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ABSTRACT 
Graph drawing and visualization represent structural information 
as diagrams of abstract graphs and networks. An important subset 
of graphs is directed acyclic graphs (DAGs).  E-Spring algorithm, 
extended from the popular spring embedder model, eliminates 
node overlaps in clustered DAGs by modeling nodes as charged 
particles whose repulsion is controlled by edges modeled as 
springs. The drawing process needs to reach a stable state when 
the average distances of separation between nodes are near 
optimal. This paper presents an enhancement to E-Spring to 
introduce a stopping condition, which reduces equilibrium 
distances between nodes and therefore results in a significantly 
reduced area for DAG visualization.  It imposes an upper bound 
on the repulsive forces between nodes based on graph geometry. 
The algorithm employs node interleaving to eliminate any residual 
node overlaps. These new techniques have been validated by 
visualizing eBay buyer-seller relationships and resulted in overall 
area reductions in the range of 45% to 79%.       

Categories and Subject Descriptors 
E.1 [Data]: Data Structures – Graphs and networks. 
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: User 
Interfaces – Graphical user interfaces (GUI). 

General Terms 
Algorithms, visualization, graph drawing 

Keywords 
Node interleaving, directed acyclic graphs, overlapping nodes 

1. INTRODUCTION 
Graph drawing and visualization is an area of extensive research 
in recent years.  Applications of graph visualization include 
genealogy, cartography, sociology, software engineering, VLSI 
design, and visual analysis.  Cluttered drawings of graphs 
generally produce undesirable visualizations.  Various criteria for 
determining the graph quality have been proposed [1][2][3].  A 
graph drawing is sometimes measured by how well it meets the 

following aesthetic criteria [4][13][[14]: 

• Minimization of edge crossings 
• Minimization of area: Visual space is often at a premium 

and reducing the overall area of the bounding box of the 
graph is often desirable. The shape of the graph can also 
be important, so that it has a certain aspect ratio, hence 
fitting well on a page or screen. 

• Maximization of symmetry 
• Minimization of total edge length, uniform edge length: 

minimization of the sum of the length of the edges should 
cause a reduction of the area of the graph.  

• Aspect ratio close to a specified value 
• Node Separation: Nodes should be sufficiently far apart 

from their nearest neighbor to be easily distinguished and 
to avoid occlusion. 

•  Readability:  Labels must have legible sizes. 
•  Avoidance of Overlap: Labels should not overlap with 

other labels or other graphical features. 
 Various algorithms [2][3] have been proposed for removing 
node overlaps in graphs.  Being most widely used, Spring 
algorithms [12] are a class of algorithms for drawing graphs in an 
aesthetically pleasing way by positioning the nodes of a graph in 
two or three dimensional space so that all the edges are of more or 
less equal length, and there are as few crossing edges as possible.  
They assign forces as if the edges were springs following Hooke's 
law, the forces are applied to the nodes, pulling them closer 
together or pushing them further apart.   This is repeated 
iteratively until the drawing process comes to an equilibrium state.  
This process is typically animated so that the viewer’s mental map 
is preserved [25]. At equilibrium, node overlap is gradually 
reduced [4][5][6]. Spring algorithms are regarded as effective 
tools for visualizing undirected graphs.  One major feature of 
applying spring algorithms is to display symmetric properties of 
graphs [7].  The combined method of constructing a globally nice 
layout using the Kamada-Kawai [8] method and local 
beautification using the modified (or generalized) spring method 
has been proposed for non-uniform nodes.   
 Directed acyclic graphs (DAGs) have been used to visualize 
various eBusiness and other applications [10][11]. E-Spring 
algorithm [9] uses animation for drawing clustered DAGs without 
node overlap to preserve the user’s mental map [25]. The 
animation needs to reach a stable state when the average distances 
of separation between nodes are near optimal. This paper 
introduces a stopping condition to E-Spring that significantly 
reduces equilibrium distances between nodes for the clustered 
DAG visualization.  The main contribution of this paper is a novel 
method to eliminate node overlaps that achieves minimization of 
bounded area of DAGs.  Further optimization is achieved using 
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node interleaving to remove residual node overlaps.  The resultant 
graphs obtained satisfy various aesthetic criteria like overall 
symmetry and readability. Experimental analysis and visualization 
of this method for eBay buyer-seller relationships [15] are 
reported, and show overall DAG area reductions in the range of 
45% to 79%. The rest of this paper is organized as follows.  
Section 2 describes related work.  Section 3 presents the E-Spring 
algorithm, stop condition, and further optimization.  Section 4 
provides details of our implementation and experimental results.  
Finally, a conclusion is given in Section 5. 

