Message-Passing and Local Heuristics
as Decimation Strategies for Satisfiability

Lukas Kroc

Ashish Sabharwal

Bart Selman

Department of Computer Science, Cornell University Ithaca NY 14853-7501, U.S.A.
{kroc,sabhar,selmanj@cs.cornell.edu

ABSTRACT

Decimation is a simple process for solving constraint satis-
faction problems, by repeatedly fixing variable values and
simplifying without reconsidering earlier decisions. We in-
vestigate different decimation strategies, contrasting those
based on local, syntactic information from those based on
message passing, such as statistical physics based Survey
Propagation (SP) and the related and more well-known Be-
lief Propagation (BP). Our results reveal that once we re-
solve convergence issues, BP itself can solve fairly hard ran-
dom k-SAT formulas through decimation; the gap between
BP and SP narrows down quickly as k increases. We also
investigate observable differences between BP/SP and other
common CSP heuristics as decimation proceeds, exploring
the hardness of the decimated formulas and identifying a
somewhat unexpected feature of message passing heuristics,
namely, unlike other heuristics for satisfiability, they avoid
unit propagation as variables are fixed.
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1. INTRODUCTION

In 2002, Mézard, Parisi, and Zecchina (2002) introduced
the Survey Propagation (SP) method to solve hard Boolean
satisfiability (SAT) problem instances. The method is re-
markably effective, capable of solving certain million vari-
able instances that were far beyond the reach of previous
techniques. Even more importantly, SP, which can be viewed
as a form of belief propagation (BP), is the first successful
example of the use of a probabilistic reasoning technique to
solve a purely combinatorial search problem. SP is based on
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the so-called 1-RSB cavity method from statistical physics.
The method is still far from well-understood, but in recent
years, we are starting to see results that provide important
insights into its workings.

The SAT problem consists of a formula F' representing a
set of constraints over n Boolean variables, which must be
set so as to satisfy all constraints. The SP method solves
the problem using the “decimation” process, which assigns
a truth value to one variable (or a few variables) of F' and
simplifies F', obtaining a smaller formula on n — 1 variables.
SP repeatedly decimates the formula in this manner, until a
simplified instance is obtained that is easily solved by exist-
ing SAT solvers, such as Walksat (Selman et al., 1996). The
decimation process can fail in that it may assign a variable
the wrong value, inadvertently eliminating all remaining sat-
isfying assignments. The remarkable property of SP is that
it can take a million variable, hard random 3-SAT instance
and set 40%-50% of the variables, without making any “mis-
take.” The resulting (satisfiable) subformula is then easily
solved by Walksat. How does SP select a variable for dec-
imation? Intuitively speaking, it considers the space of all
satisfying assignments, and estimates the marginal probabil-
ity of each variable being TRUE (or FALSE). It then selects
the variable and the value assignment that has the highest
marginal probability, thus, in a sense, preserving the largest
number of satisfying assignments in the subproblem. As it
turns out, SP does not directly consider the space of satisfy-
ing assignments but rather the space of “covers,” which are
special combinatorial objects representing clusters of solu-
tions. It was shown by Braunstein and Zecchina (2004) and
Maneva et al. (2007) that the SP method can be viewed as
a form of belief propagation (BP) on a new constraint satis-
faction problem derived from the original SAT instance, in
which the objects of interest correspond to the covers of the
original SAT problem.

The introduction of SP with its remarkable effectiveness
has created the impression that to solve hard combinatorial
instances via decimation, SP is required and BP would have
little success. This was not explicitly stated in the literature
but has become a fairly common view. However, we show
that BP can be almost as effective as SP. In particular, we
show that for random k-SAT formulas over a wide range
of parameter settings, BP works just as well as SP when
performing decimation. For a preview of these results, see
Figure 2. (To remedy some of the convergence difficulties of
BP on loopy factor graphs, we use a damped version BP".)
This finding is good news in terms of the use of probabilistic
techniques for solving combinatorial problems. SP equations



