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ABSTRACT
In this paper we propose an attention-based vision system
for the JAST interactive dialog robot. The robotic vision
system incorporates three submodules: object recognition,
gesture recognition and self recognition.

The performance boost of our biologically inspired vision
system is based on two assumptions: first, generally atten-
tion is attracted by regions of high intensity or hue gardients
as well as scene dynamics (bottom-up attention attraction),
and second, attentioninal focus can be directed by higher
level modules, whether volitional or not, in an inhibitory or
reinforcing way (top-down attention control). The system
proposed in this paper is able to utilize these assumptions
and organize its computational efforts accordingly.

Integrated into an efficient data management architecture,
the vision system is capable of continuously publishing re-
sults to the cognitive layer of the robot and thus enables
operations in realtime. Furthermore, the modular system
structure and the asynchronous communication paradigm
allows for efficient integration of additional modules, be it
visual or any other sensory input data.

The main contribution of this work is the application of
neuroscience findings and biologically plausible theories of
attention based visual processing to a real-world robotic
setup. Here, our experimental results show tremendous speed-
ups using either the bottom-up attention attractors or the
principle of top-down attention control as input data filters
for further visual analysis, reaching the peak in a combina-
tion of the two.
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1. INTRODUCTION
Many traditional computer vision system, either for surveil-

lance tasks with fixed cameras, robot vision on mobile plat-
forms or any other kind of visual processing suffer from an
enormous computational complexity. The main reason for
this is, that these traditional systems utilize complete anal-
ysis approaches. The basic, biologically inspired idea of the
authors (and some more in the scientific community) is to
apply an attention-based type of filter on the great amount
of visual input data and only perform further analysis on
the tiny rest. This residual is what we call the regions of
interest (ROIs).

There have been many approaches to computation of salient
features in a static image, e.g. Reinagel and Zador [1] shows
that high contrast regions seem to attract attention or Kadir
and Brady [2] reports that salient regions can be computed
using multiscale images. Gilles [3] on the other hand argues
that local complexity can be a measure of saliency. Also, a
learning approach for visual saliency models has been pro-
posed recently by Keinzle et al. [4]. Following these ideas,
one foundation of our approach is the claim, that funda-
mental attention attractors originating from sensory input
can be either static salient features in a single frame or dy-
namics in the input data sequence (considering temporal
properties).

Inspired by the idea of O’Regan and Noë [5], which they
claim to be biologically plausible, we extend the saliency at-
tention approach with the idea, that vision is a process of
active and sometimes even volitional exploration of the en-
vironment. Thus, considering the second before mentioned
assumption, i.e. based on the theory of inhibition of return
– as shown to be plausible in human visual psychophysics
by Posner and Cohen [6], we implement top-down cognitive
feedback in the proposed system. Moreover, we will go one
step further and integrate a possiblity not only for attention
inhibition, but also for directed attention guidance. This re-
inforcement is triggered by cognitive processes – reasoning
about relevant additional information to gain from a specific
region (see Section 3). Although we do not claim to imple-
ment the entire framework of O’Regan’s and Noë’s theory –
e.g. the inattentional or change blindness, we in deed show
that a system utilizing the basic ideas performs considerably
better than without.

Not contradicting, but complementing the work of e.g.
Itti et al. [7, 8] or Walther et al. [9], we do not want to fo-



Figure 1: The JAST human-robot dialog system.

cus solely on building a biologically plausible visual systems,
but our primary target is to apply the underlying ideas of
such frameworks to a real-world robotic setup. We there-
fore avoid complex neural, connectionist or machine learn-
ing techniques where possible, giving preference to discrete
algorithms. These fast and efficient algorithms allow for
realtime performance and high accuracy for manipulation
tasks on standard hardware.

The vision system presented in this paper is part of the
“Joint-Action Science and Technology” human-robot dia-
log system.

1.1 The JAST Robot
The overall goal of the JAST project is to investigate

the cognitive and communicative aspects of jointly-acting
agents, both human and artificial. The robot torso (Fig-
ure 1) being built as part of the project [10, 11] consists of
a pair of mechanical arms with grippers and an animatronic
talking head. The input channels consist of speech recog-
nition, object recognition, gesture recognition, and robot
sensors; the outputs include synthesized speech, emotional
expressions, head motions, and robot actions. The user and
the robot work together to assemble a wooden construc-
tion toy on a common work area, coordinating their actions
through speech, gestures, and facial motions.

