
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 18, NO. 6, DECEMBER 2010 1841

Spectrum Auction Framework for Access
Allocation in Cognitive Radio Networks

Gaurav S. Kasbekar and Saswati Sarkar, Member, IEEE

Abstract—In cognitive radio networks, there are two categories
of networks on different channels: primary networks, which have
high-priority access, and secondary networks, which have low-pri-
ority access. We develop an auction-based framework that allows
networks to bid for primary and secondary access based on their
utilities and traffic demands. The bids are used to solve the ac-
cess allocation problem, which is that of selecting the primary and
secondary networks on each channel either to maximize the auc-
tioneer’s revenue or to maximize the social welfare of the bidding
networks, while enforcing incentive compatibility. We first con-
sider the case when the bids of a network depend on which other
networks it will share channels with. When there is only one sec-
ondary network on each channel, we design an optimal polyno-
mial-time algorithm for the access allocation problem based on
reduction to a maximum matching problem in weighted graphs.
When there can be two or more secondary networks on a channel,
we show that the optimal access allocation problem is NP-com-
plete. Next, we consider the case when the bids of a network are
independent of which other networks it will share channels with.
We design a polynomial-time dynamic programming algorithm to
optimally solve the access allocation problem when the number of
possible cardinalities of the set of secondary networks on a channel
is upper-bounded. Finally, we design a polynomial-time algorithm
that approximates the access allocation problem within a factor of
2 when the above upper bound does not exist.

Index Terms—Algorithms, cognitive radio networks, spectrum
auctions.

I. INTRODUCTION

W ITH the proliferation of different wireless network tech-
nologies like cellular networks, wireless local area net-

works, wireless metropolitan area networks, etc., demand for
radio spectrum is increasing. Currently, spectrum is regulated
by a government agency like the Federal Communications Com-
mission (FCC), and it allocates spectrum by assigning exclusive
licenses to users to operate their networks in different geograph-
ical regions.

There is a widespread belief that radio spectrum is becoming
increasingly crowded. However, spectrum measurements in-
dicate that the allocated spectrum is underutilized, i.e., at any
given time and location, much of the spectrum is unused [2].
Cognitive radio networks are emerging as a promising solu-
tion to this dilemma. In these networks, there are two levels
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of networks on a channel: primary networks and secondary
networks. A primary or secondary network is a network of mul-
tiple wireless devices, which we call primary and secondary
nodes, respectively. A primary node has prioritized access to
the channel, i.e., it can transmit on the channel regardless of
the transmissions of secondary nodes. On the other hand, a
secondary node can transmit on the channel provided primary
nodes are not transmitting. Thus, whenever a secondary node
wants to transmit on the channel, it senses the channel to check
for ongoing transmissions. It initiates a transmission only if a
primary node is not transmitting. Cognitive radio technology
[4] allows secondary nodes to detect which channel is not being
used by primary nodes, share this channel with other nodes, and
vacate the channel when a primary node is detected. Surveys
on cognitive radio networks can be found in [1] and [4].

An important question faced by a spectrum regulator is how
to allocate the rights to be primary and secondary networks on
its channels. Different networks may attach different value to
being primary and secondary. A network may wish to mainly
transmit delay-sensitive traffic like voice or video. Such a net-
work will attach a high value to the rights to be primary. On
the other hand, a network may be mainly interested in transmit-
ting delay-insensitive traffic like e-mail or file transfer. Such a
network would not need primary rights and would prefer sec-
ondary rights since the latter would be priced lower than the
former. Also, a network whose traffic is a mixture of delay-sen-
sitive and delay-insensitive traffic would want primary rights on
some channels and secondary rights on some channels.

Auctions are suitable for selling the rights to be primary and
secondary on the channels. Since the regulator need not know
the values that bidders attach to primary and secondary rights,
auctions provide a mechanism for the regulator to get a higher
revenue than that obtainable through static pricing [6]. Auctions
are also beneficial for the bidders since in general they assign
goods to the bidders who value them most [6]. The FCC has
been conducting spectrum auctions since 1994 to allocate li-
censes for radio spectrum [3] (however, so far no auctions have
been conducted for cognitive radio networks).

Spectrum auctions have been studied in [6]–[9] and [22]. In
[6], a framework is developed to distribute spectrum in real-time
to a set of wireless users. Channel allocation is done under in-
terference constraints, in which the same channel cannot be al-
located to two or more users whose transmissions interfere with
each other. In [7], there is a set of bidders and multiple chunks
of spectrum. The paper investigates sequential and concurrent
auction mechanisms to allocate the chunks of spectrum to the
bidders such that each bidder is allocated at most one chunk.
In [8], a set of spread spectrum users is considered, who share
the spectrum with the owner of the spectrum. The goal is to de-
sign auctions to allocate the transmit power to each user subject
to a limit on the interference at a measurement location. In [9],
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there are multiple primary users who own the licenses to chan-
nels in a region and multiple secondary users who are interested
in leasing the unused portions of the channels of the primaries.
The paper proposes a double-auction mechanism with multiple
sellers (the primaries) and multiple buyers (the secondaries). In
[22], a knapsack-based auction model is proposed to allocate
spectrum to providers while maximizing revenue and spectrum
usage.

