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Abstract
This paper is concerned with the efficient computation of materialization in a knowledge base with
a large ABox. We present a framework for performing this task on a shared-nothing parallel
machine. The framework partitions TBox and ABox axioms using a min-min strategy. It utilizes
an existing system, like SwiftOWLIM, to perform local inference computations and coordinates
exchange of relevant information between processors. Our approach is able to exploit parallelism
in the axioms of the TBox to achieve speedup in a cluster. However, this approach is limited by
the complexity of the TBox. We present an experimental evaluation of the framework using
datasets from the Lehigh University Benchmark (LUBM).
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1. INTRODUCTION
It is often desirable to represent and annotate features and data elements in a dataset using
concepts and relationships from domain-specific ontologies. A knowledge-base (KB) in our
context consists of two main components: a TBox and an ABox. A TBox captures higher-
level knowledge about a domain using descriptions about concepts and roles in the domain.
An ABox captures an instantiation of a domain and may refer to specific individuals. An
ABox uses terms from the ontology to assert facts about these individuals. The KB implies
additional facts from the explicitly stated ones. Materialization is the process of computing
all implicit assertions in the KB and is frequently employed by semantic query and
reasoning engines [13,4,9] to improve query performance.

With advances in tools for managing ontologies and automatic extraction of semantic
information from data sources, KBs consisting of large ABoxes will become increasingly
common. With increasing ABox sizes, efficiency of the materialization stage becomes
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important. In this paper, we investigate the use of distributed-memory parallel machines to
support efficient materialization. We target ontologies expressed using a fragment of OWL-
Lite [10]. Our framework implements techniques for workload partitioning and data
exchange, and exploits existing semantic stores to perform local materialization. Our
approach exploits inter-axiom parallelism to achieve speedup in a parallel environment. We
evaluate the performance of the proposed approach using SwiftOWLIM [9] semantic store
for local inferencing computations and datasets generated by the Lehigh University
Benchmark (LUBM) [6].

2. APPROACH
A TBox  consists of a set of axioms and refers to a set of concepts  and a set of roles .
In this work, we support the forms of axioms as shown in Table 1. This corresponds to a
subset of OWL-Lite and a superset of RDFS [1]. For the purpose of materialization, we
translate TBox axioms to rules as shown in the table. Generation of implicit assertions
(materialization) happens by the repeated application of these rules to known facts as
follows: (1) From existing assertions, find a rule whose LHS is satisfied by a certain binding
of individuals. This is called firing the rule; (2) Add assertion corresponding to the RHS of
the rule; (3) Repeat until no new assertions can be added. During the process of
materialization, it may be possible to fire many rules simultaneously.

Our parallelization approach relies on partitioning axioms (rules) and ABox assertions. This
partitioning will allow processors to fire different axioms (rules) in parallel so as to improve
the materialization time. In our approach, we introduce Home, Helper, and Generated
concepts and assertions for an axiom. For the sake of brevity, we will describe these for
concepts - similar description holds for roles.

Table 1 lists the home, helper, and generated types of each axiom form supported in our
implementation. Each axiom has precisely one home concept/role, one helper concept/role
and one or more generated concept/roles. Note that an assertion may be a concept assertion
or a role assertion. An assertion associated with the home type of an axiom is a home
assertion with respect to that axiom. Similarly, an assertion may be a helper or a generated
assertion with respect to an axiom. Since there are multiple axioms in a TBox, a concept
may be the home concept for one axiom and a helper concept in another. Axioms are
grouped based on their home concepts. This is the first stage of partitioning axioms.

We define helper and generated concepts on concept C as the union of helper and generated
concepts from all axioms where C is the home concept. As a result, concepts C1 and C2 in a
TBox may be related in the following ways: (1) Concept C2 is a helper concept for concept
C1 if there exists an axiom where C1 is the home concept and C2 is the helper concept. (2)
Concept C2 is a generated concept for C1 if there exists an axiom where C1 is the home
concept and C2 is the generated concept.