Vision processing in the JAST system is performed on the
output of a single top-view camera. It provides an image
stream of 7.5 frames per second at a resolution of 1024x768
pixels. The output of the vision process is published to the
multimodal fusion component [12], where it is used for dis-
ambiguating spoken input from the user. Moreover, com-
bined hypotheses representing the users requests are pro-
duced and reasoning on the properties of the observed world
parameters can be done.

1.2 Vision Architecture and Analysis Stage
The vision system presented here (Figure 2) applies an

Figure 2: Architectural overview of the vision sys-
tem.

asynchronous communication mechanism (ACM). Therefore
we can implement non-blocking behaviour and still guaran-
tee the required frequency for result publishing, as publish-
ing incomplete analysis results is tolerated. Derived from
common standards, intermediate vision data is managed in
limited-size priority-queues.

Concerning parallelization techniques [13], the JAST vi-
sion system applies a wait-free [14] combination of data-domain
and function-domain parallelization. As previously shown
by Müller et al. [15], this combined approach performs very
well in practice because anchor points for distributed compu-
tation can be designed to be independent concerning mem-
ory and workflow and the system avoids starvation according
to Herlihy [16].

Object recognition within the scene is fairly straight
forward once the regions of interest are identified. We apply
the OpenCV -implementation of a template-matching algo-
rithm on 20 different rotations of each template we consider
to be relevant. The templates are generated from previously
taken samples (a future version of the system will extract
them online).

Since the OpenCV library offers a good choice of different
similarity measures, e.g. cross-correlation (see below) and
a couple of other patch-comparison methods – for example
least-square-errors (LSE) or correlation-coefficients.

CCT,ROI = maxt∆x,∆y,θ

"X
p∈T

(T (p) ·ROI(t(p)))

#
(1)

In Equation 1 the transform t∆x,∆y,θ(p) denotes the pro-
jection of p into the region ROI according to the translation
∆x,∆y (automatized within OpenCV) and a discrete rota-
tion value θ ∈ [0; 2π] applied by our algorithm.

Gesture recognition is implemented as a two step
approach: first, specific invariants have to be extracted from
a region, and second, the gesture has to be classified.

To classify an extracted set of invariants, we find the K
nearest neighbors which are calculated based on the weighted
distance of each training vector to the input invariant. The
training vectors are created in advance and remain stable



throughout the whole process. Next, we choose the K vec-
tors from the training pool which have the shortest normal-
ized (Euclidian) distance to the given invariants. A näıve
Bayes probability for the invariants can then be computed
for each available class of gestures (details in [17]). Figure 3
shows typical results of the recognition process.

Figure 3: Typical results of the gesture recognition
subsystem.

Self recognition or robot recognition is acomplished
by a cognitive feedback algorithm. From robot sensors one
can retrieve the current joint parameters of each joint of the
robot’s arms. This information is used to adjust a 3D model
of the robot accordingly. Based on this information, in com-
bination with link properties and the position of the torso,
that are known from a priori, the system can compute the 3D
cartesian position of each joint applying forward kinemat-
ics. This information is then used to identify corresponding
regions in the input image.

2. ATTENTION ATTRACTORS
Before passing information to the Analysis and Interpre-

tation stage described above (see Figure 2), we apply a novel
early processing mechanism, which is the main topic of in-
terest here. This section herein describes the effects directly
triggered by the input data.

The goal of attention attraction subsequently described
is to generate a saliency map. But we want to extend the
idea of the saliency map to a more general map of visual
attention and emphasize our technical perspective, so we
introduce the term attention condensation layer here.

Both algorithms described in this section directly process
sensory input data, so we call the emerging effects bottom-
up attention attractors. Itti et al. [8] refer to these effects
as “scene-dependent”, on the contrary to “task-dependent”
ones that originate from higher cognitive processing.

2.1 Static Saliency
Our approach for detecting salient local features in a sin-

gle, thus static, input image relies on a comparison of inten-
sity and hue [18]. A background model is used, which can be
trained in advance. This model is represented as a 2D nor-
malized joint histogram [19]. Creating the model is straight
forward, as it is sufficient to only analyze one empty input
frame, i.e. one that does not contain any objects, gestures
or robot parts and can thus be automated.