need to be developed in a specialized manner for each indi-
vidual combinatorial problem. For example, different equa-
tions have been developed for k-SAT, graph coloring, and
vertex cover problems over a series of papers. At this point
there is no generic recipe for writing the SP equations for
arbitrary combinatorial problems, and one needs an under-
standing of the 1-RSB cavity method from statistical physics
to do this for each problem. The BP equations on the other
hand are quite generic and can be written down directly
from the factor graph representing the combinatorial prob-
lem in question. In practical terms, our first message is that
in further exploring probabilistic methods for solving combi-
natorial problems, BP holds a promise that is quite similar
to that of SP. In particular, in the development of hybrid
search methods, e.g., to boost SAT solvers, one should not
rule out BP methods before going to SP.

We also compare the decimation strategies of BP, BP",
and SP, with those found in more traditional approaches to-
wards SAT solving. A highly successful class of modern SAT
solvers is based on the so-called DPLL procedure (Davis and
Putnam, 1960, Davis et al., 1962). Such solvers perform es-
sentially a backtrack search through the space of all truth
assignments searching for a satisfying one. In the search,
heuristics are used to select which variable to set next and
to what value. Each branch of the backtrack search tree cor-
responds to a decimation strategy. Our experiments show
that the heuristics employed in modern SAT solvers can in
fact solve some random k-SAT instances through pure dec-
imation (no backtracking) but the process, as one might
expect, quickly fails on harder instances. We thus obtain a
strict order in terms of decimation strategies, from the least
effective one, which is a random variable setting, to local
heuristics used in modern SAT solvers, to BP, BP", and
finally, SP.

As noted above, the decimation process can fail because
one may inadvertently create an unsatisfiable subproblem.
Consider, for example, the Boolean constraint C' defined as
(z1 or =2 or x3). If the decimation heuristic assigns a value
to both 1 and z2, C'is either satisfied and disappears, or re-
duced to the “unit” clause x3. If another clause C’ similarly
creates the unit clause —x3, the subproblem becomes un-
satisfiable. This observation suggests that unit clauses may
play an important role in determining the success or failure
of a decimation strategy. Indeed, as we show, what dis-
tinguishes message passing based heuristics from standard
search heuristics on the hardest random 3-SAT instances is
that the former virtually avoid the creation of unit clauses.

Finally, we do see that despite its promising performance,
BP” doesn’t quite match SP’s performance on the hardest
set of random instances. We investigate this behavior in
terms of an indirect measure: the evolution of the hardness
of the resulting formula as decimation proceeds. Our results
reveal an interesting phenomenon, where both BP” and SP
start by gradually making the formula easier, but while SP
continues to do so, BP” soon makes the formula much harder
to solve than it originally was. Such studies have not been
performed earlier to our knowledge, and shed light into the
not-so-well understood differences between BP and SP for
solving CSPs.

2. BACKGROUND

We are concerned with the Boolean satisfiability problem
(SAT), which is well-known to be NP-complete and asks
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the following question: Given a formula F' over n Boolean
variables z1,...,z,, is there a TRUE/FALSE (equivalently,
1/0) assignment to each x; such that F' evaluates to TRUE?
Such an assignment is referred to as a satisfying assignment
for or solution of F. If no such truth assignment exists, F'
is called unsatisfiable.

We are interested in formulas in the Conjunctive Normal
Form (CNF), where F is specified as a conjunction (AND, A)
of clauses, each clause is a disjunction (OR, V) of literals, and
each literal is a variable x; or its negation —z;. An example
of a CNF formula is F' = (21 V 22 V —x3) A (m21 V 22) A
(mx2 V a3) A (x1 Va2 V x3). A clause containing k literals
is called a k-clause. 1-clauses are often referred to as unit
clauses. When every clause of a formula is a k-clause, we
have a k-CNF formula, and the corresponding satisfiability
problem is referred to as the k-SAT problem.

