrangements
of faces rather than a single binary relation R mentioned above. Then, we have the
following definition of an origami.

Definition 1 (Abstract origami). An abstract origami is a structure (Π,v,�), where Π
is the finite set of (origami) faces, v is a symmetric binary relation on Π, called adjacency
relation, and � is a binary relation on Π, called superposition relation.

An abstract origami is abbreviated to AO, hereafter.
We next present a view that an origami construction is a rewrite sequence of an

abstract rewrite system. This view bridges the set theoretic treatment of origami and
graph rewriting of origami.

Definition 2 (Abstract origami system). An abstract origami system is an abstract
rewrite system (O,#), where O is the set of AOs, and # is a rewrite relation on O,
called abstract fold.

When O,O′ ∈ O are related by #, we write O # O′ and say that O is rewritten or
abstractly folded to O′.

An origami construction proceeds as follows. We start with an initial origami and
perform folds repeatedly until we obtain a desired shape of the origami. Usually we
begin an origami construction with a square sheet of paper, but the sheet can be in any
shape having convexity. This initial sheet of paper is abstracted as a structure having a
single distinguished face to be denoted by f0. Then, we define the initial AO, denoted by
I, as follows.

Definition 3 (Initial abstract origami). The initial AO I is a structure ({f0} , ∅, ∅).

Suppose that we are at the beginning of step i of the construction, having an origami
Oi−1 = (Πi−1,vi−1,�i−1). We perform a fold and obtain the next origami Oi = (Πi,vi

,�i). Thus we have the following:

Definition 4 (Abstract origami construction). An abstract origami construction is a
finite sequence of AOs satisfying

O0(= I) # O1 # · · ·# On, where O0, O1, . . . , On ∈ O

In this paper, we decompose an abstract fold into two finer operations in order to
make our formalism general enough to model both mathematical origami and art origami.
Namely, we decompose a fold into the following operations: (a) making a crease along
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which the sheet is bended, and then (b) actually bending the sheet. We call the operation
(a) crease and operation (b) basic fold.

In mathematical origami, we are primarily interested in constructing points on the
origami. Those points form the vertices of the shape that we want to construct. In such
cases we only need creases and points of intersections of the creases and the sides of the
initial origami. In art origami, we are interested in artistic shapes that are composed
of layers of faces. In art origami, bending the sheets are equally important. Bending
outwards is commonly called mountain fold, and inwards valley fold. In summary, we
have the relation of the abstract fold as the composition of the relations crease ( →), and

basic fold (
a→). The basic fold is a union of mountain fold (y→) and valley fold (x→).

# =
a→ ◦  →, where

a→ = y→ ∪ x→

In the case of an unfold, no crease operation precedes a valley fold or a mountain fold.
In this case, the crease operation is vacuous, i.e.  → is the identity relation. In some
mathematical folds, creasing is important and basic folds play no role. In such a case, x→
(or y→) is the identity relation.

Let us consider an example of the abstract origami construction. We are interested
in the construction that starts with O0 = I and simulates the origami construction by
hands.

Example 1. Construction from the initial abstract origami We are given the
initial AO I. We define O′

1 and O1 as follows: O′
1 = (Π′

1,v
′
1,�′1), where Π′

1 = {f1, f2},
v′

1= {(f1, f2)}, �′1= ∅, O1 = (Π1,v1,�1), where Π1 = Π′
1, v1=v′

1, �1= {(f2, f1)}.
Figure 2 shows the rewrites of the initial AO. O1 is the abstraction of the origami resulting
from folding the initial origami once. O1 is obtained first by creasing I, thus constructing
O′

1, and then by making a valley fold.
We also allow a fold along the sides of the faces. Then the fold along one of the four

sides of the initial origami is simply turning over the initial origami. I and the abstraction
of the upside-down ones of the initial origami are the same. Therefore, we have abstract
origami constructions such as:

I # O1(= I),

I # O1, (I
 → O′

1 and O′
1

x→ O1).

Figure 2 shows that some faces are colored differently from the others. This property is
abstracted away during the process of the abstraction that leads to the abstract rewriting
system. The property of ”sides” appear when we give more geometrical structures in the
next section.

3. Geometrical and algebraic structures of origami

The notion of fold is central in origami and in abstract origami systems. The relation
of # is given a priori in defining the abstract rewrite system. There is no clue in the
above formalism as to how an AO is computationally related via # to the other. We
now give more geometrical structures to the constituents of the abstract origami system
to relate AOs computationally.
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Fig. 2. Abstract folds from the initial AO with geometrical interpretation

3.1. Geometry of origami

We rely on the following geometrical intuition.
(I1) A face is a plane surface in the sense of Euclid’s Elements.
(I2) A face can share the boundary with other faces. See Figs. 3 and 4.
(I3) A face can be above other faces, and all the faces form a stack of face layers. See Fig. 5.
(I4) A point belonging to a face can be overlaid on the other points belonging to other

faces. See Fig. 6.

C

D

Y

X

A

B

f1

f2

f1

f2

The two faces f1 and f2 are created by the crease XY . The two
faces share the same edge XY .

Fig. 3. Adjacent faces created by crease
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f1

f2X

Y
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On the left, the two faces f1 and f2 share the same edge XY . On
the right, the faces f1 and f2 are modeled as two plane surfaces
with infinitesimally small vertical distance. The two surfaces have
the same edge XY and are considered to share the same edge.

Fig. 4. Adjacent faces created by fold along crease

f1

f2

f3

f4

f1

f2

f3

f4

The faces f1, f2, f3 and f4 form a stack of three layers (f1), (f2)
and (f3, f4).

Fig. 5. Stack of face layers
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f1

f2

f3

P

Q

f1

f2

f3

P

Q

The point P belonging to the face f1 overlays the point Q belong-
ing to the face f3.

Fig. 6. Overlay of points

Then we give more geometrical structures to the notion of a face. We appeal to the
readers for the intuition (I1) and define a face as follows.

Definition 5 (Face). A face is a convex n-gon.

Recall that an n-gon (n > 3) is a polygon consisting of n edges none of which intersects
each other. We represent an n-gon as a sequence 〈P1, . . . , Pn〉 of pairwise distinct points,
where points P1, . . . , Pn are vertices of the n-gon. Any cyclic permutations of a given
sequence could represent the same face, but we choose one particular sequence among
them in order to represent a face uniquely. The convexity does not play a role in this
paper. It is abstracted away in our discussion, but is used crucially in the design of the
algorithms for face division and for checking face overlap. When points P1, . . . , Pn are
arranged counterclockwise, we say that the face is up, and when clockwise, down. In
the figures we distinguish the sides of the faces by the shading (colored if color print is
possible).

