Aspect-Oriented Procedural Content Engineering
for Game Design

Walter Cazzola

DICo, Universita di Milano,
ltaly
cazzola@dico.unimi.it

Diego Colombo

Microsoft Ireland Research,
Ireland, and
IMT Lucca, Italy

Duncan Harrison

Realtime Worlds, Uk
duncan.harrison@realtimeworlds.com

colombod@di.unipi.it

ABSTRACT

Generally progressive procedural content in the context of 3D scene
rendering is expressed as recursive functions where a finer level
of detail gets computed on demand. Typical examples of content
procedurally generated are fractal images and noise textures. Un-
fortunately, not always the content can be expressed in this way,
developers and content creators need the data to have some pecu-
liarity (like windows on a wall for a house 3D model) and a method
to drive data simplification without losing relevant details.

In this paper we discuss how aspect oriented (AO) techniques
can be used to drive the content creation process by mapping each
data peculiarity to the code to generate it. Using aspects will let
us to partially evaluate the code of the procedure improving the
performance without losing the flow of the generation logic. We
will also discuss how the use of AO can provide techniques to build
simplified version of the data through code transformations.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Techniques—
Object-oriented programming; D.3.3 [Programming Languages]:
Language Constructs and Features

General Terms

Aspect-Oriented Programming

Keywords
AO Techniques, Data Engineering, Meta-Data

1. INTRODUCTION

In a game application most of the content is composed of 3D
models and other geometric objects used to populate the screen.
In a disc based scenario the game data is usually compiled into a
very concise binary format, this approach when applied to consoles
means that we can have a single continuous block of data on the
storage. Such a data representation affords the ability to load a large
sequential chunk of bytes from the storage medium and have all of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’09 March 8-12, 2009, Honolulu, Hawaii, U.S.A.

Copyright 2009 ACM 978-1-60558-166-8/09/03 ...$5.00.

1438

the information ready to be used by the application code [4]. Mak-
ing a concise representation of the data is crucial for this scenario
so that the application can start presenting coarse representations of
content while waiting for the fine grain data to load and be prepared
for presentation (different level of detail in different moments).

To use this method coarser representations of the game content
are built providing a faster start up and affording memory usage
optimization at run-time. Offsetting this is the cost of extra space
on the storage to save simplified data along with the high quality
content, and a smart lookup strategy. Bandwidth is a factor that is
quite important when a next generation game is loading live from a
DVD. Smart caching techniques can be used to address this prob-
lem but are applicable only on specific hardware, another way to
reduce bandwidth is to generate the data on-the-fly and to store/-
transmit only the function and the inputs to produce them. Instead
of storing a cube in an explicit manner, usually model data is stored
as a set of faces and vertices, we store the geometric primitive as
a position and set of parameters that can be used to generate the
unique instance. This provides a potentially significant saving over
the amount of storage space required for the explicit alternative.
Computational cycles are far less expensive than content delivery
bandwidth, a procedural generation from a very concise represen-
tation can lead to a drastic requirement relaxation for streaming
based applications. Procedural generation of content (and we will
refer to this technique as procedural content generation) is a set of
input values and the code to build the destination data. Given G the
set of generator functions the procedural content is defined as:

U {g(s)| Vs € Domain(g)}
geG

in a specific point the procedural content is represented by the cou-
ple (g,s) where g € G and s € Domain(g).