Our study is of random k-SAT formulas F', characterized
by an important parameter o defined as the ratio of the
number of clauses to the number of variables in F'. A random
k-SAT formula over n variables at ratio « is generated by
selecting an clauses uniformly at random from the set of
all clauses over the n variables. The resulting distribution
is often denoted by F(n,an). Random 3-SAT formulas, in
particular, have been studied extensively in both theory and
practice. They empirically exhibit a phase transition at the
ratio a. = 4.26 in the sense that nearly all formulas below
this threshold are found to be satisfiable, while those above
are found to be unsatisfiable. This phase transition also
coincides with a sharp peak in the computational complexity
of finding solutons using state-of-the-art methods around
this critical ratio. An interesting and well-researched area,
then, is to device techniques that push the limit of feasibility
of various solution methods as close to the phase transition
region as possible.

2.1 Solving SAT by Decimation

The computational hardness of SAT coupled with its nu-
merous applications have led to the development of dozens of
progressively faster SAT solvers, which essentially fall into
two categories: branch-and-backtrack search (i.e., DPLL-
based methods) and local search. Both of these work with
partial or sub-optimal candidate solutions, and attempt to
iteratively improve these candidate solutions until a satisfy-
ing assignment is found. A key aspect of both is the ability
to make possibly wrong decisions early on in the search and
later rectify the mistakes as the search progresses.

A conceptually much simpler method of finding a solution
to a (satisfiable) formula F is decimation: select a literal ¢
of F' according to some heuristic, set £ = TRUE, simplify F’
by removing all clauses containing ¢ and shrinking those con-
taining —¢, and repeat. Decimation is said to fail if one ends
up with a subformula F’ of F that contains an empty (and
thus unsatisfiable) clause. To be of any interest, the heuristic
used for decimation must, in particular, satisfy the property
that if there is a unit clause £ in F’, then the heuristic sug-
gests that ¢ (or some other unit literal) be set to TRUE. Since
there is no “repair” mechanism in decimation, its success as
a solution technique for SAT relies critically on the correct-
ness of every single variable setting made during the process
until a solution is found. As one might expect, decimation
does not work very well in solving many formulas of interest.
However, when one considers random 3-SAT formulas, the
picture is quite positive. Analysis of decimation with various



local heuristics has provided formal lower bounds on the sat-
isfiability threshold (e.g. Achlioptas et al., 2005, Hajiaghayi
and Sorkin, 2003, Kaporis et al., 2006). Further, decimation
with SP as the guiding heuristic (Mézard et al., 2002) has
turned out to not only work surprisingly well for 3-SAT, it
is the best method that we know of for this problem.

2.2 Belief Propagation & Survey Propagation

Belief propagation (BP) (Pearl, 1988) is an iterative algo-
rithm for computing marginal probabilities of the nodes of
a graphical model such as a Bayesian network. It works by
iteratively solving a set of mutually recursive equations on
variables that represent messages among the nodes of the
graphical model. In the context of SAT, one can think of a
CNF formula F' with n variables and m clauses as a factor
graph Gp with n variable nodes taking value in {0, 1} and
m factors. Each variable node of G corresponds naturally
to a variable of F. Each factor fc corresponds to a clause C
of F" and is connected to the variable nodes corresponding to
the variables appearing in C'. fc evaluates to 1 for a certain
valuation of the variable nodes iff C' evaluates to TRUE for
the corresponding truth assignment to the variables.

We are interested, for example, in computing Pr[z; = 1]
for our example formula F: this represents the marginal
probability of 1 being 1 when all solutions to F' are cho-
sen with equal probability. Equivalently, it is the fraction
of solutions of F' that have z1 = 1. We use the term mag-
netization to refer to the difference between the marginal
probabilities of a variable or literal being TRUE and it being
FALSE. We refer the reader to standard texts (e.g. Pearl,
1988) for details of the iterative equations used to compute
such marginal probabilities.

The BP iterations have been proved to converge and pro-
vide accurate answers essentially only when applied to prob-
lems with no circular dependencies, such as SAT instances
with no loops in the factor graph. Empirically, BP has been
shown to provide very good approximations even in some
domains which do not satisfy this condition (Murphy et al.,
1999). Unfortunately, the number of domains where this
is true is rather small, and BP fails on many problems of
interest as well as on hard random k-SAT instances. Mak-
ing progress in this direction is an open problem with active
interest (e.g., Hsu and Mcllraith, 2006, Pretti, 2005).