We can now define the adjacency relation as follows.

Definition 6 (Face adjacency). Two distinct faces are adjacent if they share an edge.

The adjacency relation is generated between the two faces that have been constructed
by the division of a face. Our construction ensures the following properties, and we take
them as an axiom of our construction by folds. In describing the axiom, we use the
following notation. When a face f is divided by a ray r into (f1, f2), where f1 is to the
left of the ray r and f2 is to the right of r, we write f �r (f1, f2). Later we also write
f �r f ′, where f ′ is one of f1 and f2, whenever we need only to specify one of the
divided faces. The subscript r in �r may be omitted if intended r is clear from the
context. When f � (f1, f2), f is called the immediate ancestor of f1(and f2). Face g1

is called the ancestor of face gk if there exists g2, . . ., gk such that gj is the immediate
ancestor of gj+1 for j = 1, . . . , k − 1.

Axiom 7. Suppose f �r (f1, f2). Then we have the following:
(1) f1 v f2
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(2) Let X and Y be points of intersection with the ray r and XY be one of the edges
of f1 such that f1 = 〈X, Y, . . .〉. Then f2 = 〈Y, X, . . .〉.

(3) The sides of the faces f , f1 and f2 are the same.

Figure 7 depicts the adjacency relation between the divided faces.

P3

P1

P2
Y

X

rf

f1

f2

The faces f1 = 〈X, Y, P3, P1〉 and f2 = 〈Y, X, P2〉 are created by
the division of face f = 〈P1, P2, P3〉 by the ray r.

Fig. 7. Faces and the adjacency relation as determined by Axiom 7

Note that the n-gon 〈X, Y, . . .〉 can be denoted by any cyclic permutation of the
sequence 〈X, Y, . . .〉. However, we fix the denotation as in Axiom 7. The following lemma
is an easy consequence of our construction.

By 〈〈X, Y 〉〉 we denote the set of all the finite sequences that have a subsequence 〈X, Y 〉
and their cyclic permutations.

Lemma 8. For any O = (Π,v,�) such that I #∗ O,

∀f, g ∈ Π (f, g ∈ 〈〈X, Y 〉〉 for some points X and Y ⇔ f = g)

Lemma 8 states that a directed edge of a face in a given Π uniquely identifies the face.
As we have decided the representation of a face, we have the following equivalence.

Proposition 9. For any O = (Π,v,�) such that I #∗ O,
∀f, g ∈ Π

f v g ⇔ ∃ points X and Y such that f ∈ 〈〈X, Y 〉〉 ∧ g ∈ 〈〈Y, X〉〉.

Proof: (⇐) The edge XY are shared by f and g. By definition of the adjacency, f v g.
(⇒) We have either f ∈ 〈〈X, Y 〉〉∧g ∈ 〈〈Y, X〉〉 for some points X and Y , or f ∈ 〈〈X, Y 〉〉∧g ∈
〈〈X, Y 〉〉 for some points X and Y . The latter is impossible by Lemma 8. 2

Example 2. Adjacency relation We make use of Example 1. The faces of f1 and
f2 in Fig. 2 are adjacent by the following reasoning. We have f1 = 〈E,F, D, A〉 and
f2 = 〈F,E, B, C〉. Since f1 and f2 share the edge EF , we can see that f1 v f2 and
f2 v f1.
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The superposition relation gives the vertical arrangement of faces. We first appeal to
the readers for intuition about the notion of above and below among faces (cf. Intuition
(I3)), where below is the inverse relation of above. Roughly speaking, face f superposes
face g iff f is above g, and moreover f and g “face” each other. Let us take a look at
Fig. 2 again. We consider making a valley fold on the face f0. The face f0 is divided into
(f1, f2). The face f2 is rotated along the axis EF by an angle π. The face f2 is clearly
above f1 in O2 and f1 faces f2. Hence f2 superposes f1.

We are now ready to formalize the notion of superposition. We proceed as follows. First
we formalize the notion of overlap based on the intuition (I4). Then we define the relation
over on the set of faces. Using the notion of over, we define above and superposition.

Definition 10 (Overlap). Faces f and g overlap, denoted by f � g, iff there exist points
P and Q, each belonging to faces f and g respectively, such that P overlays Q (or vice
versa).

Note that we allow a point to be overlaid on itself, Hence, a face can overlap with
itself. One might imagine that there is a through-hole that penetrates the points P and
Q.

To define the relation over, we will use the following notations. Let
=
�r be �r ∪ =,

where = is the equality on faces. The relation
=
�r is introduced more for convenience;

By f
=
�r f ′ we want to describe the situation where r may not divide f .

Let von(r) denote the adjacency relation between two faces that share an edge that
lies on the ray r and let v¬on(r)=v \ von(r). Let vleft(r) denote the adjacency relation
between two faces that share an edge that is to the left of the ray r and let v¬left(r)=v
\ vleft(r).

To make a crease on an origami, we need to specify the ray r and the set C of faces
to which we want to apply the face division and on which we want to make a crease
afterwards. The set C is called a candidate set of face division. Origamists give a set F
of faces that they want to make a crease. Then, C can be determined as

C =
⋃

f∈F

{
g | g v∗

¬left(r) f
}

.

Later we will discuss how to compute the set C. For now, it is sufficient to note that
whenever we discuss the fold #, we assume that r and C are implicitly given.

To make a basic fold O′ y→ O′′ after O
 → O′(= (Π′,v′,�′)), we need to determine

the set Π′
M of faces that are to be moved and the set Π′

N of faces that are not moved.
We define Π′

M and Π′
N as follows:

Π′
M =

⋃
f∈D

{
g | g (v′

¬on(r) ∪ �
′)∗ f

}
, and Π′

N = Π′ \Π′
M .

where D is the set of faces that have been divided in O
 → O′ and are to the right of the

ray r.

Definition 11 (Over). Let O = (Π,v,�) be an AO. We define the relation over, denoted
by m, on Π inductively on the construction of AOs.