We now explain how our work differs from previous work. In
some of the existing work on spectrum auctions [6], [7], [22],
each channel is assigned to a single network, i.e., there is no
notion of primary and secondary networks on a single channel.
We consider the case when there is a primary network and one
or more secondary networks on each channel. Now, there are
two possibilities for allocating secondary rights on the channels
[10]. In one possibility, which we refer to as two-step alloca-
tion, the regulator allocates channels to primary networks and
the primary networks independently allocate unused portions on
their channels to the secondary networks. Auctions have been
designed for this scenario in [8] and [9]. In the other possibility,
which we refer to as one-step allocation, the regulator allocates
the rights to be the primary and secondary networks on the chan-
nels in a single allocation [10]. To the best of our knowledge, no
work has been done in designing auctions for this scenario. In
this paper, we develop a comprehensive auction framework for
the one-step allocation scenario, using that which a regulator can
simultaneously allocate the rights to be primary and secondary
on the channels. One-step allocation may be more desirable than
its two-step counterpart in certain cases. For example, one-step
allocation gives a greater degree of control to the regulator. In
particular, it allows the regulator to choose a “socially benefi-
cial” channel allocation that maximizes the social welfare. Note
that in one-step allocation, a network can bid for, and can even
be granted, primary and secondary access to more than one or
even all channels. Also, the allocation resulting from two-step
allocation may indeed turn out to be that for one-step allocation,
but only when it is the most socially beneficial allocation.

We consider a scenario in which the regulator conducts an
auction to sell the rights to be primary and secondary networks
on a set of channels. Networks can bid for these rights based
on their utilities and traffic demands. The regulator uses these
bids to solve the access allocation problem, i.e., the problem
of deciding which networks will be the primary and secondary
networks on each channel. The goal of the regulator may be
either to maximize its revenue or to maximize the social wel-
fare of the bidding networks. Now, networks can have utilities
or valuations that are functions of the number of channels on
which they get primary and secondary rights, how many and
which other networks they share these channels with, etc. The
number of valuations of a network may be large, and an expo-
nential amount of space may be required to express a bid for
each valuation. Therefore, we design bidding languages, that is,
compact formats for networks to express bids for their valua-
tions. For different bidding languages, we design algorithms for
the access allocation problem.

The paper is organized as follows. We describe the system
model in Section II. In Section III, we describe how the bidding
languages and algorithms that we design in the paper can be
used to maximize the auctioneer’s revenue or to maximize so-
cial welfare. In Section IV, we describe a model in which the
bids of a network depend on which other networks it shares

a channel with. In Section IV-A, we design an optimal algo-
rithm for the access allocation problem for a simple case with
only one secondary network on each channel. We show the in-
tractability (NP-competeness of the access allocation problem
or exponential size of bids) of the extensions of this simple case
in Section IV-B. In Section V, we consider the case in which
the bids of a network are independent of which networks it
shares a channel with and provide an optimal dynamic program-
ming algorithm for the access allocation problem in Section VI.
The algorithm is polynomial-time when the number of possible
cardinalities of the set of secondary networks on a channel is
upper-bounded. In Section VII, we describe a bidding language
that can be used for the independent bids case for an arbitrary
number of cardinalities of the set of secondary networks on a
channel and provide a greedy 2-approximation algorithm for
the access allocation problem. In Section VIII, using simula-
tions, we show that the above approximation algorithm in fact
performs optimally in a variety of scenarios.

II. SYSTEM MODEL

We consider a scenario in which there are identical or-
thogonal channels in a region. A regulator conducts an auction
to sell the rights to be the primary and secondary networks on the
channels. bidders participate in the auction. Each bidder is an
independent network of multiple wireless nodes. Each bidding
network submits bids to the regulator, and based on the bids, the
latter allocates the rights to be the primary and secondary net-
works on the channels.

A primary network on a channel must have prioritized access
to the channel. If two or more independent networks were to
be the primary networks on a single channel, then the access of
each one of them would be constrained by the transmissions of
the other primary networks, which would transmit at the same
priority level. To avoid this, we assume that there is exactly one
primary network on each channel. However, we allow multiple
networks to have secondary rights on a channel.

We assume that all the secondary networks on a channel have
equal rights on the channel. This is because complicated mul-
tiple access protocols [5] would be required to grant access at
different priority levels to different secondary networks on a
channel (with all of them getting lower priority access than the
primary network). On the other hand, simple multiple access
protocols would suffice if all secondary networks have equal
rights on the channel.

Now, since a primary network has prioritized access on a
channel, the average delay of its traffic is low. On the other
hand, the average delay of a secondary network’s traffic is high.
Hence, primary rights (respectively secondary rights) are suit-
able for communicating delay-sensitive (respectively delay-in-
sensitive) traffic. We assume that each network has two kinds
of traffic: 1) delay-sensitive traffic like voice, video, etc.; and
2) delay-insensitive or elastic traffic like e-mail, file transfer, etc.
A network uses its primary rights to transmit its delay-sensitive
traffic, and its secondary rights to transmit its elastic traffic.

A single network may be both the primary network and
one of the secondary networks on a channel. In this case, we
assume that it transmits its delay-sensitive traffic as a primary
network, i.e., with high priority, and when it does not have any
delay-sensitive traffic to transmit, it transmits its elastic traffic
as a secondary network. Also, the other secondary networks on
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the channel can transmit whenever network is not transmitting
its delay-sensitive traffic.

Let be the set of all possible ways in which the chan-
nels can be allocated to the bidders. For example, consider
the simple case in which , , and there can be at
most four secondary networks on a channel. An example of an
allocation of the channels is one in which network 1 becomes
the primary network on channels 1 and 2; network 2 becomes
primary on channel 3; network 3 becomes the sole secondary
network on channel 1; networks 4 and 5 become secondary net-
works on channel 2; networks 1, 4, 6, and 7 become secondary
networks on channel 3; and networks 8 and 9 do not become
primary or secondary networks on any channel.