In the saliency detection step the model is compared to
hue-intensity distribution of image patches in the input im-
age – e.g. by applying the Bhattacharyya distance. If the
distance is greater than a certain threshold, the patch is con-
sidered to be non-background and worth analyzing it within
the recognition stage (see Figure 4). Histograms of arbi-
trary patches can be efficiently obtained with the adaptive
integral histogram approach described by Müller et al. [20].

2.2 Dynamic Saliency

Figure 4: The visual layers for attention based com-
puation.

The extraction of saliency from dynamics we describe here,
is an extension to the approach for detecting locally salient
regions explained above. The basic idea is to create and
evaluate a disparity map, combine it with the saliency map
and observe its behavior for a number of frames.

Regions of particular interest are blobs of pixels moving
in an uniform manner for a number of frames. On the basis
of this observation, the system is able to infer regions con-
taining high dynamics, that are then considerd to be worth
analyzing. Technically speaking, we keep track of regions
that show local salience, and as soon as they start moving
in the scene we set a flag indicating dynamic saliency.

3. COGNITIVE FEEDBACK
As the second fundamental principle in our attention based

robot vision system we assume, that the cognitive layer
should be able to influence the amount of attention payed
to a bottom-up attracted region by giving some sort of feed-
back. From a technical point of view this means projecting
knowledge about a scene or about constraints in the world
into the attention condensation layer. The active or some-
times even conscious projection of world knowledge can ei-
ther cause inhibitory effects, attract attention, or increase
the level of attention.

Neuroscientists (e.g. Li et al. [21]) often call these effects
on the primary visual cortex of humans top-down effects,
as they originate from higher levels of cognition, or task-
dependent [8], i.e. as the high level task or plan influences
lower level visual attention to specific regions. Their exper-
iments show, that the same attention attractors have very
different influence on the focus of attention and thus the ac-
tivation of processing units under variations of the task to
accomplish.

3.1 Inhibition of Return
“Inhibition of return” (e.g. by Posner et al. [6, 22]) con-

stitutes the theoretical foundation of one of the algorithms
used to control the focus of attention in a top-down manner.



Here we are talking about a situation where the system’s at-
tention attractors got activated and regions for analysis from
the bottom-up view were identified. In this case the inhi-
bition of return mechanism avoids re-analyzing regions that
have been previously processed (Figure 4).

In order to achieve this, the system keeps track of any ob-
ject, gesture or part of the robot visible in the scene. Many
of these items are likely to appear at the same or very close
position in consecutive frames. The level of attraction for a
ROI a(ROI, t) is in this case proportionally decreased with
the number of sequential frames t it appears in. Here we
propose two methods, either linear or non-linear degression.

a(ROI, t) =


linear: δ(ROI)− t

non-linear: tanh(−αt) + 1
(2)

Within the linear degression, we have to specify a δ(ROI)
which specifies the maximum number of consecutive attrac-
tions subject to the size of a region (larger regions need
more time for analysis, therefore the inhibition of return af-
fects big regions later), whereas within the non-linear case,
we have to specify a factor α that determines the dura-
tion of the attraction and its strength subject to t. Usally
α ' δ(ROI)−1 is a good choice here.

Combined with a signum thresholding function Tε, we can
compute the time t corresponding to Tε = 0 after which no
more processing is performed and no more ressources are
used for the analysis of a region. In the linear case ε ≥ 0 is
permitted, while ε > 0 is a constraint in the non-linear case.

Tε(ROI, t) =


1 if a(ROI, t) ≥ ε
0 otherwise

(3)

3.2 Volitional Attention Control
Thinking about human attention control again, we find

that we are able to control our focus of attention and di-
rect it to a certain region, or generally to a subset of the
perceived input data. This was shown to be plausible in
Stroop’s historical psychological experiments [23] and is still
being researched on, e.g. by Cohen et al. [24].

There are basically two complementary options for this
kind of attention control effects. First, if we suppose an ob-
ject to be at a certain location, we are able to take a closer
look, even when lacking the bottom-up stimulus. And sec-
ond, even if there is bottom-up attraction, we can volition-
ally choose not to pay attention to this specific attractor and
ignore the stimulus. The system proposed in this paper ap-
plies both control strategies by utilizing specific interfaces in
the higher level cognition modules (indicated by top-down
arrows in Figure 4).