In our case, the chosen family of generators must output data
displayable on screen. So the co-domain of the generators is the set
of the, so called, renderable mesh) defined as:

RM = {(m,g) : m is a graphics material, g is the geometry}
and the generator, called inflator, is represented by
inflator; : Domain(inflator;) — RM

Designing and engineering procedural content is quite important
because the amount of data can increase (especially from a seman-
tic perspective) whilst keeping the occupied space constant or at
least bounded. A lot of digital content authoring tools (we will re-
fer them as DCC) store user files in a way that the content affords
easy manipulation instead of an optimised raw data set. Quite of-
ten data are kept as extensive as possible in the content production
pipeline and get finalised once built for the final application. This

=

(a) polyline segment

1}

(b) profile to be extruded (c) extruded polygon

g
| g

(d) cylindrical pole

—

(e) lamppost (f) wall section g) full wall

Figure 1: From a polyline to the final picture.

finalisation process usually entails the generation of coarser granu-
larity levels of detail and the computation of final layout on storage.
This can be thought of as storing data as a program with an input set
until ready for the final build where the target product will use the
program’s output with the given input set. Most of the strategies for
content simplification deal with the final content and not with the
content generation procedure where the static output is needed to
obtain coarser version of the data. Changing the perspective from
data to program can lead to a different paradigm for content engi-
neering, more related to the data synthesis than to the data repre-
sentation itself. The video game Crackdown! from Realtime
Worlds? uses procedural built cities and road, this means that, on
the disc, data are represented by the code to generate the content
and the input data for the procedure and the rendering step.

Let us consider a wall generator that takes as input a polyline,
defining the way the wall geometry should be generated from the
path we can specify it by listing peculiarities of the final object
we want to obtain. So we say that the body is the extrusion of a
path along the wall direction, poles are distributed along the wall
at every point and lampposts are laid out along the wall on the top
surface every 10 meters. Any peculiarity of the final mesh can be
represented as aspect in the aspect-oriented paradigm and therefore
we can obtain the geometry builder for that style of wall by using a
polyline as input and just weaving the right collection of aspects.

The aim of this article is to propose the usage of modern mod-
ularization techniques like AOP [6] to design and simplify content
acting on the behavioural aspect of the procedure instead of the
output obtained from it; AO techniques with run-time weaving can
reduce the storage and bandwidth requirements for data and take
advantage of hardware acceleration where available. The use of
procedurally generated content has a measurable impact on sys-
tem memory requirements: the meshes rendered on the screen are
stored in the video memory loading a mesh from disc will locate it
in the system memory, then the hardware friendly version of each
vertex is built and sent to the video memory for rendering. When
a physics engine is involved there is usually an additional mesh
optimized for physic simulations. Building the mesh procedurally
means that there is no need for the original copy to be totally loaded
in the system memory, graphics and physics data can be built at run-
time reducing the pressure on the memory management system.

2. COARSER LEVEL OF DETAILS

Building coarser data representations is mandatory for game de-
sign, coarse data are required to hide fine data loading time whilst
maintaining a level of visual coherency and to bound memory us-
age. In this section some of the most common techniques are illus-
trated. Let LODg be the highest detailed representation of a data

ICrackdown at http://crackdownoncrime. com.
2Realtime Worlds at http://www. realtimeworlds. com.

1439

and LOD, the reduced representation at stage n. We can state that:
{LOD;}, y C RM
and from the set of generator functions we will have:
LODGen; : RM — RM

where the subscript identifies which LOD will be generated.

Data reduction. With a static data representation it is possible
to build less complex representations of the original data, minimiz-
ing the impact due to the loss of quality. On a 3D dataset it is
quite common to use polygon reduction (decimation [8]) removing
details deemed irrelevant given the context (distance from the cam-
era, lighting condition). Occasionally polygon reduction is inte-
grated with redetailing strategies [3] to hide the loss of information.
‘When reduction occurs an error is introduced, since candidates are
selected for removal to minimise the error, common criteria include
removing faces beneath a surface area, edges shorter than a given
length, etc. Combining more criteria is generally a good strategy to
preserve the relevant characteristic of a 3D dataset.

Progressive meshes. When content is produced by a proce-
dure a distinction is made between continuous and discrete LODs.
Progressive meshes [5] are an example of continuous LOD. A pro-
gressive mesh (pmesh) is built from a mesh and the output is a data
structure that can change level of detail based on a parameter. If the
input mesh is altered the pmesh must be rebuilt. Some techniques
must be applied to preserve the coherence of the coarser versions
of the pmesh but their description is out of the scope of this paper.