Let be network ’s valuation or utility from the channel
allocation , i.e., the value that it conjectures or expects to
derive from the allocation when it submits the bids. Note that
since network will share channels with other networks in the
allocation , the actual utility that network will derive from an
allocation after the networks start using the allocated channels
depends on the transmission patterns of the other networks that
are not completely known to network when it submits the bids.
Therefore, a network can only submit bids based on the expected
utilities , which reflect its expectations about the actual
utilities that it will eventually get. Henceforth, we use the terms
valuation or utility for , but they should be understood to
mean the conjectured utility or valuation of network for the
channel allocation .

The valuations of network for the allocations in
depend on its traffic demands, i.e., the volumes of delay-sensi-
tive and elastic traffic that it wants to transmit. Now, for given
traffic demands, the valuation of a network for a channel al-
location may depend upon the number of channels on
which network has primary and secondary rights in the alloca-
tion , how many and which other networks have rights on each
of the channels on which network has primary or secondary
rights, etc. For example, a network that wants to transmit a lot
of delay-sensitive traffic will ascribe a high valuation to an al-
location in which it is primary on several channels. Note that
network may have the same valuation for different allocations

.
Network ’s net utility is of the form

(1)

where is the payment that network makes to the auctioneer.
The auctioneer determines the channel allocation and the pay-
ment that each network makes to the auctioneer. The social
welfare of an allocation is defined to be the quantity

Thus, the social welfare is the sum of utilities of all bidders from
the allocation .

Now, there could be two goals for designing the auction: rev-
enue maximization and maximizing social welfare. In the first
goal, based on its valuations, each network submits a set of bids
to the auctioneer. Let be the bid of network for the al-
location , i.e., the amount of money it is willing to pay

if the allocation is chosen. Let be the channel allo-
cation that maximizes the revenue of the auctioneer, given the
bids for bidders . That is, satisfies

(2)

In the second goal of maximizing social welfare, are not
the bids of the networks, but have a different interpretation:
They are the declared valuations of the networks (explained
in Section III). In this case, the channel allocation that maxi-
mizes the social welfare of the networks can again be found
by finding the satisfying (2).

For both goals, the access allocation problem is to determine
the channel allocation satisfying (2). Depending on the inter-
pretation of , this allocation either maximizes the auc-
tioneer’s revenue or the social welfare of the networks.

Now, the set of possible channel allocations may be expo-
nential in size. Hence, the total number of different valuations of
network may be exponential in general. However, it is not com-
putationally tractable to communicate a bid for each valuation
in this large set. Therefore, we introduce bidding languages for
the auction models that we consider. A bidding language [12] is
a format to compactly encode the bid information of a bidder.
When there are an exponential number of valuations, a bidding
language expresses the bids approximately, not exactly.

We now remark on some implementation issues: 1) One way
in which the regulator can implement the auction is by deploying
a central controller in the region, which would periodically col-
lect bids that are sent by the bidding networks over a common
control channel, compute the channel allocation and payments,
and send them to the bidders over the control channel. 2) The
frequency at which auctions are conducted is determined by
the following tradeoff: The higher the frequency, the more re-
sponsive is the channel allocation to changes in traffic demands
and the higher is the spectrum utilization, but the overhead is
also higher. Hence, the interval between successive auctions is
chosen to be as small as possible while ensuring that the over-
head is below an acceptable limit.

III. SOLUTION FRAMEWORK

As stated earlier, an auction could be designed for two dif-
ferent objectives. In our context, the first objective is to choose
the channel allocation that maximizes the regulator’s revenue
for a given set of bids of the bidders. This can be done by
choosing the allocation satisfying (2) when is the bid
of network for the channel allocation .

The second possible objective for the auction could be to
achieve efficiency, that is, to choose the allocation that maxi-
mizes social welfare. To this end, each bidder is asked to de-
clare its valuation function . With an abuse of notation, let

denote the declared valuation of network for the alloca-
tion , which may be different from if bidder believes
that falsely declaring its valuations will improve its net utility.
Truth-telling is said to be a weakly dominant strategy [18] for
network if, for any possible declarations of networks other
than , the net utility of network is maximized when it sets

. It follows from the revelation principle
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[18] that to maximize social welfare, it is sufficient to consider
mechanisms in which the payments are chosen such that for
each bidder , truth-telling is a weakly dominant strategy. Such
a mechanism is called incentive compatible.

To date, the Vickrey–Clarke–Groves (VCG) mechanism [18]
is the only known general incentive compatible mechanism that
can be used to maximize social welfare. Under this mechanism,
given the declared valuation functions of the bidders, the
allocation satisfying (2) is chosen. Let be the allocation
that would have maximized the social welfare if network did
not participate in the auction. That is, satisfies

(3)

Under the VCG mechanism, the payment made by network to
the auctioneer is given by

(4)

The key to implementing the VCG mechanism is to find the
allocations and , . Now, can be found
using an algorithm for the access allocation problem (2), and

can be found by running the same algorithm on the set of
bidders .

Now, in general, the set of different valuations of a bidding
network is exponential in size. First, we consider the special case
when the number of different valuations of each bidding net-
work is of poynomial space complexity. However, can still
be exponential in size. This is because a bidder may have the
same valuation for two or more allocations in . Even in this
case, it is sometimes computationally intractable to devise an
algorithm to find the optimal allocation satisfying (2), pos-
sibly because this is NP-hard, but instead an approximation al-
gorithm for the access allocation problem can be devised. In
this case, if the payments are chosen according to the VCG for-
mula (4) with suboptimal allocations instead of and , then
truth-telling is no longer a weakly dominant strategy for the bid-
ders. To address this problem, Nisan and Ronen [20] devised
the second-chance mechanism under which the auctioneer pub-
lishes the suboptimal algorithm that it will use for the access al-
location problem. Each bidder submits its (declared) valuations