Consider the example TBox in Table 2(a). The TBox consists of four axioms. Using Table
1, we can identify the home, helper and generated concepts/roles (types) for each axiom.
Axioms 2 and 4 have the same home type (R2). In axiom 2, R1 is the generated type and in
axiom 4, C3 is the generated type. We generate a TBox table which summarizes this
information for all concepts and roles. Table 2(b) shows the TBox table for the example
TBox. The TBox table describes potential interactions between assertions in a succinct
manner. The third line in Table 2(b), for instance, indicates that assertions of types C3 and
C4 in the context of some axiom (Axiom 3) may cause an inferred assertion (of type C2).

Our approach partitions the TBox table into n parts (here, n is the number of computation
nodes) using a heuristic strategy and assigns each partition to a node in the system – each

Narayanan et al. Page 2

Proc Symp Appl Comput. Author manuscript; available in PMC 2011 June 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



node is assigned a set of home concepts/roles. A compute node is responsible for
assimilating all assertions corresponding to these types. Table 2(c) shows one possible
partition of home concepts and roles. If two concepts occur in different partitions and one is
a helper type for the other in some row in the TBox table, inter-processor communication
may be necessary between the partitions. In the example, partition 2 (P2) may communicate
instances of type C4 to partition 1 (P1).

3. PARALLEL FRAMEWORK
The parallel ABox reasoning framework (shown in Figure 1) assumes a cluster system
consisting of a set of storage nodes and a set of computation nodes – a node may be both a
computation node and a storage node. It is assumed that the ABox containing explicit
assertions is initially spread across the set of storage nodes. Reader processes are
instantiated on these nodes which read the ABox files (in RDF format) and convert them to
in-memory data structures. The ontology partitioner component is responsible for creating
and partitioning the TBox table. Summary ABox information may be computed and utilized
by the ontology partitioner. We will present the partitioning strategy employed in this work
in Section 3.2. Once the partitions are computed, they are assigned to compute nodes. We
will refer to compute nodes and partitions interchangeably. Reader processes read the
subsets of the ABox and send them to relevant partitions. A partition inference task is
executed on each computation node. Partition inference tasks perform local materialization
using part of the TBox and ABox. Communication links are set up between partition
inference tasks to allow transfer of ABox assertions between tasks running on different
compute nodes. An end of computation signal denotes the full computation of the implicit
assertions from the explicit ABox, i.e., the computation of the materialization.

3.1 Partition Inference Task
The partition inference task is the core of our framework and is executed on each node. The
ABox assertions are partitioned on home types, and each partition is sent to the appropriate
node. An assertion of the form C1(i1) is sent to the node containing the TBox graph partition
with concept C1. Each node executes the partition inference task algorithm using the part of
the TBox and ABox assigned to it. The algorithm proceeds in phases. At the end of each
phase, new assertions are generated by each partition.

The algorithm keeps track of new home and helper assertions generated in the current phase
and old home and helper assertions from earlier phases. When a new assertion of type C1 is
generated, it is sent to the partition containing C1 during the exchange step. Each node is
aware of the other nodes’ requirement for helper assertions. If a partition has C1 as a helper
type, then the partition containing C1 is responsible for forwarding any new instances of C1
it sees in the previous phase.

During each phase, the old home and helper assertions and new home and helper assertions
are combined and local materialization is performed using the portion of the TBox assigned
to the node. To improve performance, the algorithm combines old helper assertions with
new home assertions, old home assertions with new helper assertions, and new home
assertions with new helper assertions. Local materialization may result in generated
assertions on each node. These generated assertions may be home assertions for other
partitions and must be shipped the corresponding nodes. Not all arriving assertions may be
new assertions. Thus, each partition performs a difference operation to eliminate assertions
that it has already seen in earlier phases.

The nodes communicate the number of assertions generated. If any partition has received
new home or helper assertions, a new phase of execution begins and the above steps are
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repeated. Eventually, at the end of a phase, no node will be able to generate new assertions,
and the algorithm will terminate.

The algorithm is guaranteed to terminate. In each phase, axioms are activated only if at least
one new home or helper assertion is detected. Thus, at the end of every non-final phase, the
total number of assertions increases monotonically. The total number of materialized
assertions is bounded by the number of concepts, roles and individuals and, therefore, is
finite. This ensures that the parallel materialization eventually terminates.

Different partitioning of the TBox table may produce assertions in different orders.
However, the algorithm will generate correct results for any partitioning scheme. The
performance of this partitioned approach depends on the quality of the partitions produced.
In each phase, different partitions may have different amount of work to do. Ideally, we
would like to achieve load balance in every phase while minimizing communication
between partitions. We discuss a partitioning strategy we employed in this work that keeps
these goals in mind.