Grammar based content. As shown in [7] a grammar can be
used to express geometries. The main concept is to provide prim-
itive geometric figures like cubes, boxes, and cylinders which are
applied based upon grammatical rules to a symbolic string repre-
sentation. Every terminal symbol in the grammar is mapped to a
polygon, so we can have A symbol to be associated with a rounded
window and B to a squared one; so (ABA)+ will be expanded to
a sequence with at least one pattern of rounded-squared-rounded
windows. By applying this approach to our example we will have
the following productions for the wall generation:

Wall (WallSegment)+
WallSegment (Pole WallBody (WallSegment)* Pole)+
WallBody Rectangle Lamppost

To get automatic LOD generation some extra work is needed. To
preserve the grammar based approach instead of applying the data
reduction approach we need to build another grammar where the
tokens will produce simplified version of each model peculiarity
and a rewriting rule to transform the original to the new grammar.

Data reduction approaches require fully generated content as in-
put to a simplification process. This requirement is counter intu-
itive as at run-time the coarse data are intended to hide the cost of
generating high detail data. The pmesh approach is based on data
preprocessing: the high quality mesh is compiled into a dataset (the

http://crackdownoncrime.com
http://www.realtimeworlds.com

public class ProceduralWall : ProceduralContent {

// the polyline describing the wall
public List<Point3Df> PolyLine { get; set; }

// The profile
public List<P,

to be extruded
0int3Df> Profile {get; set;}

=

// Constructor

public ProceduralWall() {
PolyLine = new List<Point3Df>();
/7 Load the data for the Polyline

// Load the data for the Profile
Profile = new List<Point3Df>();

public override RenderableMesh Inflate() {
BuildMesh(Polyline, out m_RenderableMesh);
return base.Inflate();

}

public void Build(IEnumerable<Point3Df> _path,
ref RenderableMesh _rm) {

/1 Code for extruding the profile along the path

o>

// Original Code
return;
¥
¥

3.1 Building Mesh Builders

Let us consider our wall generator example, we can define the
base class ProceduralContent as:

public class ProceduralContent {

// the data structure for the rendering process
protected RenderableMesh m_RenderableMesh;

/* the Renderable data structure is initliased
before the Inflate method get invoked */
public virtual void CreateRenderableMesh() {
m_RenderableMesh = null;

}

// the RenderableMesh is built and returned
public virtual RenderableMesh Inflate() {
return m_RenderableMesh;
}
H

Listing 1: ProceduralWall through a 2-stages weaving

pmesh) which is efficiently reducible. Any alteration of the orig-
inal mesh necessitates pmesh regeneration, this approach is there-
fore not a good choice for highly mutable scenarios such as games.
Grammar based systems introduce additional overheads which are
undesirable in context, simplification takes place through a rewrit-
ing system that replaces productions in the grammar and implies a
continuous data computation.

3. DATA ENGINEERING WITH AOP

Aspect-oriented [6] techniques applied to the procedural content
generation helps in overcoming the abovementioned issues. Our
examples are developed by applying the AspectWerkz aspect-
oriented approach [9] to C#: aspects are purely C# classes with
XML driven fragment weaving. In our AO approach the aspects are
dynamically assembled and woven to compose the generator. This
permits us to choose the code to weave after some dynamic criteria
(performance, available bandwidth, ...). The DCC tool is used to
generate a description of the aspect. The application (the game in
our scenario) will use such a description and some ancillary code to
assemble the aspects; then it proceeds to the weaving step. Placing
the focus on the code perspective for procedural content we can
express a procedural LOD generator as:

ProcLODGen; : INFL — INFL

where INFL = {inflator | inflator : RM — RM} and the subscript
identifies the LOD returned by the selected inflator.