and a so-called appeal function (see [20]) to the auctioneer.
Each bidder optimizes the valuations and the appeal functions
to submit so as to maximize its own utility. The auctioneer spec-
ifies a time limit by which the valuations and appeal functions
must be submitted. The auctioneer uses the suboptimal algo-
rithm for the access allocation problem to find the channel allo-
cation using the submitted valuations and appeal functions. The
VCG formula (4) is used to determine the payment that each
bidder will make. Now, the strategic knowledge of a bidder
is a function that, for a set of valuations submitted by the other
bidders, gives the valuation that bidder must declare so as to
get the maximum utility. It is shown in [20] that when there
is a bound on the time each bidder can take to compute its
strategic knowledge, and when the time limit allowed to each

bidder to compute the valuations and appeal functions to submit
is at least as much as this bound, then truthfully declaring the
valuation function is a dominant strategy for each bidder under
the second-chance mechanism. Moreover, the social welfare at-
tained by the second-chance mechanism is at least as good as
the social welfare of the suboptimal algorithm used for the ac-
cess allocation problem.

Now, in some cases, the set of valuations of a bidder takes
an exponential amount of space, and hence bidders have to use
incomplete bidding languages (see Section II) to convey their
valuations. In this case as well, incentive compatibility does not
hold if the VCG formula (4) is used for payments. As a solution
to this problem, Ronen [21] devised the extended second-chance
mechanism. In these mechanisms, each bidder submits a de-
scription of its set of valuations in some bidding language, an
appeal function, and an oracle [21], which is a program that can
be queried by the auctioneer for the bidder’s valuation. The auc-
tioneer determines an allocation based on the above submitted
quantities using a (possibly suboptimal) algorithm for the access
allocation problem. It is shown in [21] that under reasonable as-
sumptions (see [21]), truth-telling is a dominant strategy for the
bidders under the extended second-chance mechanism.

Note that in addition to incentive compatibility, the VCG,
second-chance, and extended second-chance mechanisms have
the desirable property of individual rationality [18], i.e., bidders
get a nonnegative utility when they participate in the auction.

In this paper, we propose several spectrum auction models
and design bidding languages and algorithms for the access al-
location problem. These can be used for the objective of maxi-
mizing the revenue of the auctioneer or for maximizing the so-
cial welfare of the bidders in conjunction with the VCG, second-
chance, or extended second-chance mechanism, as appropriate.
In particular, in Section IV-A, we describe an auction model
that allows networks to completely express their bids under cer-
tain assumptions (Assumptions 1 and 2). We provide a polyno-
mial-time algorithm that finds the optimal solution in the ac-
cess allocation problem. This algorithm can be used to maxi-
mize the auctioneer’s revenue or, in conjunction with the VCG
mechanism, to maximize the social welfare of the bidders. In
the auction model in Section V, we provide a bidding language
that allows bidders to completely express their bids when they
have no knowledge of the channel usage behavior (defined in
Section IV) on a channel of the other bidders and approximately
express their bids when they have this knowledge. Section VI
provides a polynomial-time algorithm to optimally solve the ac-
cess allocation problem for the model in Section V when the
number of cardinalities of the set of secondary networks on a
channel is upper-bounded. When bidders have no knowledge
of the channel usage behavior of other bidders, this algorithm
can be used to maximize the auctioneer’s revenue or to max-
imize social welfare in conjunction with the VCG mechanism.
When bidders have this knowledge, the algorithm can be used to
maximize the auctioneer’s revenue or, in conjunction with the
extended second-chance mechanism, to maximize social wel-
fare. Finally, in the auction model in Section VII, we provide a
bidding language and a 2-approximation algorithm for the ac-
cess allocation problem that is polynomial-time for an arbitrary
number of cardinalities of the set of secondary networks on a



KASBEKAR AND SARKAR: SPECTRUM AUCTION FRAMEWORK FOR ACCESS ALLOCATION IN COGNITIVE RADIO NETWORKS 1845

channel. This algorithm can be used to approximate the max-
imum revenue of the auctioneer or in conjunction with the ex-
tended second-chance mechanism to approximate the maximum
social welfare.

For notational convenience, throughout the paper, we assume
that are the bids expressed by bidder and view the access
allocation problem as the problem of maximizing the revenue of
the auctioneer. However, our framework applies without change
to the problem of maximizing social welfare.

IV. AUCTION WITH DEPENDENT BIDS

A primary or secondary network on a channel shares the
channel with other networks, and hence its actual utility from
the channel depends on the transmissions of those networks.
A network may have some knowledge or beliefs about the
typical transmission patterns of the other bidding networks. For
example, the agency owning the network may conduct a survey
on the typical transmission patterns of the other networks in
its region, or if auctions are periodically conducted to allocate
spectrum in the region, the agency may gain this knowledge
about the networks with whom it shared channels previously.
Thus, the conjectured utilities, and hence the bids of a network,
would depend on which networks it will share different chan-
nels with.

A. Basic Model

In the basic model with dependent bids, we consider the
model described in Section II with the following additional
assumptions.

Assumption 1: There is only one secondary network on each
channel.

Assumption 2: Each network can be either the primary or the
secondary network on only one channel.

We explore the effect of relaxing either of these assumptions
in Section IV-B. We assume that , so that all chan-
nels can be allocated.

A secondary network on a channel can use the channel
whenever the primary network is not using it. Therefore, the
throughput and delay of the secondary network on the channel
depends on the channel usage behavior of the primary on the
channel, i.e., on the rate of its transmissions on the channel
and how these transmissions are spread over time. On the other
hand, the primary network on a channel has prioritized access
to the channel. That is, when the secondary network wants to
transmit on the channel, it senses the channel and can transmit
only if it finds that the primary network is not transmitting.
However, due to the imperfect nature of sensing, the secondary
network will sometimes transmit while the primary network
is transmitting, resulting in a collision. Hence the primary
network’s utility depends on the channel usage behavior of the
secondary network on the channel. Thus, the actual utility of
a primary or secondary network depends on which network it
shares a channel with. As explained, a network may in general
have certain beliefs about the channel usage behavior of other
networks and hence may wish to express bids dependent on the
network with whom it shares the channel. To model this, let

be the bid of network for the case when it is the primary net-
work on a channel and network is the secondary network on
the channel. Similarly, let

be the bid of network for the case when it is the secondary
network on a channel and network is the primary network.