Survey propagation (SP) is a similar iterative method de-
signed specifically for solving hard SAT instances, and is in
fact the most successful method when dealing with random
k-SAT instances. While introduced initially from a very dif-
ferent perspective, namely the cavity method in statistical
physics (Mézard et al., 2002), it was later shown to be an
instance of BP applied to a modified problem (Braunstein
and Zecchina, 2004, Maneva et al., 2007). This modified
problem is that of finding “covers” of the formula rather
than satisfying assignments. The notion of covers (Maneva
et al., 2007) is based on generalized assignments to Boolean
variables, i.e., assignments in {0, 1, *}, and each such cover
is supposed to represent a whole set of assignments that
are close to each other in Hamming distance (loosely called
“clusters”). The iterative equations of SP thus compute
marginal probabilities of a variable being 0, 1, or * in the
covers of F'. Covers have many interesting properties; we
refer the reader to Maneva et al. (2007), Kroc et al. (2007)
for details.
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2.3 Convergent BP

As mentioned above, BP equations often do not converge
to a fixpoint for hard enough problem instances. Moreover,
problem instances that we study have tens or hundreds of
thousands of variables and clauses, which is several orders
of magnitude more than what off-the-shelf probabilistic in-
ference programs can handle. Even improvements of the
belief propagation technique that allow it to be used on a
wider set of problems, such as Generalized Belief Propaga-
tion (Yedidia et al., 2000) or Loop Corrected Belief Propa-
gation (Mooij et al., 2007), are not scalable enough for our
purposes. The problem of very slow convergence on hard
instances seems to plague also approaches based on other
methods for solving the BP equations than the simple iter-
ation scheme, such as the convex-concave procedure intro-
duced by Yuille (2002). Finally, in our context, the speed
requirement is accentuated by the need to use marginal es-
timation repeatedly during the decimation process.

We consider a parameterized variant of BP which is guar-
anteed to converge when this parameter is small enough,
and which imposes no additional computational cost over
the traditional BP'. As we will shortly see, this “damped”
variant of BP provides much more useful information than
BP iterations terminated without convergence, and, surpris-
ingly, performs very well as a decimation heuristic for ran-
dom k-SAT. We refer to this particular way of damping the
BP equations as BP", where x > 0 is a real parameter
that controls the extent of damping in the iterative equa-
tions. Knowing the exact details of the corresponding up-
date equations is not essential for understanding the rest of
this paper. The interested reader is referred to Figure 5 in
the Appendix for the update equations for SAT. The same
variant of BP was used earlier (Kroc et al., 2008) in a differ-
ent context; we include it here for completeness and provide
some further insights.

When k = 1, BP" is identical to regular belief propaga-
tion. On the other hand, when x = 0, the equations surely
coverge in one step to a unique fixed point and the marginal
estimates obtained from this fixed point have a clear prob-
abilistic interpretation in terms of a local property of the
variables (we defer formal details on this to the Appendix;
see Proposition 2 and the related discussion). The x param-
eter thus allows one to interpolate between regimes where
the equations correspond to the original BP providing global
information if the iterations converge (k = 1), and regime
where the iterations surely converge but provide only local
information (for k = 0).

The resulting marginals for k # 1 do not correspond to
the actual BP marginal estimates, but we believe that the
information obtained retains relevance to the true marginals.
This is shown in Figure 1, where the quality of the estimate
of solution marginals obtained by running standard BP and
cutting it off because of non-convergence (left pane) is com-
pared to the quality of marginals as obtained by BP" for
k = 0.9 (right pane), for a hard random 3-SAT formula with
5,000 variables and 21,000 clauses. The scatter-plots in
both cases contrast the computed marginals with marginals
obtained by sampling satisfying assignments for the formula
and computing empirical marginals. What is actually plot-
ted in Figure 1 is the magnetization for each variable, i.e.,

'Similar but distinct
by Pretti (2005).