Conscious Induction of Attraction on the one hand
is an interface allowing for emphazising of specific or creation
of new areas of interest in the attention condensation layer.
Hence attention on existing regions is reinforced or regions
of interest are generated artificially.

Negation of Attraction on the other hand, unlike
the inhibition of return, is not automatically triggerd by the
visual activation tracking mechanism, but rather originating
from a higher level of cognition. Still, invoking the interface
causes a similar effect: the computational effort put into the
analysis of the designated region is repealed.

Figure 5: The figure shows a snapshot of an analyzed
scene and the binarized attention condensation layer
in the upper-left corner.

4. EXPERIMENTAL RESULTS AND CON-
CLUSION

Figure 5 exemplarily depicts an image of a dynamic input
sequence and the analysis performed. In the figure some rel-
evant information for high level cognitive / reasoning mod-
ules is annotated: a gesture is recognized and several ob-
jects are detected and their location, orientation and color
is identified. The boxes around the identified items are not
published, but indicate the corresponding ROIs extracted
with the attention attraction algorithms.

The snapshot taken from a typical input video sequence1

shows all of the effects described in the above sections:
Static saliency Region 1421, the slat in the subject’s

hand, is computed with this approach. Its intensity differs a
lot from the background and so the previously unseen region
is considered to be worth paying attention.

Dynamic saliency The red regions, likely to be ges-
ture regions, are extracted using the moving blob approach.
In the image, the last few blob positions are depicted. Also,
regions 1391–1393 in the image originate from scene dynam-
ics, but unfortunately they are false positives.

Inhibition of return Regions 4 and 5 containing an
orange nut and a green cube are not reanalyzed, although
static attention attractors were activated by the bottom-up
mechanism. In this case the inhibition of return mechanism
avoids the waste of resources on these specific regions.

Conscious induction The virtual regions 1185 and
1178, are projected by the cognitive layer. From the whole
video sequence one can see, that these objects exist on the
table, although they are invisible in the snapshot. The cog-
nitive layer infers, that objects do not disappear so suddenly
and thus virtual regions are generated and reanalyzed.

Negation of attraction The cognitive layer prohibits
further analysis for the small region 1357 next to the robot,
as it is part of the inferred position of the robot and thus
does not contain relevant information. Although, by means
of the region size it could possibly contain an object, the
poperty “no object” is assigned.

One has to consider, that a performance analysis cannot

1http://www.youtube.com/watch?v=JupXjgdYzY4



be performed straight forward, because, as shown in [15], the
system operates massively parallel in the function and the
data domain. This means, lacks of computational ressources
are compensated for with frame-drops. But still, we are able
to measure according to a very basic metric: the time it
takes, until each object in a scene is detected and analyzed.

We first analyze the system’s performance without any
attention driven improvements. We find, that evaluating a
single frame even for a system only using object recognition
(no gesture and no robot recognition) with respect to 16 pos-
sible template objects (a typical number for the JAST setup)
and 20 rotations takes around 120 seconds for analyzing the
21 objects! But, when applying the bottom-up attention
attraction mechanism of static saliency, the time needed for
processing the whole scene already decreases to 6.39 seconds.
Further on, considering a sequence of image frames contain-
ing the one from above, enabling the inhibition mechanism
improves the performance to more than real-time, once all
regions were analyzed. Obviously the results given here refer
to real-world scenarios as being common in the JAST setup.
Indeed, we can artificially set up arbitrarily complex scenes
– e.g. filling up the entire table with overlapping objects
results in a single ROI for the whole image and totally ruin
the benefit of bottom-up saliency mechanisms.

In order to show the value of attraction on dynamics and
conscious attention focussing, we consider the example of
moving a hand or robot arm in the scene. First, dynamic
saliency compensates for inhibition of return, so moving ob-
jects are reanalyzed although the stimulus itself might re-
main almost static, but spatial changes or distortions trigger
the analysis. Finally, conscious mechanisms allow to com-
pensate for unlogic attention attraction, such as unnatural
region behaviour (sudden disappearances or appearances) or
false positives due to errorneous saliency.
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