Suppose I #∗ O.
∀f, g ∈ Π
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• Base case: O = I
m = ∅

• Inductive case 1: I #∗ O
 → O′(

a→ O′′) where O = (Π,v,�), and m is defined on Π.
We will define m′ on Π′ as follows.

f ′ m′ g′ iff ∃f, g ∈ Π (f m g) ∧ (f
=
� f ′) ∧ (g

=
� g′) ∧ (f ′ � g′)

• Inductive case 2.1: I #∗ O
 → O′ x→ O′′ where O′ = (Π′,v′,�′), and m′ is defined

on Π′. We will define m′′ on Π′′ as follows. Note that in both cases 2.1 and 2.2 we have
Π′′ = Π′ and that f � g is geometrically interpreted for the case that f, g ∈ Π′′.

f m′′ g iff
(g m′ f ∧ f, g ∈ Π′

M ) ∨ (f m′ g ∧ f, g ∈ Π′
N ) ∨ (f � g ∧ f ∈ Π′

M ∧ g ∈ Π′
N )

• Inductive case 2.2: I #∗ O
 → O′ y→ O′′ where O′ = (Π′,v′,�′), and m′ is defined

on Π′. We will define m′′ on Π′′ as follows.

f m′′ g iff

(g m′ f ∧ f, g ∈ Π′
M ) ∨ (f m′ g ∧ f, g ∈ Π′

N ) ∨ (f � g ∧ g ∈ Π′
M ∧ f ∈ Π′

N )

Definition 12 (Above). The relation above, denoted by m>, is the transitive closure of
m.

The notion of below becomes rigorous now since it is the inverse relation of above.
Note that the relation m does not have the transitivity, as the following example shows.

Example 3. Over and above Figure 8 illustrates the relations over and above. Face
f1 is over f2. Face f2 is over f3. Hence, face f1 is above f2 and f3, and face f2 is above
f3. However, face f1 is not over f3 since f1 does not overlap with f3.

f3

f2
f1

Fig. 8. Relations: over and above

Finally, we define the relation of superposition.

Definition 13 (Superposition). Let O = (Π,v,�) be an AO such that I #∗ O. We
define the relation superposition, denoted by �, on Π as follows.

∀ f, g ∈ Π f � g iff (f m g) ∧ (∀h ∈ Π (f m h m∗ g =⇒ h = g))

11



3.2. Analysis of relations

We will derive basic mathematical properties of the relations defined in the previous
subsection. The following propositions are immediate from the definitions of the relations.

Proposition 14 (Asymmetry of m).

∀ O = (Π,v,�) ∈ O such that I #∗ O,∀ f, g ∈ Π f m g =⇒ ¬(g m f).

In the following, all the propositions in this subsection hold for O under the context
”∀ O = (Π,v,�) ∈ O such that I #∗ O”. We omit this context for brevity.

Corollary 15 (Irreflexivity of m).

∀ f ∈ Π ¬(f m f).

Proposition 16.
∀ f, g ∈ Π f m g =⇒ f � g.

Proposition 17.
m>⊃ m ⊃ � .

Lemma 18.
¬ (m ⊃ �+).

Proof: There exist faces f , g and h such that f � h and h � g and f 6� g. By Proposi-
tion 16, ¬(f m g) if f 6� g. 2

Proposition 19. An m-sequence is acyclic.
Proof: By induction on the construction of AOs.
• Base case: O = I

Immediate, since we have ¬ (f0 m f0).
• Inductive case: I #∗ O # O′ and O = (Π,v,�)

We assume the non-existence of a cyclic m-sequence. We prove by contradiction. Sup-
pose there exists a cyclic m′-sequence. Taking the irreflexivity of m′ into account, we
can write the sequence as〈

g′0(= g′), g′1, . . . , g
′
n, g′n+1(= g′)

〉
, where n ≥ 1.

We distinguish the following three cases:
(1) I #∗ O

 → O′ (
a→ O′′)

Let g and g′i be the faces such that g
=
� g′, gi

=
� g′i for all i ∈ {1, . . . , n}.

By the definition of m′, we have on O the m-sequence:

〈g0(= g), g1, . . . , gn, gn+1(= g)〉 , where n ≥ 1. (1)

The sequence (1) is cyclic. This contradicts the induction hypothesis.
(2) I #∗ O

 → O′ x→ O′′

We further distinguish the following two cases.
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(a) g ∈ Π′
M

We show that gi ∈ Π′
M for all i ∈ {1, . . . , n}. Suppose the contrary, i.e., there

exists i ∈ {1, . . . , n} such that gi ∈ Π′
N . Let j be the maximum index among

such i’s, i.e.,
gj m′′ gj+1, gj ∈ Π′

N , gj+1 ∈ Π′
M .

By the definition of m′′, if gj and gj+1 overlap, then we have gj+1 m′′ gj, else
we have ¬ (gj+1 m′′ gj) ∧ ¬ (gj m′′ gj+1). Using the asymmetry of m′′, in both
cases, we have ¬ (gj m′′ gj+1), which is contradictory. Therefore, we have for
all i ∈ {1, . . . , n}, gi ∈ Π′

M . This implies that we have the m′-sequence:

〈gn+1(= g), gn, . . . , g1, g0(= g)〉 where n ≥ 1. (2)

The sequence (2) is cyclic. This contradicts the induction hypothesis.
(b) g ∈ Π′

N

We can show that gi ∈ Π′
N for all i ∈ {1, . . . , n}. We take the minimum j

instead. We then derive the same contradiction.
(3) I #∗ O

 → O′ y→ O′′

This case is treated similarly to the previous case.
In summary, we can conclude that m is acyclic. 2

Noting Proposition 17, we have the following corollaries.

Corollary 20. A �-sequence is acyclic.

Corollary 21. Relation m> is asymmetric.

Since a strict partial order is a relation that is asymmetric and transitive, we have the
following.

Proposition 22. Relation m> is a strict partial order.

Lemma 23.
∀f, g ∈ Π f m g =⇒ ∃h ∈ Π (f � h m∗ g)

Proof: Let f and g be arbitrary but fixed elements of Π, satisfying f m g. Let Kf =
{k ∈ Π | f m k}. Kf 6= ∅ since g ∈ Kf . We prove ∃h ∈ Π (f � h m∗ g) by the induction
on the cardinality of Kf .

If the cardinality of Kf is 2, i.e. the base case, we are done. Let H = {h ∈ Kf | ∀k ∈ Kf ¬ (k m h)}.
Obviously, H 6= ∅.