parametrization was proposed
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Figure 1: Quality of solution marginals computed
by BP (left) and BP” (right).

the difference between the probability of a variable being
TRUEand the probability of it being FALSE. If the computed
marginals did correspond exactly to the sampled solution
marginals, the plot would be a diagonal line. The further
away from the diagonal the points lie, the less accurate the
estimate is. The figure shows that BP" is more accurate
in estimating the solution marginals than unconverged BP.
This is especially true in the extreme magnetization regions
at the top-right and bottom-left of the scatter-plots, which
is the region of interest when using these estimates as a dec-
imation heuristic. We refer the reader to Kroc et al. (2007)
for a similar comparison between BP and SP, where SP is
shown to also compute very good marginal estimates in the
extreme magnetization regions.

3. DECIMATION STRATEGIES

In this section, we consider various strategies that can
be used as a heuristic for the decimation process for solv-
ing SAT instances. All of these heuristics give the highest
priority to setting to TRUE any literal appearing in a wunit
clause; such a literal much be satisfied in any case in order
to obtain a solution. When no unit clauses are present, we
consider five alternatives:

1. Random: Choose a variable z uniformly at random
and set it to TRUE or FALSE uniformly at random. We note
that on random formulas, this is equivalent to the heuristic
employed by the state-of-the-art SAT solver Minisat (Eén
and Sorensson, 2005) before it encounters its first contradic-
tion.

2. DPLL: Follow the heuristic used by the DPLL-based
SAT solver zChaff (Moskewicz et al., 2001) before the first
backtrack. This heuristic prefers the variable that occurs the
most often, and sets it to TRUE or FALSE based on majority
occurrence. If positive and negative occurrences are equally
numerous, it goes for the polarity that creates the most unit
literals.

3. BP: Compute variable magnetizations using BP (re-
port failure if it does not converge). Set the variable with
the most extreme magnetization accordingly.

4. BP": Similar to BP, but with magnetizations obtained
from BP" (we used k = 0.9).

5. SP: Similar to BP, but with magnetizations obtained
from SP. In case SP finds the formula in a “paramagnetic”
state where it can provide no useful information (see Mézard
et al., 2002), the formula is easily solved by the local search
SAT solver Walksat.
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Figure 2: Various decimation heuristics on random
3-SAT, 4-SAT, and 5-SAT formulas

We evaluate these heuristics on random 3-SAT, 4-SAT,
and 5-SAT problems, parameterized by the clause-to-
variable ratio a. Recall that these instances become pro-
gressively harder as « increases; the computationally hard-
est instances are found near the a value of 4.26 for 3-SAT,
9.93 for 4-SAT, and 21.12 for 5-SAT (Mertens et al., 2006).
For each heuristic and each k = 3,4, 5, we measure the value
of a up to which decimation with this heuristic solves at
least 50% of the random formulas generated (we use formu-
las with 10,000 variables). Figure 2 gives a summary of the
results.

As one would expect, all five heuristics can solve these
formulas for small enough «, but start to break down as «
grows. The three propagation-based methods — BP, BP",
and SP — go much farther than the two local information
heuristics — random and zChaff. While the zChaff heuristic
solves 3-SAT instances for @ < 2.85, BP pushes this to 3.83
and SP as far as 4.23. A surprising finding is that k-damping
improves the performance of BP considerably, bringing it
half-way from BP to SP. As k grows, i.e., one goes from
3-SAT to 4-SAT and 5-SAT, the difference in performance
between propagation-based methods and local information
methods becomes even more extreme. In particular, the
random and zChaff heuristics stop working relatively much
earlier.

Among various propagation-based heuristics themselves,
BP interestingly appears to get closer to SP in performance
as k increases. BP” is able to push the limits of BP signif-



icantly further, for example, to a < 4.07 for 3-SAT. Never-
theless, in all cases, SP is able to solve instances harder than
the hardest instances solved by any other technique, such as
those at o = 4.2 for 3-SAT. This naturally raises the ques-
tion: what is it that SP is doing differently than these other
heuristics? In the next section we will focus on identifying
measures that distinguish SP from the other techniques, in
particular, from BP”.