Using the ProcLODGen; function rather than the LODGen; per-
mits the creation of LOD as a simplified version of the aspect. This
is computed by the application without the need to compute inter-
mediary simplified versions of the original data and without mul-
tiple aspect definitions. To simplify the aspect description a set of
rules will be provided to the aspect generator.

The m_RenderableMesh value, our procedural content, is not com-
puted by this class but demanded to the inflate() method of the
ProceduralWall class (Listing 1 neglecting the code in the arrowed
boxes). As previously described the content generator for the ren-
derable mesh depends on the desired LOD and cannot be hard-
coded in the class because this would imply that the function would
require code to support any possible LOD thereby hampering the
possibility of augmentation or reduction of the LOD.

A group of aspects take care of the different LODs and the cor-
responding mesh content. In respect to this, we can have an exten-
sible library of geometry generators that can be used to build the
aspects introducing the necessary code to generate the procedural
content. The class for the extrusion needed to model the example
is defined as follows:

/* perform the extrusion of a Profile along a
path; the profile is advised as well x/
public class ProfileExtrusion {

// The profile to be extruded
public List<Point3Df> Profile { get; set; }

/* Extrude the profile along the given path; the

renderable mesh is modified in place x/
public void Extrude(IEnumerable<Point3Df> _path,
ref RenderableMesh _rm) {

/* For each segment in _path appends the Pro-
file extrusion along the segment to _rm x/

The class must build the 3D wall in Fig. 1(c) as an extrusion of
the 2D profile in Fig. 1(b). The body of the method Extrude()
must be woven into the ProceduralWall type before the execution
of the method Build() to correctly generate the target media. The
weaver must also build the bindings to the open variables in the
code extruded from the method Extrude () and set-up the geometry
of the ProfileExtrusion.Profile field.

Pointcuts cannot be defined along with the ProfileExtrusion
because the aspects themselves are not defined yet, shown classes
are part of the framework but the aspects and the pointcut will be
defined later by the DCC. The weaving process will take place
when the request for content is raised. Even if the weaving process
is just a (customized) intermediate code rewriting, we will refer to
the rewriting system as a weaver.

The weaving process must be multi-stage, modelling the intrin-
sically incremental nature of the procedural content. For example,
to put a pole 10cm higher than the wall at every point of the poly-
line we must know the wall height, information available only after
a partial evaluation of the procedural content. Considering our sce-
nario, in the first stage, we introduce into the Proceduralwall class
the necessary code to describe the profile to be extruded (Listing 1,
injection fragment set 1). In the second stage, we add the code
to initialize the Profile property of the class by further extending
the constructor (Listing 1, injection fragment set 2). For sake of
clarity, Listing 1 shows the C# code we should get if the weaving
process will be done on the source rather than on the intermediate
code. As you can see, the procedural content is generated as the re-
sult of the incremental weaving of new algorithms to those already
contributing to the computation; the new algorithms can use par-
tially evaluated data and adapt consequently. Moreover, each stage
contributes to the preparation of the next increment by building the
pointcut expressions, based on the previously computed content,
used to locate the code to add and where to add it.

Referring to figure 1(f) the decorating elements of the wall such
as poles and lampposts are realised by different classes. Behaving
as decorators dictates that their position is dependent on the Poly-
Line property of the ProceduralWall class and on the previously
computed wall size. To apply decorations to the wall it is neces-
sary to inject their initialisation code after the code of the original
constructor and solve the dependencies to weave correctly. In our
example the lamppost and light attachments require knowledge of
the segment centre point and the location of the walls upper surface
respectively. These variables must be computed in the preceding
stage and forwarded through fragment dependencies.

The advantage of our AO approach when applied to engineer-
ing procedural content is that elements such as ProceduralWall
and ProfileExtrusion are defined in the application framework
while the pointcuts will be produced by the content creators in
DCC:s allowing emission of bytecode in place of plain data struc-
tures. DCCs will not perform weaving because it can be done on
the client affording a higher degree of flexibility, we expect editors
to build the sequence of stages the content will be transformed by
and the pointcuts for each stage.