If g ∈ H, then f � g by definition of �, and we are done.
If g 6∈ H, there exists h ∈ Kf such that hmg. We consider K ′

f = {k ∈ Π \ {g} | f m k}
and fmh for our inductive argument. The cardinality of K ′

f is one less than the cardinality
of Kf . By the induction hypothesis, ∃h′ ∈ Π f � h′ m∗ h. Therefore, we have f �
h′ m∗ h m g, and we are done. 2

Proposition 24.
�+ ⊃ m+.

Proof: Since Π is finite and an m-sequence is acyclic by Proposition 19, the relation m on
Π is a well-founded order. We therefore prove the claim by the well-founded induction.
Let f and g be arbitrary but fixed elements in Π such that f m+ g. By Lemma 23,
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∃h ∈ Π f � h m∗ g. If h = g then we are done. This constitutes the base case of the
induction.

We consider next the case f � h m∗ g and h 6= g. Since m ⊃ �, f � h m∗ g
implies f m h m∗ g. By the induction hypothesis h �+ g. Hence, f � h �+ g, and then
f �+ g. 2

Theorem 25.
m> = �+ .

Proof: By Proposition 24, we have �+ ⊃ m+(= m>). The relation m+ ⊃ �+ holds by
Proposition 17. 2

Theorem 25 tells the following. Although the relation above, i.e. m>, is defined via
m, which is less intuitive notion introduced for the sake of formalization and ease of
computation, m> is the right notion on which we base our reasoning about the vertical
arrangements of faces. The relation � is the finest relation to compose the above relation.
Taking Theorem 25 and Corollary 20 together, we have the following. Given faces f and
g in an AO constructed from the initial origami, fm> g can be expanded by the finite
number of faces g1, . . . , gn such that g1(= f) � g2 � · · · � gn(= g).

4. Abstract fold from computational viewpoint

This section is devoted to the algorithmic description of fold. It is a prelude to our
argument for the necessity of graph rewriting. When we construct an origami that does
not have face overlapping, the operational meaning of folds can be quite simple. The
fold is essentially intended to construct a reflection in the fold line. Unfold is similarly
understood. In mathematical origami, which is the case in point, some studies have been
made in [1, 7]. When an (abstract) origami consists of faces with non-empty superpo-
sition relations, the situation is more complex and does not admit a simple algebraic
interpretation. Geometrical properties of folds are expounded in [3]. However, the fold
performed during the construction of an origami, as has been abstracted as an opera-
tion on discrete objects, has not been studied systematically. Having this in mind, let us
analyze the abstract fold from computational viewpoint.

Computationally, an origami fold is a composite operation consisting of the following
operations.

(1) Specify a fold method and the set F of the faces of concern, i.e. the faces on which
the origamist wants to make a fold. We can specify the fold method by one of
Huzita’s axioms [6] or classical fold methods such as mountain and valley folds
with constructed points and lines as arguments.

(2) Compute a fold line and define the associated directed line ray r. Through the ray,
the notion of left and right of the fold line is made sense of.

(3) Compute the set C of the faces that are the candidates for the face division.
(4) Divide all the faces in C by the ray r and classify the divided and non-divided faces

according to the locations relative to r.
(5) Obtain the new set Π of all the faces that constitutes the new origami.
(6) Compute the adjacency relation v on Π.
(7) Compute the superposition relation � on Π.
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(8) Rotate the relevant faces to the right of r along r.
(9) Compute the new superposition relation �′ on Π caused by the rotation.

(10) (Π,v,�′) is the new origami created by the fold.
As we saw in Section 2.3, functionally a fold is decomposed into two operations.

Steps (1) to (7) constitute one operation which corresponds to the crease relation, and
steps (8) and (9) constitutes the other operation corresponding to the basic fold relation.
At the completion of step (7), we have a well-defined origami.

More algorithmic description in a procedural program style is given in Algorithms 2
and 3. In both Algorithms 2 and 3, we use a common algorithm RefTransR. Given a
set A ⊂ X and a binary relation R on X, it computes the set B of the elements in X
that are related by R∗ to the elements of the set A. In our case the set X is taken to be
Π.

Algorithm 1 RefTransR
Input: A, R
Output: B
1: B ← A
2: while A 6= ∅ do
3: Take f ∈ A
4: W ← {g | g R f} \B
5: B ← B ∪W
6: A← (A \ {f}) ∪W
7: Return B

Algorithm 2 Crease
Input: (Π,v,�), F, r
Output: (Π′,v′,�′), D
1: C ← RefTransR(F,v¬left(r))
2: {comment C is the candidate set of the face division}
3: for all f ∈ C do
4: Divide f and classify the divided faces
5: {comment As the result of the divide-and-classify, we obtain the set D that contains

the faces to the right of the ray r}
6: Compute v′ on Π′

7: Compute �′ on Π′

8: Return (Π′,v′,�′) and D

Algorithm 3 Basic fold
Input: (Π,v,�), D, r, θ
Output: (Π′,v′,�′)
1: M ← RefTransR(D,v¬on(r) ∪ �)
2: {Comment M is ΠM}
3: Rotate the faces in M by angle θ along r
4: Compute �′
5: Return (Π,v,�′)
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5. Graph formalism for origami

The origami fold as explained in the previous sections shows that the fold is a complex
operation. We need to compute the relations v and �. Furthermore,we need geometrical
information that is abstracted away in the formulation of the abstract origami system.
One of the promising approach for compromising abstraction and concretization towards
the understanding of the geometrical structures of an origami and its implementation is
to use graph-theoretic formalism [4, 10]. In particular, we see that a labeled hypergraph
is applicable to model our origami.

5.1. Hypergraph

Definition 26 (Hypergraph). A hypergraph is a quadruple (V,E, s, t), where
• V is the set of nodes,
• E is the set of hyperedges, and
• s, t : E → V ∗ are source and target functions.

Let LV and LE be the label alphabets for V and E, respectively, and L be the set of
all the regular expressions over LV .

Definition 27 (Labeled hypergraph). Given a pair L = (LV ,LE) of label alphabets
together with label constraints τs, τt : LE → L that constrain labeling of the source and
the target nodes of the hypergraph, respectively, an L-labeled hypergraph is a 6-tuple
(V,E, s, t, lV , lE), where
• (V,E, s, t) is a hypergraph and
• lV : V → LV and lE : E → LE are labeling functions that satisfy the following

labeling constraint:

∀e ∈ E l∗V (s(e)) ∈ τs(lE(e)) ∧ l∗V (t(e)) ∈ τt(lE(e)) (3)

The condition (3) ensures the consistency of labeling. To see how it works, let us
consider the following simple example.