Let

be an allocation of the channels to a set of networks. is a set
of orderered pairs such that network is the primary
network on channel and network is the secondary network
on channel . Note that the revenue of the allocation is

We describe an algorithm for determining , the allocation
that maximizes the revenue, by reduction to a maximum weight
matching problem in a graph. Let be a weighted undirected
graph with nodes, one node corresponding to each network.

is a complete graph, i.e., between every pair of nodes, there
is an edge. Let the weight of the edge joining nodes and be

(5)

Note that the weights are nonnegative real numbers. The inter-
pretation of the weights is as follows. If network (respec-
tively, network ) is the primary network on a channel and net-
work (respectively, network ) is the secondary network, then
the sum of the amounts paid by networks and is
(respectively, . Therefore, , the greater of these
two quantities, is the maximum sum of payments of networks
and if they are the two networks on the same channel.

A matching in a graph is defined to be a subset of the
edges such that no two edges in the subset share a common
node. The weight of a matching is the sum of the weights of
its edges. The following algorithm finds the channel allocation

that maximizes the revenue.
STEP1: In graph , find a matching of maximum
weight among matchings with exactly edges1 (we say
how later).
STEP2: Let be the edges in the matching

. Let and be the two endpoints of edge . The
allocation is chosen such that for , net-
works and become the two networks (primary and
secondary) on channel . If

then network becomes the primary network on channel
and network becomes the secondary network; other-
wise, network becomes the primary network on
channel and network becomes the secondary network.

Theorem 1: The allocation found from the matching
in the above algorithm is the one that maximizes the revenue.

1Note that there exists a matching with exactly� edges since there are� �
�� nodes and � is a complete graph.
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Proof: There is a many-to-one correspondence between
the set of channel allocations and the set of matchings with
exactly edges. (It is many-to-one since the allocations ob-
tained from any allocation by swapping the roles of the primary
and secondary networks on one or more channels correspond
to the same matching.) From the interpretation of the weight of
an edge given, it follows that the weight of a matching
has the maximum revenue among the revenues of the channel
allocations that correspond to it. Therefore, the weight of the
maximum weight matching equals the maximum revenue
among the revenues of all the channel allocations. Also, note
that Step 2 of the algorithm ensures that we select the channel
allocation , whose revenue is the same as the weight of .
It follows that the allocation found from the matching
is the one that maximizes the revenue.

Now, it remains to show how to find the matching .
Edmonds [14] gave a polynomial-time algorithm for finding
the maximum weight matching (with any number of edges)
in a graph. However, we are interested in a maximum weight
matching among matchings with edges, which cannot be
directly obtained by Edmonds’ algorithm. It can be obtained in

time2 using White’s modification [15], [16]
to Edmonds’ algorithm.

B. Intractability of Extensions

We now explore the effect of relaxing either one of Assump-
tions 1 and 2. Suppose Assumption 1 is relaxed and Assump-
tion 2 is retained. That is, we assume that each network can be
the primary or a secondary network on only one channel. How-
ever, there can be multiple secondary networks on a channel. We
show that even if there are two secondary networks on a channel,
the problem of finding a channel allocation that maximizes the
revenue is NP-complete.

Let be the bid of network for the case
in which it is primary on a channel and networks
are secondary. Let be the bid of network
for the case in which network is the primary and networks

are the secondary networks. Also, let be the bid
of network for the case in which it is primary on a channel with
no secondary on the channel. We now define the -Network De-
pendent Bid Access Allocation Problem ( -DBA).

Definition 1 (The -DBA Problem): Suppose channels are
to be allocated to bidders such that on each channel, one
network is primary and at most networks are secondary,
where is a fixed positive integer. Each bidder can be a primary
or secondary network on at most one channel, and the bids of
networks are as given above. Find the allocation that maximizes
the revenue.

We show that -DBA is NP-Complete. To this end, we first
show that a simpler version of -DBA, which we call the
Exactly -Network Dependent Bid Access Allocation Problem
( -EDBA), is NP-complete. The -EDBA problem is defined in
the same way as -DBA, except that on each channel, exactly

networks are secondary instead of at most networks.
Note that if in an instance of -EDBA, , then there is

no channel allocation with networks on each channel. In this
case, we define the optimal revenue of the -EDBA instance to
be .

2Recall that a function ���� is said to be ������� if there exist positive con-
stants � and � such that ���� � ����� for all � � � [13].

The decision version of -DBA or -EDBA is as follows:
Given a bound , is there a channel allocation such that the
revenue under the allocation is at least ? We next show that
(the decision version of) 3-EDBA is NP-complete.

Lemma 1: 3-EDBA is NP-complete.
Proof: Given an allocation of the channels, we can

verify in polynomial time whether the revenue under the allo-
cation is at least . This shows that 3-EDBA is in the class NP.

Next, we show that the 3-Dimensional Matching problem
(3DM), which is known to be NP-complete [19], is polyno-
mial-time-reducible to 3-EDBA, i.e., 3DM 3-EDBA. An in-
stance of 3DM is as follows [19]: Given disjoint sets , ,
of elements each and a set of ordered triples of the form

, where , and , does there exist a set
of triples in so that each element of is contained
in exactly one of these triples?