4. OBSERVABLE DIFFERENCES IN DEC-
IMATION STRATEGIES

In this section we focus on identifying key differences be-
tween various heuristics as decimation progresses. Despite
the obvious difference that one strategy solves a given in-
stance while other does not, it is surprisingly difficult to
identify features of the decimation process that would clearly
distinguish between the strategies. For example, simple
measures like the ratio of 2-clauses to 3-clauses in the dec-
imated formula, or the frequency of positive vs. negative
occurrences of variables, do not show a significant differ-
ence, especially amongst various message passing heuristics.
We identify two measures that do show a clear difference,
namely, how many unit clauses the heuristic generates and
how hard-to-solve does the decimated formula become.

4.1 BP and SP Avoid Creating Unit Clauses

Quite surprisingly, our experiments reveal that a key dif-
ference between decimation based on message passing heuris-
tics (both SP and BP) and other heuristics considered is
that message passing heuristics avoid the creation of unit
clauses. Since unit clauses allow for simplification of the for-
mula, DPLL solvers and decimation strategies perform unit
propagation, that is setting literals in unit clauses to true,
possibly creating new unit clauses, until all unit clauses are
resolved. This chaining effect may lead to a contradiction,
and while this is fine for a DPLL solver with a possibility
of backtracking, the increased chance of contradiction may
be fatal for decimation strategies. Minimizing the number
of unit clauses is thus a desirable property of decimation
strategies. Figure 3 shows the cumulative number of unit
clauses generated as decimation progresses, for a random 3-
SAT formula with 10,000 variables at ratio o = 4.2. The
decimation performed by randomly setting variables is not
careful about avoiding unit clauses, and indeed after set-
ting 10% of the variables the decimation is dominated by
unit propagation, which can be seen by observing that the
slope of the “Random” curve in the plot is one. That there
is actually a contradiction (i.e., the decimated formula has
already become unsatisfiable) is detected only after nearly
50% of the variables have been set, marked by the cross in
the figure where the “Random” curve ends. The situation is
similar for the DPLL heuristic, zChaff, but the contradiction
is detected much sooner. BP inspired decimation results in
a significantly lower number of unit clauses (BP" was used
for k = 0.9 because standard BP does not converge for such
a), at least till roughly 40% of the variables have been set,
which is the point where SP usually hands the formula over
to Walksat. Of course, when enough variables are fixed, it
becomes nearly impossible to avoid unit propagation using
any heuristic, and BP" shows this trend after 40% of the
variables are set. Finally, SP inspired decimation results in
virtually no unit propagation. There were only three unit
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clauses created, and this number diminishes for larger for-
mulas. Note that the ordering of the curves from left to
right corresponds to the order in Figure 2, confirming that
avoiding unit propagation is desirable when solving formulas
by decimation (in contrast to solving by search with back-
tracking).

=1 -
2 X
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§ || --- BP*
& — SP /
Y
;
;
g | /
S ;
5 /

Number of unit clauses
1000

0
|
\

0.0 0.2 04 0.6

Fraction of variables set

0.8

Figure 3: Cumulative number of unit clauses gener-
ated during decimation

Creating no unit clauses means that no trivial contradic-
tion (i.e., two unit clauses requiring a variable to be set op-
posing ways) is derived. But how do BP" and SP manage to
avoid unit propagation for such a long time during decima-
tion? The following proposition studies this question in the
ideal case, and shows that if the message passing method
was able to compute marginals exactly, unit propagation
would be naturally avoided. Since BP/SP inspired decima-
tion always fixes variables with the highest magnetization,
Proposition 1 suggests that unit clauses are highly likely to
be avoided. Of course, marginals computed by BP and SP
on complex problems are not exact, but as remarked in Sec-
tion 2.3, both BP” and SP do a very good job of estimating
the extreme marginals.