Example 4. Simple labeled hypergraph Let c be a label of a hyperedge e and
τs(c) = c1c2. Suppose that s(e) = 〈v1, v2〉. Then, we must have lV (v1) = c1 and lV (v2) =
c2. We can only assign to the nodes v1 and v2 a label that satisfies the condition (3).

With another τs(c) = (c1 | d)c2, for lE(e′) = c and s(e′) = 〈v′1, v′2〉, the labeling
function lV may be such that lV (v′1) = d and lV (v′2) = c2. Note that (c1 | d)c2 as well as
c1c2 are regular expressions denoting the set {c1c2, dc2} and the set {c1c2}, respectively.

Example 5. Labeled hypergraph of the initial AO We are given the label
alphabets together with label constraints τs and τt as follows:

F ∈ LV ,A ∈ LE , τs = {A 7→ F∗} , τt = {A 7→ F}

We define a graph G of the initial AO I as an L-labeled graph (V,E, s, t, lV , lE), where

V = {f0} , E = {e} , s = {e 7→ f0} , t = {e 7→ f0} , lE = {e 7→ A} , lV = {f0 7→ F} .
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Example 6. Graph immediately after face division We are given the label
alphabets and the label constraints τs, τt as follows:

LV = {F} ,LE = {A,R,L}

τs = {A 7→ F∗,R 7→ F,L 7→ F} , τt = {A 7→ F,R 7→ F,L 7→ F} .

We have an L-labeled graph G = (V,E, s, t, lV , lE), where

V = {f0, f1, f2}
E = {e1, e2, e3, e4}
s = {e1 7→ f0, e2 7→ f0, e3 7→ 〈f1, f2〉 , e4 7→ 〈f2, f1〉}
t = {e1 7→ f1, e2 7→ f2, e3 7→ f1, e4 7→ f2}

lE = {e1 7→ L, e2 7→ R, e3 7→ A, e4 7→ A}
lV = {f0 7→ F, f1 7→ F, f2 7→ F}

The hyperedge e3 forms a cycle from f1 to f1, visiting the node f2 on the way. The
hyperedge e4 also forms a cycle. The graph G is shown in Fig. 9. The graph represents
AO O′

1 in Fig. 2. In the graph, the circles, rectangles and symbols after colons denote
nodes, hyperedges and labels, respectively.

5.2. Graph term

Often graphs are drawn using diagrams. The diagrammatic representation of graphs
helps perceive many of properties of graphs, and is indeed effective as long as they are
fit into a manageably small space. Graphs for origami become complicated as the con-
struction of an origami proceeds and they do not lend themselves to easy-to-understand
drawing in general. Since we are interested in graph rewriting, in addition to the diagram-
matic representation that we have just seen, we need a good symbolic representation of
graphs for reasoning about the graph transformation, and efficiently manipulating graphs
by programs. Thus we are guided to the following symbolic representation of nodes and
edges.

Definition 28 (Edge term of a hyperedge). Let e be a hyperedge with s(e) = {v1, . . . ,
vm}, t(e) = 〈w1, . . . , wn〉, and lE(e) = c. The edge term representation of e, denoted by
ê, is a term c[v1, . . . , vm, w1, . . . , wn].

Definition 29 (Node term of a node). Let v be a node with lV (v) = c. The node term
representation of v, denoted by v̂, is a term c[v].

The edge term and node term are called graph terms, g-terms for short. We will later
extend the definition of graph term to allow variables and sequence variables to occur as
subterms.

Definition 30 (Graph term of a hypergraph). Given an L-labeled hypergraph G =
(V,E, s, t, lV , lE), graph term representation Ĝ of G is a multi-set

{ê | e ∈ E} ∪ {v̂ | v ∈ V } .
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f0 : F

f1 : F f2 : F

e4 : A

e3 : A

e2 : Re1 : L

Fig. 9. Hypergraph of an origami created by face division

Note that {ê | e ∈ E} is a multi-set and hence ∪ is the multi-set union; For different e

and e′ with s(e) = s(e′) and t(e) = t(e′), the representations ê and ê′ are the same when
their labels are the same.

Example 7. G-term representation of a hypergraph Let G be a hypergraph
given in Example 6. The g-term representation Ĝ is

Ĝ = {L[f0, f1],R[f0, f2],A[f1, f2, f1],A[f2, f1, f2],F[f0],F[f1],F[f2]}.

In our application, V is implicitly given, and LV is a singleton. In such a case we describe
Ĝ simply as {ê | e ∈ E}, since the affected node terms can be inferred from the edge terms.

6. Graph rewriting

In this section we present a graph rewriting system for origami. We first introduce a
language G for graph rewriting informally. Language G is embedded in the host language
of G, on which we rely for controlling the application of graph rewrite rules as well as for
evaluating host functional expressions during the graph rewriting 3 . The syntax of the
host expression is of the form f [t1, . . . , tn], and we use this syntax throughout in G 4 . A
basic expression t in G, called term, is defined by the following grammar together with
the auxiliary notion of an atomic term a:

t ::= a | 〈g-term〉 | 〈host expr〉
a ::= v | x | x

〈host expr〉 ::= f [t, . . . , t]

Here, x denotes a variable, x a sequence variable and v a graph node. In this paper we
do not give any syntactic specification of v apart from the fact that v denotes a node

3 To be more specific, in our implementation we use Mathematica for the host language.
4 We use infix notation for commonly used functions, however.
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of a graph. A sequence variable is used for a g-pattern (see below for the definition)
such as c[x]. 〈host expr〉 means an expression of the host language. It is used during the
application of graph rewrite rules, and gives fine control over pattern matching.

A g-term is extended to have variables and sequence variables as subterms, i.e.

〈g-term〉 ::= c[a, . . . , a]

A g-pattern c[x] matches a g-term c[s1, . . . , sn] of arbitrary n (> 0) arguments. Sequence
variables are indispensable constituents in our language since the constructor symbol c
in g-term c[s1, . . . , sn], representing a hyperedge whose label is c visiting n nodes, has a
flexible arity.

A g-pattern is a g-term possibly with a condition written after ”/;”.

〈g-pattern〉 ::= 〈g-term〉 | 〈g-term〉 /; 〈host expr〉

The expression of the form s/; t is a conditional g-pattern. The conditional g-pattern is
used in the context graph part of a graph rewrite rule. During pattern matching with a
subgraph by a substitution θ, if t θ is evaluated by the evaluator of the host language
to true, (s/; t)θ reduces to s θ, and otherwise it reduces to ⊥. We use u to denote a
g-pattern.