From this instance of 3DM, we construct an instance of
3-EDBA as follows. Let there be channels and
networks—one network corresponding to each element of

. We now design the bids, which will complete
the construction. For every set of three networks such
that (or one of its permutations , , etc.)
is a triple in , define all of the following bids to be equal to

: , , , , , , ,
, . For every set of three networks such

that no permutation of is a triple in , let all of the
above bids be equal to . In this 3-EDBA problem, we ask: Is
there a channel allocation of the channels with revenue of at
least ? We claim that the answer is yes if and only if the
answer in the original 3DM problem is yes.

To prove sufficiency, suppose there exists a subset of
triples such that each element of is contained in

exactly one of these triples. Let

Then, allocate the channels such that network is the pri-
mary network and networks and are the secondary net-
works on channel , . The revenue of this alloca-
tion is

Hence, the answer in the 3-EDBA problem is yes.
Conversely, suppose there exists an allocation of the chan-

nels with revenue of at least . In this allocation, let be the
primary and and be the secondary networks on channel ,

. If or its permutation is a triple in ,
then the sum of payments of networks , and is 1, else it
is . Since there are channels and the rev-
enue of the allocation is at least , it follows that the revenue is
exactly and that for each , or one of its permuta-
tions is a triple in . Moreover, since each network can be the
primary or a secondary network on only one channel, it follows
that each of the networks is a primary or secondary network
on exactly one channel. Hence, the triples in corresponding
to or its permutation for are such that
each element of is contained in exactly one of the
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triples. Thus, the answer to the 3DM problem is yes. This shows
that 3DM 3-EDBA and hence that 3-EDBA is NP-complete.

By an analogous reduction from -dimensional matching, it
can be shown that -EDBA is NP-complete for fixed .
Note that for , -dimensional matching is NP-complete,
which follows from a trivial reduction from 3-dimensional
matching.

Now, we show that for any fixed , (the decision version
of) -DBA is NP-complete by a reduction from -EDBA.

Theorem 2: For , -DBA is NP-complete.
Proof: Clearly, -DBA is in the class NP.

Now, we show that -EDBA -DBA. From any instance
of -EDBA with given , , , and bid functions
and , we construct an instance of -DBA as follows. The
number of channels, number of networks, and the bound on
revenue are the same as in the original -EDBA instance ( ,

, and , respectively). The bids of network are given by

if
if

if
if

and

Recall that if , then there is no channel allocation in
the -EDBA instance with exactly networks on each channel.
Hence, the answer to the decision version is negative. Thus, let

. We now show that there exists a channel allocation
with revenue at least in the -EDBA instance if and only if
there exists one such in the -DBA instance. If there is a channel
allocation with revenue at least in the -EDBA instance, then
by construction of the bids in the -DBA instance, the revenue
of that channel allocation is the same in the -DBA instance and
hence at least .

Conversely, suppose there is a channel allocation with rev-
enue at least in the -DBA problem. From this channel alloca-
tion, construct a channel allocation for the -EDBA instance
as follows: If there are secondary networks on a channel
in , let the primary and secondary networks on the channel be
the same in . From the construction of bids in the -DBA in-
stance, it follows that the sum of payments of the networks on
this channel in is the same as that in . If there are
secondary networks on a channel in , where , then
on channel in , let the same networks be primary and sec-
ondary and, in addition, let more networks be secondaries,
which were not primary or secondary on any channel in . Such
networks exist since . By the construction of the bids
in the -DBA instance, the sum of payments of the networks on
channel in is 0, whereas that in is at least 0. Thus, the
revenue of allocation is at least as much as the revenue of
channel and hence is at least .

This shows that -EDBA -DBA. Since -EDBA is
NP-complete as shown, it follows that -DBA is NP-complete.

Note that in the -DBA problem, if is unbounded, then each
bidder would have to submit an exponential number of bids

and .
Now, suppose we relax Assumption 2 and retain Assump-

tion 1. Then, each network can become a primary or secondary

network on up to channels. As explained, the utility of a net-
work from the primary or secondary rights on a given channel
depends upon the channel usage behavior of the network it
shares the channel with. However, the channel usage behavior
of this network on the channel may in turn depend upon the
number of channels on which it has primary and secondary
rights and the channel usage behavior of the networks it shares
those channels with and so on. Thus, in general, the utility of a
network may depend upon which networks are the primary and
secondary networks on each channel. The number of possible
ways of choosing the primary and secondary networks on the

channels is clearly exponential. Thus, relaxing Assump-
tion 2 would require each network to express an exponential
number of bids in the auction with dependent bids, which is
computationally intractable.

V. AUCTION WITH INDEPENDENT BIDS

In Section IV, we noted that when networks have some
knowledge of the channel usage behavior of other networks,
they would like to express bids dependent on which networks
they will share channels with. However, it is quite possible in
some scenarios that networks have no knowledge of the channel
usage behavior of the other bidding networks. In this case, their
conjectures about the utility that they will actually get from
a channel allocation would be based only on the number
of channels on which they will get primary and secondary
rights and the number of other networks they will share these
channels with in the allocation and would be independent of
which other networks they will share channels with. Thus, they
would submit bids, based on these conjectured utilities, that are
independent of which networks share different channels with
them.

Moreover, in Section IV-B, we showed that bids of exponen-
tial size are needed in the auction with dependent bids when
Assumptions 1 and 2 are relaxed. This motivates the idea that
even when networks have some knowledge of the channel usage
behavior of the other networks, we can obtain a compact bid-
ding language—that is, a means for networks to approximately
convey their bids—by imposing the restriction that the bids of a
network be independent of which other networks it shares dif-
ferent channels with. We study the auction resulting from im-
posing this restriction in this section.