2. RELATED WORK 
We review related work on removing node overlap, determining 
stopping condition, reduction of area, and reducing graph visual 
complexity. The family of spring algorithms includes  force scan 
(FS) [25], force transfer (FT) [6], dynamic natural length spring 
(DNLS) and orthogonal dynamic natural length spring (ODNLS) 
[4] which modify attractive and/or repulsive spring forces 
between nodes to achieve node overlap removal. DNLS is 
designed for visualization of static graph drawings while ODNLS 
is for dynamic graph drawing. This method produces favorable 
results over the force scan (FS) method.   
 A fast algorithm (FADE) for two dimensional drawing, 
geometric clustering and multilevel viewing of large undirected 
graphs is presented in [5].  The decomposition tree provides a 
systematic way to determine the degree of closeness between 
nodes without explicitly calculating the distance between each 
node.  Various heuristics to minimize the area overhead for delay-
driven clustering of combinational circuits under I/O, and area 
constraints are presented in [17]. Clustering which aims at 
minimal path delay is performed, and several set covering 
heuristics are proposed to minimize the number of clusters while 
satisfying the constraints and preserve the timing. A hierarchical 
clustering method has also been proposed in this paper to explore 
global area-delay tradeoff.   
 Caliph & Emir [19] is a pair of applications that is used for 
the annotation and search of digital photos focusing on semantic 
descriptions, and a new stop condition lets the algorithm itself 
decide how many iterations have to be taken to gain a force 
equilibrium. The attracting node in the centre results in a more 
circular layout for non-connected graphs.  In VLSI wire routing, it 
is often desirable to maximize the distance between different 
wires. Maximizing the distance between wires is equivalent to 
finding the drawing in which the edges are drawn as thick as 
possible, i.e., allowing the graph to grow as fat as possible.  The 
two types of stopping conditions for fat graphs are collision of 
two vertices and collision of two elbows [20].  
 An approach for practical graph layout, layout adjustment for 
removing overlapping in images and node-edge intersections, and 
boundary detection for ensuring that a diagram fits in a viewing 
area is presented in [16]. The solution proposed is to adjust a 
diagram by removing overlapping nodes and node-edge 
intersections; if the adjusted diagram exceeds the viewing area, 
some sub-diagrams become invisible. Density functions, derived 
visualization, navigation, and clustering techniques are used in 
exploring large graphs in [18]. In the automatic case, the stop 
condition for the subdivision can be expressed in terms of the 
density function, and the stop condition halts the process when 
the density dependent size of the cluster becomes small.   

 The clustered graph model is used to reduce data complexity, 
while a navigation model is proposed to solve the visual 
complexity. To assist the navigation model, the semantic fisheye 
view of a clustered graph is proposed as a logic abstraction 
strategy, and a layout algorithm is introduced for generating 
visualization of clustered graph in dynamic environments [21].  
Generalized fisheye views are described in [22].  These views 
provide a balance of local detail and global context by trading off 
a priori importance against distance.   
 Some two dimensional plane drawing algorithms for 
clustered graphs; extending two dimensional plane drawings to 
three dimensional multilevel drawings by considering convex 
drawings and orthogonal rectangular drawings are presented in 
[23]. Survey on graph visualization and navigation techniques, as 
used in information visualization is presented in [24]. The ability 
to visualize and navigate potentially large, abstract graphs is often 
a crucial part of an application, and this survey approaches the 
results of traditional graph drawing from a different perspective. 

3. E-SPRING ALGORITHM 
In this section, we briefly review the forces involved in E-Spring 
algorithm, then describe techniques for removing node overlaps. 

3.1 Idea of Forces 
 E-Spring algorithm [9] was proposed to eliminate node 
overlaps in clustered DAGs. The attractive forces on the springs, 
and the repulsive forces between the positive charges act together 
to generate a drawing free of node overlaps, when the system 
reaches a state of equilibrium.  However, the nodes at equilibrium 
are apart at unnecessarily large distances, leading to inefficient 
utilization of screen space for the overall graph.  The following 
subsection introduces a stop condition that stops the animated 
drawing when the distances between nodes are enough to 
eliminate node overlaps. This results in a significantly reduced 
area for the clustered DAG visualization at equilibrium.   