3.2 TBox Partition Strategy
We employ a min-min approach to partition the TBox table. Algorithm 1 describes the
partitioning process. To aid in this process, summary information of the explicit ABox is
utilized. Specifically, the number of explicit instances of each type is counted and is
represented by the function Count.

The algorithm iterates over all combinations of types (concepts or roles) and partitions to
determine the best concept/role, partition – (c, p) – pair. To determine the best pair, the cost
of adding a concept to a partition is computed. If a type is assigned to a partition, the home
assertions of that type are stored in that partition. Helper assertions may have to be shipped
to this partition for the purpose of materialization. The algorithm chooses the pair (c, p) such
that after this assignment, Wp has the lowest weight. This approach has been taken to ensure
that not all types are assigned to a single node and load balance is achieved. The cost
computation depends on whether helper types are local or remote. This aims to co-locate
helpers with home types when possible.

The proposed min-min approach has its limitations. The explicit counts of types are
employed in cost computation. It is possible that a type A may have few explicit instances,
but numerous implicit instances. The number of implicit instances are not known a-priori. In
some applications, it may be possible to approximate the final counts of types in the TBox.
In such a scenario, it will be possible to employ the final counts to achieve better load
balance. The above approach also has a complexity of the order of O(|S|2.N) which can be a
problem when there are very high number of concepts and roles. In our experimental
scenarios, however, the cost of computing partitions was negligible.

3.3 Implementation
An important step in our parallelization is performing local inference in a phase involving a
fragment of the ABox and TBox. One of our design and implementation decisions was to
use existing single node semantic stores like SwiftOWLIM [9]. We employ these systems as
black-box reasoners and interact with them using adapters. There are advantages and
disadvantages to this approach. The key advantage is that we can reuse the optimizations
that these systems provide. The main disadvantage is that we do not access the internal data
structures of these systems directly and, therefore, need to manage the ABox outside of
these reasoners. This causes an overhead of translating ABox fragments to and from the
reasoner’s internal representation. It also increases our memory footprint. We plan to work
on these shortcomings in our future work.
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4. EXPERIMENTAL RESULTS
We performed an experimental evaluation of the proposed approach using a distributed
memory parallel machine which consists of a set of storage nodes and a set of compute
nodes. The two types of nodes are connected through an Infiniband Switch. Each compute
node has an dual AMD 250 Opteron processor running at 2.8GHz with 8 GB of main
memory. The storage nodes have the same CPU and memory configuration, but each storage
node is connected to a 3.5 TB SATA disk array in RAID 5 mode. Each storage node has a
sequential read bandwidth of about 295 MB/s. We implemented the framework using Data
Cutter [3], a component-based middleware framework that enables execution in a distributed
environment. We employed the Lehigh University Benchmark (LUBM) to generate datasets
for performance evaluation. The LUBM was developed to facilitate evaluation of semantic
queries and inference computations against large datasets [6]. It uses a University ontology.
Examples of concepts in this ontology are Publication, Person and Grad Student. Examples
of roles are publication Author and Advisor. This ontology employs anonymous concepts
and we rewrote some axioms and assign names to these types. This does not affect the
correctness of the results produced but makes the axioms amenable to our partitioning
techniques. There were 83 concepts and roles in the final TBox. To generate an ABox using
the dataset generation tool of the LUBM, the user specifies the number of universities. The
size of the ABox (i.e., the number of explicit assertions) grows linearly with the number of
universities. The 10-university dataset has about 1.3 million explicit assertions and the 450-
university dataset has approximately 58.5 million explicit assertions. In our experiments, we
used SwiftOWLIM v2.8.4 as the reasoning engine with options owl-horst, partialRDFS,
noPersist with the index size parameter set to 4 million for improved performance. The cost
of computing partitions using the min-min approach was not significant due to the small size
of the TBox and we do not include it in the results.

Figure 2 shows the end to end materialization time using a standalone SwiftOWLIM and the
parallel approach using 2,4 and 8 nodes. In the standalone scenario, we used SwiftOWLIM
as a library and created an inferencing repository and read the datasets from a local disk. In
the parallel scenario, we distributed the datasets over 5 storage nodes and employed
compute nodes to execute partition inference tasks.