A. Model

Consider the model in Section II with the following additions.
On each channel, one network can be the primary network and

, or networks can be the secondary net-
works, where . Note that is
the number of possible cardinalities of the set of secondary net-
works on a channel.

When the results of the auction are declared, let be the
number of channels on which bidder is the primary network.
Let be the number of channels on which
bidder is a secondary network along with other sec-
ondary networks.

Suppose there are secondary networks on a channel. Re-
call from Section II that each of these secondary networks
have equal rights on the channel. The share of each of these
networks in the secondary rights on the channel is called a sec-
ondary part of type . Also, the channel is said to be divided
into secondary parts of type . Similarly, since exactly one
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network becomes a primary network on a channel, if a network
is the primary network on channels, we say that it is allocated

primary parts. Also, we refer to the throughput received by a
network as a secondary network as its secondary throughput.

In general, network ’s utility may depend not only on
the total expected secondary throughput that it gets, but also
on the distribution of this secondary throughput over the
channels. For example, it may get the same expected secondary
throughput: 1) if it is the secondary network on two channels
with one other secondary network on each; and 2) if it is the
sole secondary network on one channel. However, it may prefer
one of these scenarios over the other. This is because a network
has to sense different channels on which it has secondary rights
for ongoing transmissions and also communicate on them.
There may be costs due to delays for switching the antennas
of the network’s nodes between different channels. To take
into account this possibility, in this section, we assume that the
utility of network depends not just on the expected secondary
throughput (and the number of primary parts) it receives, but
on the vector . We allow bidder to submit
bids as a function of this vector.

Each bidder submits the following bid vector to the
auctioneer:

where is network ’s bid for becoming the
primary network on channels and becoming a secondary
network on channels along with other secondary
networks, for .

B. Feasible Allocation

We say that an allocation
is feasible if it is possible to assign to networks, the rights to be
primary and secondary on each of the channels such that
network , , is allocated primary parts and

secondary parts of type for . The following
lemma describes necessary and sufficient conditions for an al-
location to be feasible.

Lemma 2: An allocation
is feasible if and only if , for ,
are integers such that for some nonnegative integers

, satisfying

(6)

(7)

(8)

(9)

Note that the integer in the lemma corresponds to the
number of channels that are divided into secondary parts of
type . We assume that the number of bidders is at least so
that a feasible allocation exists.

Proof: The necessity of all conditions is obvious. Now we
show sufficiency. Suppose all the above conditions are satisfied.
We construct a feasible allocation. Allocate primary parts
to network for . Since , each

primary part is allocated exactly once. Now, consider the
channels divided into secondary parts. Label the sec-
ondary parts of type on each of these channels from 1 to .
Also, label the channels from 1 to . Now, consider the
following order of the secondary parts of type : sec-
ondary part 1 of channel 1, part 1 of channel 2 part 1
of channel , part 2 of channel 1, part 2 of channel 2
part 2 of channel part of channel 1, part of
channel 2 part of channel . Now, with secondary
parts in the above order, first allocate secondary parts to
network 1, then parts to network 2 then parts to
network . Since , in this way it is possible
to allocate each secondary part of type exactly once. Also,
since , it is clear that no network is assigned two
or more secondary parts on the same channel. Hence, the allo-
cation is feasible.

From a feasible allocation
, it is easy to construct a consistent specification of

the primary and secondary networks on each channel. Hence,
the access allocation problem reduces to finding a feasible
allocation that maximizes
the auctioneer’s revenue given the submitted bid vectors .

Let

(10)

denote a feasible allocation. Let be the set of all feasible
allocations.

VI. OPTIMAL SOLUTION OF ACCESS ALLOCATION PROBLEM

In this section, we present an algorithm for optimally solving
the access allocation problem for the auction described in
Section V. The algorithm is polynomial-time when , the
number of possible cardinalities of the set of secondary net-
works on a channel, is fixed (and is allowed to grow with
the problem size). This special case can be useful in practice
because even with small , flexibility in channel allocation
can be achieved by choosing judiciously. For
example, with , we can choose , , and

. In this case, large chunks of secondary throughput
can be allocated to a network by having it the sole secondary
network on several channels and small chunks can be allocated
to networks by having four or eight networks share a channel.

A. Algorithm Description

A dynamic programming algorithm is given in [11] and [12]
for the winner determination problem in a combinatorial auc-
tion with multiple units of a fixed number of different types of
objects. We generalize the algorithm in [11] and [12] in two di-
rections: 1) the objects in a combinatorial auction are indivis-
ible, whereas we need to decide into how many secondary parts
to divide each channel; and 2) in our auction, the allocation has
to be feasible according to the conditions in Lemma 2.

We first summarize the algorithm. Given the bids , our
goal is to find the allocation that maximizes revenue. For each
set of nonnegative integers such that

, a dynamic programming algorithm is used to find out
the maximum revenue and the maximizing channel allocation
when channels are divided into secondary parts,

. Then, we maximize over all sets of to
find the optimal set .
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We now give the details of the algorithm. Fix
such that . Let denote
the maximum possible revenue from all participating networks
when primary parts and secondary parts of type ,

, are to be allocated and networks 1 are partici-
pating in the auction. More precisely, let be
the set of allocations
satisfying the following conditions, which parallel the condi-
tions in Lemma 2:

(11)

(12)

(13)

(14)

Then

Thus, is the maximum rev-
enue from networks when channels are di-
vided into secondary parts of type , for .
We now give a dynamic programming algorithm to find

.
The following expression is used for finding the values of

.

if
otherwise

(15)

The reason the equation holds is as follows. Since there is only
one network (network 1), the only possibility is to allocate all
parts to network 1. However, if , then , which
violates condition (11). Similarly, if , then ,
which violates condition (13). Hence, if or ,
then is set to .