3.2 Introducing a Stop Condition 
 Consider a directed acyclic graph GD(V, E) with a set of 
nodes V = {1,2,…,|V|}, and the set of edges E ⊆  V x V.  We aim 
to minimize separation between nodes in any cluster C = 
{1,2,…,|C|), as well as DAG inter-cluster distance to achieve 
bounded expansion of directed acyclic graphs.  A stop condition 
is introduced that utilizes graph geometry to determine upper 
bound on graph expansion during animated drawing. Graph 
expansion automatically stops when the condition is met.  The 
condition is derived from minimizing the sum of edge lengths 
within a DAG cluster, and the DAG inter-cluster distance, while 
providing sufficient nearest neighbor distance of separation, to 
prevent overlap. Following definitions and theorems establish 
mathematical basis for the stop condition. 

Definition 1:  Consider a directed acyclic graph GD(V, E) with a 
set of nodes V = {1,2,…,|V|}, and the set of edges E ⊆  V x V.  
Each source node is a parent node and belongs to the set of parent 
nodes PN ⊂  V, a node having no children is a leaf node 
belonging to the set n N ∈ {C N} where C N ⊂  V is the set of all 
child nodes.  A parent node together with all its direct child leaf 
nodes forms a cluster.   



Theorem 1: In a DAG drawn using the E-Spring algorithm, all 
child leaf nodes belonging to a cluster are equally distant from the 
parent node. 

Proof: When E-Spring algorithm is applied, the equilibrium 
distance between a parent Pi (i = 1…k) and child leaf nodes nj (j = 
1…m) is reached when attractive forces ‘Fs’  on the springs 
balance the repulsive forces ‘Fc’  between the positive charges.  
Since all children have same charge ‘q’, the edge length ‘l’ 
between Pi and each nj within a DAG cluster is equal. 

Theorem 2: In a DAG drawn using the E-Spring algorithm, all 
child leaf nodes belonging to a cluster subtend equal angles with 
the parent node. 

Proof: Since all child leaf nodes nj (j = 1…m) have the same 
charge ‘q’ in a cluster, they repel each other equally, and therefore 
are separated from each other by equal distance. By Theorem 1 
since they are equally far apart from their parent Pi (i = 1…k), all 
child leaf nodes nj (j = 1…m)  in a cluster will lie along the 
circumference of the circle with circle radius ‘Cr’  equal to edge 
length ‘l’ .  Therefore all child leaf nodes will subtend equal angles 
‘θ’ with the parent node. 

Definition 2: The minimum distance of separation ‘d’ between 
two neighboring child leaf nodes ni and nj, is the minimum 
horizontal distance between nodes i and j required to prevent 
them from overlapping.   

Theorem 3: In a DAG drawn using the E-Spring algorithm, the 
minimum distance of separation between neighbor child leaf 
nodes is 2lsin(180º/N). 

Proof: Consider ‘N’ number of child leaf nodes in a cluster which 
are not points (n1, n2, nN), and have uniform string label length as 
shown in Figure 1a. 
By Theorem 2, separation angle  θ = 360 º/N  
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Theorem 4:  In a DAG drawn using the E-Spring algorithm, the 
average edge length within a cluster with uniformly labeled nodes 
to achieve minimum separation distance between adjacent child 
leaf nodes is given by (nw + δ / 2sin(180°/N)). 

Proof: To remove node overlap, the minimum neighboring 
distance between two child leaf nodes as  determined  by Theorem   
3,  2l sin(180°/N) > node width nw + δ, where δ = tolerance.

 ∴Average edge length (le) within a cluster to achieve minimum 
separation distance is given by 

 (nw + δ / 2sin(180°/N))                    (2)
 
 

We now determine the condition for minimizing the distance of 
DAG inter-cluster node separation.  Consider two DAG clusters 
of a directed acyclic graph as shown in Figure 1b.  The parent 
node location for Cluster1 is given by co-ordinates (x1, y1), while 
the parent node location for Cluster2 is given by (x2, y2).  The 
minimum inter-cluster separation between the parent nodes in two 
neighboring DAG clusters is then given by: 
 Dinter-cluster  >  lcl1  +  lcl2 + δ        (3) 

where lcl1 = average edge length of children leaf nodes of Cluster 
1, lcl2 = average edge length  of  children leaf nodes of Cluster 2, 
Dinter-cluster = 2 2

1 2 1 2(| |) (| |)x x y y− + − , and δ = tolerance.  
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           a)             b) 
Figure 1. Edge length (a) and DAG inter-cluster distance (b). 