The XML in Listing 2 is the output of the DCC elaboration and
it will be used on the client to carry out the weaving process by
using each <Stage> node to define pointcuts and advices. The
ExtrudeMethod() node is a child of the <Source> node, all the
children of this node are marked for the code extrusion; the <Pa-
rameterMapping> element provides bindings to the open variables.
In this example once the code for the Extrude() has been ex-
truded from the ProfileExtrusion class we will change every ref-
erence to the arguments with the arguments of the target method
(BuildMesh() in the ProceduralWall class).

3.2 Mapping Aspects on Annotations

The code to manage the XML in Listing 2 would bloat even for
such a small example. It has to describe how to build the poles at
every point p of the polyline defining the path of the wall. Similarly,
it must expand the code to the necessary level to make a cylinder
at p with given dimensions and so on for any decorating element.
In the XML code, we direct the weaver to inject the code through
around/before execution statements; to speed-up the generator exe-
cution the code should be inlined.

Extrude-Inject-Evaluate is the strategy used to generate the fi-
nal ProceduraWall class, reducing the number of calls to external
methods and boosting performance. To this end multi-resolutions
joint points are necessary, i.e., they must be able to address a method

<Node type="ProceduralWall">
<Stage>
<Introduction mode="Property" modifier="public">
<Property name="Profile" type="List<Point3Df>"/>
</Introduction>
<Before>
<Execution methodName="BuildMesh">
<Source>
<ExtrudeMethod method="ProfileExtrusion.Extrude"
<ParameterMapping name="_path" scope="args">
<Var name="_path" scope="args"/>
</ParameterMapping>
<ParameterMapping name="_rm" scope="args">
<Var name="_rm" scope="args"/>
</ParameterMapping>
</ExtrudeMethod>
</Source>
</Execution>
</Before>
</Stage>
<Stage>
<Around original="before">
<Execution methodName=".ctor">
<ExtrudeMethod method="DatalLoader.LoadProfile">
<ParameterMapping name="_profile" scope="args">
<Var name="Profile" scope="members"/>
</ParameterMapping>
</ExtrudeMethod>
</Execution>
</Around>
</Stage>
</Node>

Listing 2: Data from the DCC

call, the body of a method and onwards down to a single instruction.
In our proposal, we adopt [a]C# [1], whose annotation model per-
mits us to annotate declarations and statements as well, to annotate
the portion of code that represents a join point for code weaving.
The particularity of our join point model (quite similar to that of
AspectJ 5+ and AspectWerkz*) consists of explicitly marking
the join point of interest through annotations.

In Sect. 3.1, we stated that we need to use the woven code at stage
n to build the pointcuts for stage n+ 1, this will not allow code in-
lining since we cannot create the new pointcuts dynamically. Anno-
tations can help us in achieving both code inlining and pointcut dy-
namic generation because we can keep track of the woven/inlined
code through the annotation scope associated to the code fragment.
A code fragment can be denoted by an annotation [1] and refer to
the annotation itself, the annotated bytecode and its closure, the
annotation scope. Let us consider the following Proceduralwall
constructor with an empty fragment.

public ProceduralWall(){
[LoadData(Target = Polyline)] {}
)

LoadData is the fragment type and the Target property of the anno-
tation is set to the Polyline property of the Proceduralwall class.
Additionally in our approach enclosing methods and the type are
part of the annotation scope. The full annotation hierarchy in the
example is:

ClassScope(ProceduralWall)C ConsScopeC
LoadData(Target = "this.Polyline")

3www.eclipse.org/aspectj/
4aspectwerkz.codehaus.org

www.eclipse.org/aspectj/
aspectwerkz.codehaus.org

where the «Elem»Scope(X) represents the annotation scope for an
annotation decorating the corresponding «Elem»® named X. These
annotations are implicitly derived from the types themselves, they
are not explicitly visible in the code. Note that code fragments can
be both nested and in sequence [1].