Finally, a graph in G is a multi-set of g-terms subjected to the conditions for defining
a graph.

Definition 31 (Graph rewrite rule). A graph rewrite rule (rewrite rule for short) is a
triplet (C,L,R) of multi-sets of g-terms, written as

L / : C → R

where
• C := {u1, . . . , um} is a graph called a context graph,

• L is a subset of {ũ1, . . . , ũm}, where ũi = si, if ui = si/; ti, otherwise ũi = ui. L is
called the left-hand side of the rewrite rule, and

• R := {t1, . . . , tn} is a subgraph called the right-hand side of the rewrite rule.

In order to identify the same g-terms in L and C, we can give a name to a g-term.
For example, a name n is given to the g-term t in C by writing n : t in C and refer to it
as n in L:

{n} / : {g[x], n : f [x], h[x]} → {f [x], f [x]}
The occurrence of n in the left-hand side of the rewrite rule refers to f [x] of the context
graph of the rewrite rule.

Definition 32 (Graph rewriting). A graph Ĝ is rewritten to Ĝ′ by a rewrite rule r :=
L / : C → R, denoted by

Ĝ⇒r Ĝ′

if there exist g-terms s1, . . . , sm, and a substitution θ such that {s1, . . . , sm} ⊆ Ĝ, C θ =
{s1, . . . , sm} after the evaluation of the conditions, if any, and Ĝ′ = (Ĝ \ Lθ) ∪Rθ. The
set-related notations are taken to be those for multi-sets.
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The graph rewriting can be formalized as the double push out using graph production

〈C ← (C \ L)→ (C \ L) ∪R〉 ,

where C \ L is an interface, as in [4]. However, we prefer our definition of the rewrite
rule from the programming language point of view. Thanks to g-terms, it makes clear
the parts of the graph involved for rewriting and the graph rewriting becomes a simple
multi-set rewriting.

Rewrite rules are combined using the following combinators (i.e. alternative, non-strict
sequencing, strict sequencing and repeat) to form a composite rewrite rule. The combi-
nators control the application of the rewrite rules. Hereafter, rewrite rule and composite
rewrite rule are collectively called rewrite rules.

Rewrite rule ρ is defined by the following grammar.

ρ ::= r | ρ1 p ρ2 | ρ1; ρ2 | ρ1 ∗ ρ2 | (Cond ρ1 ρ2 ρ3) | (Repeat ρ)

• r is a basic rewrite rule as defined in Definition 31.
• ρ1 p ρ2 is an alternative.
• ρ1; ρ2 is a non-strict sequencing.
• ρ1 ∗ ρ2 is a strict sequencing.
• (Cond ρ1 ρ2 ρ3) is a conditional.
• (Repeat ρ) is a repetition.

We apply a rewrite rule ρ to a graph Ĝ to obtain a new graph Ĝ′. The graph Ĝ′ is
the result of one of the following operations.

(1) The rewrite rule ρ is applicable to some subgraph of Ĝ, which then is rewritten by
ρ, and returns the new graph Ĝ′. We denote the new graph Ĝ′ by ρ[Ĝ]. We call
this case successful rewrite.

(2) The rewrite rule ρ is applicable to no subgraph of Ĝ, and it returns the new graph
Ĝ′ = Ĝ. We call this case unsuccessful rewrite.

To describe the semantics of the graph rewriting, we need to distinguish the above two
cases since by mere observation of the resulting graph we cannot tell whether the graph
rewriting has been successful or not. We, therefore, adopt continuation passing style of
semantic treatment. We use two continuations as the parameters to the graph rewriting:
continuation ν to be obeyed when the rewrite is successful and the continuation κ to be
obeyed when the rewrite is unsuccessful.

Then we have the following semantic equations to describe the graph rewriting.

r G κ ν =

 ν (r[G]) if the rewrite is successful

κ G if the rewrite is unsuccessful
(4)

(ρ1 p ρ2) G κ ν = ρ1 G (λG′. ρ2 G κ ν) ν (5)
(ρ1; ρ2) G κ ν = ρ1 G κ (λG′. ρ2 G′ (λG′. κ G) ν) (6)

(ρ1 ∗ ρ2) G κ ν = ρ1 G (λG′. ρ2 G κ ν) (λG. ρ2 G ν ν) (7)
(Cond ρ1 ρ2 ρ3) G κ ν = ρ1 G (λG′. ρ3 G κ ν) (λG′. ρ2 G κ ν) (8)

(Repeat ρ) G κ ν = ρ G κ (λG. (Repeatρ) G ν ν) (9)
The semantic equation (5) for the alternative states the following. We first apply rule
ρ1 to Ĝ. If the rewrite is successful, the continuation ν is applied to the result ρ1[Ĝ]
of rewriting of Ĝ by ρ1. If the rewrite is unsuccessful, we apply rule ρ2 to Ĝ with the
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continuations κ and ν. The semantic equations (6) and (7) for the sequencing rules show
that the applications of the rules ρ1 and ρ2 are performed sequentially from left to right.
In the non-strict sequencing, ρ2 is not applied if the rewrite by ρ1 is unsuccessful, and
it immediately completes the rewrite unsuccessfully. In the strict sequencing, even if the
rewrite by ρ1 is unsuccessful, the rewrites continue with Ĝ, and the rewrite of Ĝ by
ρ2 is performed. The rewrite of Ĝ by ρ1 ∗ ρ2 completes successfully either (including
both) of rewrites by ρ1 and ρ2 are successful. Otherwise the rewrite is unsuccessful. Thus
(r1 ∗ r2) Ĝ κ ν evaluates to one of the following: ν (r2[r1[Ĝ]]), ν(r2[Ĝ]), ν(r1[Ĝ]) and
κ Ĝ, whereas (r1 ; r2) Ĝ κ ν evaluates to one of the following: ν (r2[r1[Ĝ]]) and κ Ĝ.
The semantic equation (8) states that if ρ1 rewrites Ĝ successfully then the resulting
graph is ρ2[Ĝ] else it is ρ3[Ĝ]. The semantic equation (9) states the following: (Repeat ρ)
rewrites Ĝ successfully if there exists an n > 1 such that ρn rewrites Ĝ successfully
and ρn+1 rewrites Ĝ unsuccessfully, where ρn denotes ρ ; . . . ; ρ︸ ︷︷ ︸

n

. (Repeat ρ) rewrites Ĝ

unsuccessfully if ρ rewrites Ĝ unsuccessfully.