Formulas 2 and 3 determine the stop condition for the DAG 
expansion, which achieves node overlap removal with a minimum 
distance of separation between child nodes in individual clusters, 
and DAG inter-cluster parent nodes thereby reducing the overall 
area.    

3.3 Node Interleaving 
In an individual DAG cluster with finite lengths of string labels 
that are usually horizontal, graph orientation necessitates 
consideration of node heights instead of node widths in the top 
and bottom regions. If the nodes are vertically labeled, the 
approach can be easily adapted.  Node interleaving is performed 
in these regions to completely eliminate node overlap. The node 
space of each DAG cluster is divided into four quadrants Q1, Q2, 
Q3, and Q4 as depicted in Figure 2.  
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Figure 2. Partitioning of node space - quadrants and sectors. 
The top sector (st) contains child leaf nodes within a 90 degree 
zone in quadrants Q1 and Q2.  Similarly, the bottom sector (sb) 
contains child leaf nodes within a 90 degree zone in quadrants Q3 
and Q4.  The remaining nodes that do not belong to either of these 
sectors are considered as non-sector nodes (ns) and defined by: 

 Nns = Ntot – (Nst + Nsb)      (4) 

where Nns = total number of non sector nodes in the DAG cluster, 
Ntot =  total number of child leaf nodes in the DAG cluster, Nst = 
total number of top sector nodes in the cluster, Nsb =  total number 
of bottom sector nodes in the cluster. In order to achieve node 
interleaving for sectors st and sb, we divide each sector into odd 
and even numbered child leaf nodes. Additional tolerances for 
odd and even child leaf nodes in the top and bottom sectors in a 
DAG cluster result in non-uniform edge lengths and removes 
overlap. We consider node heights (nh) instead of node widths 
(nw) for calculating edge lengths in Formula 2. 



Hence average edge length (le) of individual DAG clusters for 
achieving minimum distance of  node separation is given by: 

le=

w h hn  + n + n + 
* * *
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where, nw = node width, δ = overall edge length tolerance, nh = 
node height, Nns= total number of non sector child leaf nodes, δse= 
additional tolerance for even nodes in top, bottom sectors, Nse= 
total number of child leaf even nodes in top, bottom sectors, δso= 
additional tolerance for even nodes in top, bottom sectors, Nso= 
total number of child leaf odd nodes in top, bottom sectors.  So 
far, we have considered DAGs where child leaf nodes in a cluster 
have uniform label length.  For DAG clusters where child leaf 
nodes have non-uniform string label length, the average edge 
length employing node interleaving is given by: 

 le=

wa,ns ha,se ha,son  + n  + n  + 
* * *
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where averages nwa,ns= average node width of non-sector child leaf 
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follows Formula 5. Formulas 3 and 5 determine the stop condition 
for DAG expansion employing node interleaving for graphs with 
uniform label length nodes, while Formulas 3 and 6 determine the 
stop condition for graphs with non-uniform label length nodes. 

4. EXPERIMENTAL RESULTS 
We have implemented the node interleaving enhancements for E-
Spring algorithm presented in Section 3 for directed acyclic 
graphs.  The results are presented in this section, with comparison 
of the results with and without node interleaving, for eBay data 
and graph drawing benchmark data.  For the clarity of presenting 
the experimental results, we use terminology ESpring_stop for 
stop condition in Section 3.1, and ESpring_interleave for 
optimization in Section 3.2.  In this implementation, DAG GD = 
(V,E)  has the following parameters: 

• Number of DAG clusters 1 ≤  |C| ≤  10 
• Total number of nodes in DAG 1 ≤  |N|  ≤  160 
• Number of child leaf nodes in DAG cluster 1 ≤ nj ≤  25 