A small set of operations are defined on the annotation scopes.
They permit us to: retrieve the code fragment, inject a code frag-
ment before or after the start or the end of the annotation scope,
extrude a fragment and its closure and to delete the code fragment.

Code fragments are used as source for both the aspect genera-
tion and joint point in the weaving process. The LoadData frag-
ment is empty as the polyline is normally serialised along with
the class instance but it can be refined during the execution. For
example, the code (CollapsePolylineSegments(List<Point3Df>
path) method) to collapse together the segments shorter than a
given length can be added to the LoadData fragment as a new an-
notation scope.

[CollapsePolylineSegments]{...}

This method directly acts on the path argument in place and
inlines the CollapsePolylineSegments fragment in the LoadData
fragment then binding the path argument to the Polyline property.
The binding will replace the Ldarg_1 with the IL to get the property
Polyline. The final annotation skeleton we obtain is:

[ClassScope(ProceduralWall) 1{
[ConsScope()1{
[LoadData(Target = "this.Polyline")] {
[CollapsePolylineSegments] {...}
}
}
}

Annotations can also be used to describe fields and properties to
accomplish with introductions. Moreover, it is possible to delete
operations marked by annotations; this is a feature unsupported by
most of the AO tools. Being able to delete an annotation and its
closure is a key operation for performance boosting. Care must
be taken however to only remove members and variables unique to
the fragment, that is those which are not in any other fragment’s
closure. .NET has a rule for method inlining® that is based on the
method size; thus reducing the method size by removing all the
“undesired” code will increase the chance to get the method call
inlined by the JIT. An additional benefit resultant from stripping
out unused code is reduction in memory footprint.
Now we can express the aspect definition as:

public class GeneratedAspect {
public GeneratedAspect(){
Inject(
InsertionPoint.AfterEnd,
Retrieve("ClassScope(Procedurallwall)
.ConsScope.LoadData"),
Retrieve("CollapsePolylineSegments"),
bindingExprList);
}
}

Back to the example, from the XML in Listing 2 we got the aspect:

public class GeneratedAspect {
public GeneratedAspect(){
Inject(InsertionPoint.AfterStart,
Retrieve("ClassScope(Proceduralwall)"),

SClass, Method and Constructor can instantiate «<Elems.
6http://blogs.msdn.com/clrcodegeneration/

Retrieve("ProfileExtrusion.Profile"), null);
Inject(InsertionPoint.BeforeEnd,
Retrieve(
"ClassScope(ProcedurallWall) .ConsScope"),
Retrieve("ClassScope(DatalLoader)
.MethodScope(LoadProfile)"),
bindingExprList_1);
Inject(InsertionPoint.AfterStart,
Retrieve("ClassScope(ProcedurallWall)
.MethodScope (BuildMesh)"),
Retrieve("ClassScope(ProfileExtrusion)
.MethodScope (Extrude)"),
bindingExprList_2);
}
}

1442

The binding expression used to bind the fragment with the context
can involve the use of constants, partial evaluation of the fragment
and the bindings can reduce the code of the fragment (i.e., condi-
tions with constant values) leading to better performance and work-
Ing sets.