Proposition 1. Let p be the exact solution marginals of
a formula F. That is, for each variable z, p(x = 0) =
Plo(z) = 0| o is a solution], where o is some variable val-
uation with a uniform prior, and analogously for u(z = 1).
If the mazimum marginal for 0 or 1 is unique, i.e., the most
magnetized literal is unique, then setting this literal to TRUE
will not create any unit clauses.

PROOF. Recall that magnetization of a literal is the dif-
ference between its marginal probabilities of being TRUE
and FALSE. Let x be the unique most magnetized literal
of F. For contradiction, assume that setting x = 1 cre-
ates a unit clause (y). This means that there must have
been a binary clause (—x V y) in F. Now any solution
o of F' must, by definition, have the property that every
clause has at least one satisfying literal under valuation o.
In particular, because of our binary clause, it must be the
case that o(x) 1 = o(y) = 1. But this means that
ma =1) < ply = 1) and p(y = 0) < p(z = 0), and
thus u(ly = 1) — p(y = 0) > p(z = 1) — p(z = 0). This
is a contradiction with x being the unique most magnetized
literal. [

An analogous proposition can be stated for any Constrain
Satisfaction Problem, not only SAT. In particular, it fol-
lows by a similar analysis that decimation by exact cover



marginals tries to avoid creation of unit clauses. This, cou-
pled with the observation in Kroc et al. (2007) that SP is
remarkably accurate in computing the cover marginals, ex-
plains why SP creates so few unit clauses.

4.2 Evolution of Problem Hardness

So far we have seen that quite clearly, decimation based
on probabilistic reasoning is better than decimation based
on standard DPLL heuristics in the domain of random SAT
instances. Furthermore, compared to BP”, SP inspired dec-
imation is able to solve formulas much closer to the phase
transition threshold, where the problem hardness quickly in-
creases with a. We now focus on what happens during the
decimation process on these hard formulas, digging deeper
into the difference between BP" and SP.

In order to understand the gradual effect of decimation as
more and more variables are set, we study the evolution of
the problem hardness in terms of how difficult it is to solve
the decimated formula using Walksat, a local search SAT
solver suitable for random SAT instances. The hardness is
measured as the average number of variable-flips required
by Walksat to solve the decimated formula generated by SP
or BP", with k = 0.9. (Standard BP equations did not
converge, and the other heuristics quickly made the prob-
lem much harder.) Figure 4 summarizes the general trend
through the results on a 5000 variable 3-SAT formula at
a = 4.2. The plot shows the hardness measure on the y-
axis, and the fraction of variables set on the x-axis. The
solid lines correspond to decimation by BP" and SP only,
while the dashed lines correspond to first setting 20% of the
variables using one strategy, and then continuing with the
other strategy.
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—A- BP*after SP

i

—-6- SP after BP*
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Hardness (# flips)
4e+07
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Figure 4: Hardness of subformulas created by BP"
and SP

We see that the decimated formulas generated by BP™ and
SP behave quite differently with respect to their computa-
tional hardness. Initially, both SP and BP” keep making the
formula easier to solve, in this case till approximately 12% of
the variables have been set. After this point, SP continues to
make the formula easier to solve, while BP" starts increas-
ing the hardness, which eventually surpasses the hardness of
the original formula. Finally, the dashed lines show that this
behavior is quite robust: running BP” on an SP-decimated
formula quickly makes the formula much harder, while run-
ning SP on a BP”-decimated formula reduces the hardness,
and eventually solves the formula.

As seen in the figure, BP" starts going “wrong” when
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approximately 12% of the variables are set. At that point,
it would be helpful to be able to identify variables in the
formula that SP sets, making the formula yet easier. It
turns out that the proper variables are indistinguishable by
several measures commonly used in local heuristics, such
as the number of positive and negative occurrences in 2-
and 3-clauses. This suggests that local heuristics, looking
no deeper than these easy-to-obtain statistics, are unlikely
to follow SP’s path in making the formula easier by further
decimation. On the other hand, the SP- and BP"-decimated
formulas do eventually get more and more different in terms
of their computational hardness. At this point it is unclear
exactly why this happens.