The first thing to note is that the serial materialization time appears to grow quadratically.
The reason behind this is that many axioms require a join of instances from two types (see
Table 1). When the input sizes are doubled, the join operation increases by a factor of 4. The
ontology in question contains 8 axioms that involve a join operation. This cost of these joins
dominate for higher ABox sizes and this is the reason for a quadratic increase in the serial
materialization time. The partitioning strategy places these axioms in different partitions and
this reduces execution times linearly up to 8 nodes.

Figure 3 shows the speedup of materialization on up to 16 nodes. Performance of this
approach worsens if more than 8 nodes are employed. There are two reasons for this
observation. The first is that the performance of the parallel approach depends on the
number of independent, expensive axioms in the TBox. In this dataset, there are 8 such
axioms and therefore we see a benefit up to 8 nodes. The reason for worsening of
performance is that our partitioning strategy attempts to balance the load. In doing so, it
sacrifices co-location of home and helper types. This results in home and helper types of
expensive axioms to be assigned to different nodes and a lot of communication across nodes.
Furthermore, due to data dependencies, may nodes are idle in many phases of execution.
This is the cause of the drop in performance when more nodes are added.

Narayanan et al. Page 5

Proc Symp Appl Comput. Author manuscript; available in PMC 2011 June 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



An important cost involved with using a shared-nothing cluster is the cost of
communication. Communication costs involve latency and bandwidth. The order of data
exchanged in these experiments is of the order of hundreds of megabytes. In our cluster
configuration, the high-bandwidth interconnect allows transferring these data sizes in the
matter of a few seconds. The majority of the cost of communication comes from latency, i.e.
the cost of serializing and deserializing ABoxes. This cost is seen in the Exchange Home
Assertions and Exchange Helper Assertions calls in the partition inference task. To guage
the effect of latency in our setting, we compute the latency cost as the sum of maximum
serialization/deserialization time in any partition over all phases of execution.

As expected, latency increases linearly with dataset sizes (see Figure 4). Furthermore,
latency is lower when more nodes are employed. A shared-nothing architecture necessitates
serialization and deserialization of ABox structures and a latency cost is unavoidable. The
impact of latency on overall materialization time is lesser in larger datasets since
computation of materialization grows quadratically and dominates overall cost. Therefore,
the shared-nothing approach shows better speedup for large ABoxes.

5. RELATED WORK
While the well-defined semantics of OWL makes it machine-processable, the reasoning
process is a computationally expensive process; OWL-Lite has exponential complexity, for
example. Systems such as FaCT [8] and Racer [7] implement in-memory tableaux
algorithms that work well for realistic TBoxes and small ABoxes. In many applications, the
explicit ABox is much larger than the TBox in question. Tableaux systems tend to perform
poorly in these situations. Forward-chaining engines like SwiftOWLIM [9] and Jena [13] are
being increasingly used for ABox reasoning. These reasoners are sound and efficient
(compared to tableaux systems), but incomplete. Their reasoning capabilities are, however,
are sufficient for a variety of applications. Our approach employs such engines to perform
local materialization.

In contrast to our approach, some authors have proposed partitioning the ABox to perform
reasoning. Guo and Heflin [5] describe an approach to partition large OWL ABoxes with
respect to a TBox so that reasoning may be performed on each partition separately and
results trivially combined. They employ partitioning for a different reason. Their objective is
to utilize tableuax systems like RACER on larger ABoxes [7]. They employ a fine-grained
ABox partitioning strategy for this purpose. They use a serial algorithm to compute the
partitions which involves building an ABox connectivity graph. There are two issues which
make this approach unsuitable for our purpose. The first is that the serial algorithm is
expensive (it takes 21 min to partition 10 university dataset). The second is that the
partitions generated are overlapping. This leads to redundancy in the inference process. In
contrast, we employ a coarse-grained approach wherein we exploit parallelism in TBox
axioms. Amir and McIlraith [2] suggest a partition-based approach to logical reasoning.
They target reasoning on first-order logic theories using a forward message-passing
algorithm. They generate graphs capturing relationships between symbols and employ
vertex min-cut to partition a theory. We take a coarse-grained approach of partitioning the
TBox because of the large scale of ABoxes.