7. Fold as graph rewriting

We are now ready to describe the fold explained in Section 4 in graph rewriting frame-
work. We follow closely Algorithms Crease (Algorithm 2) and Basic fold (Algorithm 3)
and describe how the graph representing an origami is transformed. In the following, Sub-
section 7.1 explains step 4, Subsection 7.2 step 6, and Subsection 7.3 step 7 of Algorithm
Crease. Subsection 7.4 explains steps 3 and 4 of Algorithm Basic fold.

7.1. Face division

We consider face division f �r (f1, f2). An example of the graph obtained by the face
division was given in Fig. 9. We will discuss the face division in general cases. Suppose
that face f is surrounded by faces v1, . . ., vn in this order, and that ray r divides the
faces v1, f and vi. We transform the graph as follows.

(1) Construct nodes f1 and f2.
(2) Construct the hyperedge e1 that connects f with f1 and e2 that connects f with

f2. We label the hyperedge e1 by L (L for Left) and e2 by R (R for Right).
(3) Construct the hyperedges e3 and e4 starting from f1 and from f2, respectively.

We have s(e3) = 〈f1, v1, . . . , vi, f2〉, t(e3) = f1, s(e4) = 〈f2, vi, . . . , vn, v1, f1〉 and
t(e4) = f2. We label those hyperedges A (A for Adjacency).

Let Ĝ be the g-term of a graph before the division of the face f . The g-term Ĝ′ of the
graph after the division is

{L[f, f1],R[f, f2],A[f1, v1, . . . , vi, f2, f1],A[f2, vi, . . . , vn, v1, f1, f2],F[f1],F[f2]} ∪ Ĝ.

The label A in A[x1, . . . , xn] is the realization of the adjacency relation. The intended
meaning of A[x1, . . . , xn] is that x1 v x2, . . . , x1 v xn−1. But at this point, the relations
is transient since some of the faces in {x2, . . . , xn−1} may be divided later during the
face division. We will discuss about this in the next subsection. The label R in R[x1, x2]
indicates the relation that x1 is the right (w.r.t. r) part sub-face of x2. This relation is
introduced temporarily during the graph rewriting, and the R-labeled hyperedges will
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be deleted (garbage collected) after the graph construction of each step of the origami
construction is completed. The label L is used similarly.

We have two special cases that we need to consider besides the above. The first case
is that either f1 or f2 is empty. In this case, the node corresponding to the empty face
is not constructed. For example, if f1 is empty, we have f2 = f and the hyperedge e2

only with s(e2) = t(e2) = f . The other case is that the ray passes through the vertex
(vertices) of the face f . In both cases, the construction of Ĝ′ is straightforward.

7.2. Computation of adjacency relation

In order to complete the computation of the adjacency relation, the subgraph con-
structed at the face division step has to be traversed again to update the nodes on the
hyperedges. Some of the other faces have been divided later during the face division. The
constructed hyperedges still connect to those nodes of the previous non-divided faces.
We need to update those hyperedges by the traversal of the graph using the following
rewrite rules:

ρ1 := {n} / : {L[f, f1], n : A[f1, x],L[g, g1]/; (g 6= g1 ∧ g ∈ {x})} 7→ A[f1, x]{g 7→ g1}
(10)

ρ2 := {n} / : {R[f, f1], n : A[f1, x],R[g, g1]/; (g 6= g1 ∧ g ∈ {x})} 7→ A[f1, x]{g 7→ g1}
(11)

ρ := (Repeat ρ1) ∗ (Repeat ρ2)
The term A[f1, x]{g 7→ g1} is the application of the substitution {g 7→ g1} to a term
A[f1, x]. Note that we omit the g-terms for the nodes in all the subgraphs involved.

Example 8. Update of hyperedges after face division Suppose we have a face b
surrounded by the faces a1, a2, a3 as shown in Fig. 10 (left). The face division b �r (b1, b2)
is shown in Fig. 10 (right).

a2
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Fig. 10. Node changes after face divisions

At the time of the face division, we have A[b1, a3, a1, b2, b1] and A[b2, a1, a2, a3, b1, b2]
that represent the hyperedges e1 and e2 satisfying s(e1) = 〈b1, a3, a1, b2〉 , t(e1) = b1, and
s(e2) = 〈b2, a1, a2, a3, b1〉 , t(e2) = b2. Later we have a1 � (a11, a12) and a3 � (a31, a32).
The update of the hyperedges is achieved by rewriting the g-terms A[b1, a3, a1, b2, b1] and
A[b2, a1, a2, a3, b1, b2], to A[b1, a31, a11, b2, b1] and A[b2, a12, a2, a32, b1, b2], respectively.

The instantiated rule from rule (10), i.e. the rule after applying the substitution formed
during the pattern matching of the rewrite rule with the graph,

{n} / : {L[b, b1], n : A[b1, a3, a1, b2, b1],L[a3, a31]} → {A[b1, a31, a1, b2, b1]}
is used to update the g-term A[b1, a3, a1, b2, b1] to A[b1, a31, a11, b2, b1]. Similarly, A[b2,
a1, a2, a3, b1, b2] is rewritten to A[b2, a12, a2, a32, b1, b2] by the rewrite rule (11).
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7.3. Computation of superposition relation

The superposition relation is computed twice during the fold operation: one induced
by the face division and the other by the face rotation. Although both computations
may appear different, they are based on the same algorithmic pattern. Namely, in both
computations the basic operations are the insertion of a new face to the peaks (to be
defined shortly) of the graph and the transitive reduction of the graph.

In order to describe fully these operations, we use the following definitions and nota-
tions. Let V be a set and R be a binary relation on V . A pair (V,R) is identified as a
directed graph 5 . Let us further stipulate that G = (V,R) is a directed acyclic graph. A
graph GT = (V,R+) is called a transitive closure of the graph G. Let G− be a directed
acyclic graph with a minimum number of edges satisfying GT = (G−)T . The graph G−

is called a transitive reduction of the graph G. In the following, we consider G = (Π, m).
It is easy to see that GT = (Π, m>) and G− = (Π,�) and is unique. We call a node f in
Π of G a peak iff there exists no node g in Π such that g m f . The set of peaks of a
graph G is denoted by KG.