The input data for this implementation is eBay buyer/seller 
relationships obtained from eBay [15], where user-name string 
length ‘S’ is chosen from one of the following three cases:  i) S = 
3  ii) S = 10, and iii) S = non-uniform (3 ≤  S ≤  10).  Figure 3a 

shows the screenshot for S = 30 oval child leaf nodes, Figure 3b 
represents rectangular child leaf nodes for S = 10, and Figure 3c 
depicts screenshot for oval child leaf nodes with S = non-uniform 
label length (3 ≤  S ≤  10).  As an added validation, we 
benchmarked GraphML data file “g_100_10.xml” which 
contained the maximum number of nodes N = 100, downloaded 
for a random DAG from the graph drawing Web site [26], and 
label string length 10 ≤  S ≤  15.  This DAG does not follow our 
standard cluster partition into parent and child leaf nodes, 
however it was interesting to observe that an improvement of 48% 
in overall area was obtained in this scenario, though a few 
overlaps occur, as compared to output obtained from Prefuse 
visualization toolkit [27].  Figure 4a is a screenshot for E-Spring 
with the stop condition and Figure 4b for Prefuse. Figures 5a, b 
depict resultant graphs obtained after applying stop condition 
(ESpring_stop) and node interleaving (ESpring_interleave) for |C| 
= 10, S = 3 respectively.  Figures 6a, b show the resultant graphs 
obtained after applying stop condition and node interleaving for 
|C| = 10, S = 10 respectively.   
 The plotted curves for overall areas of the bounding box are 
shown in Figure 7a, and % improvements in Figure 7b.   Figures 
7a and 7b indicate that the percentage improvement of overall 
graph areas varies between 45% and 79% for ESpring_stop and 
ESpring_interleave as compared to E-Spring.  For DAGs with 
smaller number of clusters (|C| = 1, 2, 3) and smaller label lengths 
(S = 3), the variation in the area improvements is small as 
compared to larger number of clusters (|C| = 10) and larger label 
lengths (S = 10) in both cases.  This proves the usefulness of our 
approach in effectively visualizing graphs with long and non-
uniform node labels.  We also observe the improved aesthetic 
properties like node overlap removal, readability and overall 
graph symmetry in the resultant graphs obtained after applying 
node interleaving.  This is true for graphs with nodes of uniform 
string label length (S = 3, 10, 20, 30), non-uniform (1 ≤  S ≤  10) 
string label lengths, varying node shapes (oval, rectangular) and 
varying numbers of clusters ( 1 ≤  |C| ≤  10).   

    

        a)            b)           c)  
Figure 3.  Graphs for |C| = 1, S = 30 (a), rectangular (b), non-

uniform (c)  nodes. 
 

   

a) b) 
Figure 4.  Benchmarking ESpring_Stop (a) interleave (b).



      
 a)                       b) 

                 Figure 5.  ESpring_stop (a) and ESpring_interleave (b): S = 3,  |C| = 10. 
 

    

      a)                 b)
 Figure 6.  ESpring_stop (a) and ESpring_interleave (b): S = 10,  |C| = 10. 
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 a)            b) 
Figure 7. Plots for Area sizes (a), Area improvements (b). 

 

5. CONCLUSION 
Visual space is often at a premium and thus reducing the overall 
area of the bounding box of a graph is desirable.  E-Spring 
algorithm was proposed to draw clustered directed acyclic 
graphs  (DAGs), and uses physical properties of electric charges 
and spring constants to remove overlaps between node labels.  
To stop the animated drawing of graphs, we propose a stop 
condition that significantly reduces the overall graph area while 

at the same time eliminates overlaps. It imposes an upper bound 
on the graph expansion based on the average edge length of 
individual clusters and inter-cluster distances.  The reduction of 
average edge lengths within individual clusters and inter cluster 
distances aid in the minimization of overall graph area and 
removal of node overlap.  Automatic detection of stopping 
condition bounds the expansion of graphs.  Further optimization 
is achieved using node interleaving that performs node 
interleaving in some sectors of individual clusters to remove 
residual overlap present in these regions.  Implementation on 
DAGs of varying sized clusters with nodes of uniform label 
length, non-uniform label length, oval and rectangular shapes as 
well as benchmarking data with random DAGs was performed; 
and our experimental visualization results are promising.  The 
overall graph area reduction achieved using enhancements to E-
Spring algorithm varies between 45% to 79%, depending on the 
string length and number of clusters.  Future work includes 
application of this modified algorithm for more graph 
topologies, scaling to large DAGs, and application graphs such 
as class diagrams in UML. 
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