In this work, we translate axioms to rules to identify interacting types. Prolog [11] programs
are comprised of definite clauses and any question in prolog is a goal. In our work, we focus
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on materializing instances of all types as opposed to reaching a single goal. To this end, we
employ forward-chaining while prolog systems employ backward-chaining. Ueda [12]
describes Guarded Horn Clauses to describe a parallel logic programming language. The
goal of that work was to annotate prolog programs to achieve parallelism during backward-
chaining.

6. CONCLUSIONS
This paper has presented a framework and strategy for parallel computation of inferred
statements from a large ABox on a shared-nothing architecture. Our results show that the
proposed approach achieves good speedup on small number of processors using
SwiftOWLIM, a very fast rule-based reasoning system, for local computations. This
approach attempts to exploit axiom-level parallelism in the TBox. This approach will benefit
applications where the TBox contains many axioms with few dependencies. In a data-
integration scenario, it is likely that the resultant TBox will contain many such axioms
which may be processed using the approach in the paper. This approach to parallelization
will not benefit applications which use very small TBoxes. A limitation of our current
implementation is that it uses the existing reasoning engine as a black-box for local
inference computations. While this design allows us to plug-in other reasoning engines, it
introduces overheads. We plan to investigate mechanisms to alleviate these issues by a
tighter integration of reasoning engine with parallelization strategy and by schemes that will
partition work associated with a single concept/role across processors in a future work.
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Figure 1.
Parallel ABox reasoning framework.
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Figure 2.
Comparison of materialization times
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Figure 3.
Speedup on 2,4,8,10,16 nodes
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Figure 4.
Latency as a percentage of computation time
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Table 1

Supported axiom forms and corresponding forward-chaining rules with home, generated and helper concepts/
roles

Axiom Forward-chaining rule(s) Home Generated Helper

C1 ⊑ C2 C1 (i1) → C2 (i1) C1 C2 -

C1 ⊑ ∀ R1. C2 C1 (i1) ∧ R1 (i1, i2) → C2 (i2) C1 C2 R1

∃ R1. C2 ⊑ C1 C2 (i2) ∧ R1 (i1, i2) → C1 (i1) C2 C1 R1

C1 ⊑ C2 ⊓ C3 C1 (i1) → C2 (i1), C1 (i1) → C3 (i1) C1 C2, C3 -

C2 ⊓ C3 ⊑ C1 C2 (i1) ∧ C3 (i1) → C1 (i1) C2 C1 C3

⊤ ⊑ ∀ R1. C2 R1 (i1, i2) → C2 (i2) R1 C2 -

R1 (i1, i2) → C2 (i1) R1 C2 -

R1 ⊑ R2 R1 (i1, i2) → R2 (i1, i2) R1 R2 -

R1 (i1, i2) → R2 (i2, i1) R1 R2 -

R1 (i1, i2) ∧ R1 (i2, i3) → R1 (i1, i3) R1 R1 R1
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Table 2

(a) An example TBox. (b) TBox table for axioms and roles from the example TBox. (c) An example partition
of the TBox table.

Home Helper Generated

C1 ⊑ ∀ R1. C2 C1 R1 C2

R2 ⊑ R1 C2 - - P1: {C1, C2, C3}

C3 ⊓ C4 ⊑ C2 C3 C4 C2 P2: {C4, R1, R2}

C4 - -

⊤ ⊑ ∀ R2. C3 R1 - -

R2 - C3, R1
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Algorithm 1

Min-min Partition

Require: TBox T, Number of partitions N

Ensure: Partitions of TBox {P1, P2, …, PN}

 Pi = ∅ for i ∈ {1, 2, …, N}

 Wi = 0 for i ∈ {1, 2, …, N}

 S = Concepts(T) ∪ Roles(T)

 while S ≠ ∅ do

  c = NULL {Chosen type}

  p = 0 {Chosen partition}

  minCost = ∞

  for i ∈ S do

   for j ∈ {1, 2, …, N} do

    Cost = Wj + Count(i)

    for H ∈ Helper(i) do

     if H ∉ Pj then

      Cost+ = Count(H)

    if Cost ≤ minCost then

     c = i, p = j, minCost = Cost {Best pair so far}

  Pp = Pp ∪ {c}

  S = S − {c}

  Wp = minCost {Update partition weights}

Return
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