3.3 Pointcuts and Code Simplification

The dot separated path used in the previous examples to retrieve
the annotations is not enough flexible to express the pointcuts nec-
essary to perform simplification. Pointcuts must be expressed as
annotation sub-paths of the available hierarchy; this can be bor-
ing, error-prone and not possible when the hierarchy is unknown
(e.g., if dynamically generated as in our case). Often also the an-
notation positions and order in the hierarchy are unknown so wild-
cards are necessary to express patterns like every X occurring in Y
neglecting where they occur in the graph of annotations. To this
respect, we adopt the "." symbol to represent nesting between an-
notation scopes and "|" for siblings. "->" and "x" to represent
an unknown path to an annotation scope and multiple annotation
scopes identified by common sub-strings respectively. The " [«an-
notation »]=" is used to represent a sequence of arbitrary length
for a given annotation. Considering the annotation hierarchy in the
previous example admissible patterns are:

ClassScope(*).*Scope.Load* ClassScope(ProcedureWall).->
ClassScope(ProcedureWall).->.LoadData
ClassScope(ProcedureWall).->.[LoadData]*

Each of these matches the same path on our example. Note that the
"->" operator follows the blueprint loose arrow semantics closely [2].

With a description authored by DCC tools we can weave the as-
pects into Proceduralwall allowing computation of the final high
quality mesh. Because we still need coarser LODs we can use sim-
plified version of the procedure instead of reducing the final mesh.
Reduction means that the full code for the object generation must
be executed followed by the decimation process as described in
Sect. 2. In our approach we would simplify BuildMesh () method’s
behaviour to obtain a more efficient representation using specific
rules. In this case we can replace the lamppost by two cuboids re-
sulting in a more desirable reduction than that achievable through
automated processing. Similarly the pole can be replaced by a
cuboid and the profile extrusion replaced by a rectangle. To facili-
tate this we apply rules to select a pattern of annotation and replace
it with another. Selecting the

ClassScope(ProceduralWall).
MethodScope(BuildMesh) . ->.Extrude

fragment and replacing it with

ClassScope(Rectangle3D) .ConsScope

http://blogs.msdn.com/clrcodegeneration/

Procedural | 3D Mesh
Vertex 2 52
Normal 0 43
UV Coordinates 0 52
Tangents 0 52
Pole Radius 1 0
Data Size in byte 29 2180

Table 1: Data Comparison

fragment will delete the Extrude()’s closure and inject the code
to build a plane on a segment of the wall (the binding must be
provided to set the wall height and the parameters for the rectan-
gle construction). In the same way rules for replacing pole and
the lamppost generation will be used to simplify the BuildMesh ()
method. Rules are able to target sequences as well as unique ele-
ments, using this we can further reduce the wall by targeting

ClassScope(ProceduralWall).
MethodScope (BuildMesh).->. (Pole| [Extrusion]x*|Pole)

and substituting it by just
ClassScope(Rectangle3D).ConsScope

The Substitution operator is realised through the Inject() and
Delete() operators on patterns discovered by the Search() opera-
tor. After retrieval this new fragment is injected before the begin-
ning (BeforeBegin) of the original fragment which is consequently
removed. Deletion is the last step to ensure that only the really
unused variables are eliminated along with the fragment. Simpli-
fication of the resultant generator occurs before content creation,
in this way simplified code is immediately ready to be used and a
simpler version of the renderable mesh can be used whilst waiting
for the fine version.

4. DISCUSSION AND CONCLUSIONS

The proposed aspect-oriented approach to procedural content de-
sign separates the content description from its generation, deferring
the code generation until the instantiation of the target media by the
application. At this time optimised code is built for LODs preserv-
ing the peculiarity of the content being generated. Our focus on
the algorithmic regard of procedural content is able to exploit fea-
tures present in source data that may be lost after generation of the
final media. Using our technique the performance of the content
generation can be boosted through inspection, taking advantage of
every facility the host can provide such as injecting an hardware ac-
celerated implementation over a software alternative. Approaches
focused upon final content are not able to dynamically produce
other versions of the target media whilst maintaining relevant fea-
tures without inclusion of additional information and implementa-
tion detail. In contrast our approach requires only the source data
to generate multiple LODs using a single source whilst maintaining
features as specified by the media author. Simplification of code in-
stead of data achieves the goal of faster loading of LODs at smaller
sizes than the original data representation.