S. CONCLUSION

SP was introduced by statistical physicists as a fairly com-
plex technique for solving random k-SAT instances very ef-
ficiently, and was later understood as essentially a form of
BP, albeit on somewhat more complex combinatorial ob-
jects than solutions. This raised a natural question: can
the original BP framework, more well-known to computer
scientists, itself provide a good solution technique for hard
random k-SAT instances? Our experimental results provide
an affirmative answer to this question. Simply terminat-
ing the iterative equations of BP when they don’t converge
and using the current values as estimates of true marginals
already pushes the limit of decimation much further than
local information based heuristics commonly employed in
backtrack search SAT solvers. By using a parameterized
convergent form of BP, the limit is pushed even further. The
gap between BP and SP narrows as k increases, and heuris-
tics based on message-passing in general begin to perform
substantially better than other heuristics.
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APPENDIX

Convergent BP: The iterative update equations for the
convergent form of belief propagation, BP", are given in
Figure 5. The only difference from the normal BP equations
is the exponent  in the updates for the II messages.

The role of the parameter k is to damp oscillations of the
message values by pushing the variable-to-clause messages,
I1, closer to 1. Intuitively speaking, the damping is realized
by the function y = z" for k < 1. For inputs z that are
positive and less than one, the function increases their value,
or sets them to 1 in the case of kK = 0. As a result, after
normalization, the II values are less extreme. For k = 0, we
can obtain a probabilistic interpretation of the algorithm
reminiscent of a local heuristic for SAT solving:

Proposition 2. The system of BP" equations for k =0
converges in one iteration for any starting point, and the
following holds for the resulting values p; (see Figure 5 for
notation):

pi(1) o J] (1_2—<\V<b>\—1>>

beC'— (i)

pi(0) o H

beCt(3)

(1 _ 2—<\V(b>\—1>)

PROOF. For any initial starting point 7 (with values in
[0,1]), the first iteration sets all II* = 1 and II° = 1. This
means 7q—; = (%)'V(a)l_1 for all clauses a containing vari-
able i. This is the fixed point n*, because applying the up-
dates again yields the same values. The rest follows directly
from the form of the u; equations in Figure 5. []
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Notation used in the figure: V'(a) is the set of all vari-
ables in clause a. For a variable i appearing in clause
a, C3 (1) is the set of all clauses in which i appears with
the opposite sign than it does in a. Cj (i) is the set of
all clauses in which i appears with the same sign as it
does in a except for a (thus Cy (i), C;(¢) and {a} are
disjoint and their union is the set of all clauses where ¢
appears). O (i) is the set of all clauses in which i ap-
pears unnegated. C' (7) is the set of all clauses in which
i appears negated.

Messages from clauses to variables:
1 [
H_”;‘*)a + H;*’a

JeV(a)\i
Messages from variables to clauses:

Na—i

K

m, = T a=m-s
beCE (4)
beCu (1)

Computing marginals from a fixed point n* of the mes-
sage equations:

pi() o [T -nisd)
beC— (4)

pi0) o I a—nis)
beCt(3)

1i(1) is the probability that variable 4 is positive in a ran-
dom satisfying assignment, and p;(0) is the probability
that it is negative.

Figure 5:
equations.

Modified belief propagation update

The intuitive interpretation of the values of u; in Propo-
sition 2 is the following: assuming independence of variable
occurrences in clauses, the value 2= (V®I=1 can be inter-
preted as the probability that clause b € C(i) is unsatisfied
by a random truth assignment if variable ¢ is not consid-
ered. p;(1) is thus the probability that all clauses b in which
variable ¢ appears negated are satisfied, and analogously for
13(0). Since clauses not considered in the expressions for pu;
are satisfied by i itself, the resulting values of u; are propor-
tional to the probability of all clauses where ¢ appears being
satisfied with the particular setting of variable i, when all
other variables are set randomly. This is very local informa-
tion, and depends only on what clauses the variable appears
in negatively or positively. The parameter x can thus be
used to tune the tradeoff between the ability of the itera-
tive system to converge and the locality of the information
obtained from the resulting fixed point.
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