From a given Oi = (Πi,vi,�i) of an AO construction I #∗ Oi, we can define a graph
(Πi, mi). As m is defined inductively on the construction of AOs, we can construct mi+1

from mi. Then we take the transitive reduction of (Πi+1, mi+1) and finally we extract
�i+1 from the transitive reduction. The known algorithm for the transitive reduction of
a directed acyclic graph G = (V,R) can be as low as O(n3), where n is the cardinality
of V [5]. Actually, it suffices to construct a graph (Πi+1, R) with a relation R such that
�i+1⊂ R ⊂ mi+1. The crucial observation here is that if f m g then for any h such that
g m+ h, we have ¬(f � h). Therefore, once the edge representing f m g is established, we
do not have to consider the possible edges representing f m h because those edges would
be unnecessary to construct the transitive reduction.

We define the above algorithm with the set of graph rewrite rules in the following way.
Suppose we have a unique g-term NewNode[f ] in Ĝ. We define the graph rewrite rule:

AddS(h) := {}/ : {NewNode[f ]/; f � h} → {S[f, h]}.

The rewrite rule states that we can create an S-labeled edge from f to h when f � h.
Note, however, that some of the S-labeled edges thus constructed may be deleted during
the subsequent transitive reduction. The remaining ones after the transitive reduction are
the edges representing the superposition relation. The node f is to be added to the peaks
of G. To find the node to which we construct an edge from f is a simple graph traversal.
For this purpose we incorporated the graph traversal strategy Trav in our language G.
The semantics of Trav can be described by the following semantic equation.

5 In this subsection, in order to explain the essential idea of the computation of the superposition, we
employ an ordinary graph. Actual implementation is done in the labeled hypergraphs that have been
discussed so far.
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Trav ρ {} G κ ν = ν G

Trav ρ ({e} ∪ es) G κ ν = ρ e G (λG. Trav ρ (Succ e G) G ν′ ν′) ν′

where ν′ = λG. Trav ρ es G ν ν

and (Succ e G) computes the set of nodes x of G

such that e � x

Note that (Succ e G) finds the set of successor nodes using� rather than m since any node
connected by m from e can be reached by multiple edges of � from e by Proposition 24.
Let Tr(G) be a function to compute the transitive reduction of a graph G. Then the
following program, receiving a graph G, returns the desired graph.

Trav AddS KG G κ Tr

Example 9. Superposition after making a crease
We consider O = (Π,v,�)  → O′ = (Π′,v′,�′) as shown in Fig. 11. We see that
Π = {f, g}, v= {f, g} and �= {f, g}. By the face division, we have f � (f1, f2) and
g � (g1, g2). Whether or not f1 m′ g1 holds in O′ depends on whether faces f1 and g1

overlap. In the case of the fold along r1, we have fi m′ gi for i = 1, 2, but in the case
of the fold along r2, neither f1 m′ g1 or g1 � m′f1 holds. Let us consider the latter case
further. Figure. 12 depicts a subgraph of the graph representing O′. In O′ = (Π′,v′,�′),

f

g

r1r2

g1 g2

f1

f2

Fig. 11. Superposition relation after face division

Π′ = {f1, f2, g1, g2}, v= {(f1, f2), (g1, g2), (f2, g2)} and �= {(f2, g2)}. The hyperedge e1

is labeled L since the f1 is to the left of f , and the e2 labeled R. Similarly, e3 and e4 are
labeled L and R, respectively. The hyperedge e5 is labeled S since f � g. The hyperedge
e6 is added. This hyperedge is labeled S since they realize the superposition relation after
the face division. In the figure the other incoming edges of the A-labeled hyperedges are
omitted.

7.4. Computation of superposition relation induced by the rotation

The final stage of the fold is the rotation of faces. It consists of steps 3 and 4 of
Algorithm Basic fold (Algorithm 3). Prior to the face rotation, we check the foldability.
Namely, we check whether the fold line passes through the interior of a face. If true, we
cannot make a fold. The rotation at step 3 induces the changes in the coordinates of the
vertices of the moved faces. This invokes numerical computation of the coordinates, on
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f : F

g : Fg1 : F g2 : F

f1 : F f2 : F

e4 : Re3 : L

e2 : Re1 : L

e5 : S e6 : S

Fig. 12. Insertion of a superposition hyperedge

one hand, and symbolic computation of the reflection relation between the vertices before
and after the rotation, on the other. These computations do not change the structure of
the graph. We construct S-labeled hyperedges using the rewrite rule Trav explained in
Subsection 7.3 for finding the the pair of faces that should be connected by S-labeled
hyperedges. The algorithm is similar to the one for step 7 of Algorithm Crease. Finally,
we take the transitive reduction of the constructing graph.

Example 10. Superposition by rotation Figure 13 shows the origami after mak-
ing creases. The ray r corresponding to the fold line runs from lower right to upper left.
The faces on the base layer of the origami have been divided by the ray r into faces f
and a. At this step, the origami consists of faces a, b, c, d, f and g. We see that the faces
a, b, c and d are to the right of r, and the faces f and g to the left of r. Figure 14 shows
the result of the rotation along r. Face g superposes face f . Faces b and c superpose a.
Face d superposes b.

Figure 15 shows the graph of the origami of Fig. 13. The rotation induces the graph
transformation from the graph of Fig. 15 to that of Fig. 16. The newly added S-labeled
hyperedges are e5, e6, e7, e8 and e9. For simplicity we omit the hyperedges of the other
labels.

8. Conclusions

We have presented an abstract model for origami. Central to the modeling is the
abstraction of fold. The abstraction of fold led to graph-theoretic modeling of an origami
and transformation of the graph representing the origami. By this formalism we are able
to rigorously construct an origami and reason about the process of construction of the
origami as well as the geometrical properties of constructed origami. Furthermore, it has
been shown that the graph-theoretic formalism has the advantage of separating domains
of discourse into pure combinatorial domain and geometrical domain R×R.

We have also presented a language of graph rewriting. The language enables us to
describe the process of graph transformation algebraically. Our formalism follows closely
that of algebraic and categorical graph theories.
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f

a

c
g

b
d

Fig. 13. Origami after crease Fig. 14. Origami after basic fold

a : F

b : F c : F

d : F

e1 : S e2 : S

e3 : S

f : F

g : F

e4 : S

Fig. 15. Graph of origami of Fig. 13

The graph contains necessary information to explore other possible methods of origami
constructions. We are thus in a position to tackle challenging problems such as of dis-
covering a new construction given an origami shape, and of discovering a new origami
method that has certain geometrical properties employing various AI techniques.
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