In our scenario there is no need for the data to be fully generated
in order to build the LODs, we generate coarse representations us-
ing the simplified code directly. The code simplification rules are
specific to annotation patterns and thus we can adopt ad-hoc strate-
gies instead of general heuristic based reductions. This substitution
uses the same set of fragments as the high quality aspect genera-
tion, there is no need for external sets of annotations to perform the

1443

rewrite process as can be required with grammar based approaches.
Run-time grammar changes can be hard to manage, especially in
cases where there is need to transform productions into terminals
or vice versa. Our approach entirely avoids these complications.

Table 1 compares the data size of a block of the wall made by
one section and two poles. The procedural approach requires 2180
bytes of mesh data to be created only in the video memory with
the overhead of 29 bytes in system memory compared to the non
procedural approach which requires 2180 bytes to be allocated in
both system and video memory. Using a hardware accelerated ap-
proach to geometry generation, as the one provided by the Geom-
etry Shader program in DirectX107, allows us to take this further
and stream the procedural data itself to the video card in preference
of the full mesh thereby reducing memory costs further achieving a
total streamed data size of 29 bytes. The non procedural mesh can
of course be reduced by removing run-time calculable data such as
normals, tangents and uv coordinates however this will incur in re-
calculation costs and will require a secondary data set for topologi-
cal information concerning the geometry. The procedural approach
by its generative nature implicitly describes the topology removing
the need for computation of this extra data.

5. REFERENCES

[1] W. Cazzola, A. Cisternino, and D. Colombo. Freely Annotating
C#. Journal of Object Technology, 4(10):31-48, Dec. 2005.
W. Cazzola and S. Pini. On the Footprints of Join Points: The
Blueprint Approach. Journal of Object Technology, 6(7):167—
192, Aug. 2007.

P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and
M. Tarini. Preserving Attribute Values on Simplified Meshes
by Resampling Detail Textures. The Visual Computer,
15(10):519-539, Dec. 1999.

E. Gobbetti, F. Marton, P. Cignoni, M. Di Benedetto, and
F. Ganovelli. C-BDAM - Compressed Batched Dynamic
Adaptive Meshes for Terrain Rendering. Computer Graphics
Forum, 25(3):333-342, Sept. 2006.

H. Hoppe. Progressive Meshes. In Proceedings of the 23™
Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH’96), pages 99-108, New Orleans,
Louisiana, USA, Aug. 1996.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In Proceedings of ECOOP’97, LNCS
1241, pages 220-242, Helsinki, Finland, June 1997. Springer-
Verlag.

P. Miiller, P. Wonka, S. Haegler, A. Ulmer, and L. V. Gool.
Procedural Modeling of Buildings. In SIGGRAPH ’06: Pro-
ceedings of the 33" Annual Conference on Computer Graph-
ics and Interactive Techniques, pages 614-623, Boston, MA,
USA, Aug. 2006. ACM.

W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation
of Triangle Meshes. In SIGGRAPH ’92: Proceedings of the
19" Annual Conference on Computer Graphics and Interac-
tive Techniques, pages 65-70, New York, NY, USA, July 1992.
ACM.

A. Vasseur. Dynamic AOP and Runtime Weaving for Ja-
va- How Does AspectWerkz Address It? In R. E. Filman,
M. Haupt, K. Mehner, and M. Mezini, editors, Proceedings
of the 2004 Dynamic Aspect Workshop (DAW’04), pages 135—
145, Lancaster, England, Mar. 2004.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9

—

7Shader Model 4 at http://msdn.microsoft.com/en-us/
library/bb509657 (VS.85) .aspx.

http://msdn.microsoft.com/en-us/library/bb509657(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb509657(VS.85).aspx

	1 Introduction
	2 Coarser level of details
	3 Data Engineering with AOP
	3.1 Building Mesh Builders
	3.2 Mapping Aspects on Annotations
	3.3 Pointcuts and Code Simplification

	4 Discussion and Conclusions
	5 References