The recursion (16) at the bottom of the page is used for
finding the values of for . In the
recursion, if primary parts and secondary parts of type ,

, are allocated to network , then it is willing to
pay , and the maximum revenue obtainable from
networks for the remaining parts is by definition

. Moreover, since
secondary parts of type are available and by (13).

Therefore, for , and similarly

. Equation (16) follows by maximizing the
revenue from networks over all possible values of

.
A feasible channel allocation that achieves the maximum

revenue for the fixed values
considered can be found from the array by

repeatedly finding the that achieve the maximum
in the right side of (16).

For all sets such that ,
and the revenue maximizing al-

location are found as explained above. Then, the optimal set
is found as follows:

(17)
The revenue maximizing allocation with

is the one that maximizes revenue over all channel
allocations.

B. Running Time

The maximum in (16) is taken over
values. Moreover, is calculated for from
1 to , from 0 to , from 0 to from
0 to , that is (since for ),
for values. Finally, this process is
carried out for all such that .
Hence, the time to compute is

Thus, the running time is , which is polyno-
mial for fixed .

C. Space Complexity

Each network submits its bid for
and all sets satisfying

. There are such bids. Summing
over the networks, the storage requirement for bids is

.
To find the revenue maximizing allocation for a fixed set

, we need to store the array ,
, , ,

. This requires amount of storage.
Once the allocation has been found, only the allocation and the
value of can be stored, which re-
quire and storage, respectively, and the rest of the
array can be discarded.

(16)
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We need to store the revenue maximizing allocation and the
value for all sets
such that . The number of such sets is

, so the storage required is .
Thus, the maximum amount of storage required at any

given time during the entire algorithm to compute is
.

VII. GREEDY 2-APPROXIMATION ALGORITHM

The scheme described in Section VI is computationally
tractable for fixed , the number of possible cardinalities of
the set of secondary networks on a channel. However, if is
allowed to grow, the set of bids of a network is exponential in
size as shown in Section VI-C, and hence the scheme is compu-
tationally intractable. In this section, we first provide a compact
bidding language for the case with large . We conjecture that
under this bidding language, the access allocation problem is
NP-hard. We give a basis for this conjecture in Section IX. We
provide a polynomial-time algorithm that approximates the
maximum revenue of the auctioneer within a factor of 2.

We describe the bidding language in Section VII-A. In
Section VII-B, we introduce residual bid functions, a concept
used in the approximation algorithm. We describe the algorithm
in Section VII-C and prove that it achieves an approximation
ratio of 2 in Section VII-D. Finally, in Section VII-E, we
describe an efficient implementation of the algorithm.

A. Bidding Language

Consider the model in Section V with the following changes.
Let the bandwidth of each of the channels be b/s. We as-
sume that the primary network on a channel uses the channel
for an expected fraction of time , where . When
auctions are repeated periodically to assign spectrum, can be
estimated based on long-term measurements of the primary net-
works’ channel usage. Alternatively, it can be estimated via sim-
ulations. Since secondary networks can use the channel when-
ever the primary is not using it, an expected bandwidth of

is available on a channel for the secondary networks. So
when secondary networks share a channel, each one of them
can get an expected secondary throughput of on the
channel.3

In this section, we allow a network to express bids as a func-
tion of the number of channels on which it is primary and
its total expected secondary throughput on all channels.
Note that

(18)

In the sequel, for brevity, we simply say secondary throughput
instead of expected secondary throughput. Moreover, we as-
sume that the utility, and hence the bid , of each net-

3Note that an expected bandwidth of at least is available to each of

the � secondary networks. If some of them do not use this full bandwidth,
then more than is available to the other networks.

work when it is primary on channels and has units of
secondary throughput, is separable, i.e., of the form

(19)

where is its bid for being primary on channels and
is its bid for units of throughput as a secondary net-

work. This assumption is a good approximation since networks
transmit different kinds of traffic (delay-sensitive and elastic, re-
spectively) as a primary and secondary network.

Under this assumption, the access allocation problem sepa-
rates out into two independent problems: allocating the primary
parts and allocating the secondary parts. The problem of allo-
cating the primary parts can be optimally solved in
time using the dynamic programming algorithm in Section VI
with . In this section, we focus on giving a 2-approxima-
tion algorithm for the problem of allocating the secondary parts.
In the rest of the section, “revenue” refers to the auctioneer’s
revenue from selling the secondary rights on the channels.

Assume that is a concave increasing function for each
network . We use piecewise linear concave functions to com-
pactly represent the bid functions of the networks. They can be
used to closely approximate arbitrary concave functions [17]
and have been previously used in the context of spectrum auc-
tions in [6]. Each network specifies its bid for at most dif-
ferent levels of secondary throughput, for a positive integer .
More precisely, let be a positive integer, and let

(20)

For , network specifies , which is its
bid for units of secondary throughput. Network ’s bid for

units of secondary throughput, where , is
found by linear interpolation

(21)

Note that are the breakpoints of the piecewise
linear function .

We assume that for each network , , that
and that

(22)

Since is the total secondary throughput available on
the channels, the second assumption means that network ’s
bid for any amount of secondary throughput on the channels
can be found by linear interpolation.

B. Residual Bid Functions

Our algorithm uses the following concept.
Definition 2: Let . The -residual bid function of net-

work is the function given by

(23)
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We will sometimes say “the residual bid function after
accounting for ” instead of the -residual bid function. Infor-
mally, once network has been allocated units of secondary
throughput, acts as its bid function for allocations of
additional secondary throughput. The following lemma gives
some simple properties about the -residual bid function.

Lemma 3: Let be the -residual bid function of net-
work for some . Then:

1) ;
2) is a piecewise-linear concave increasing function of

.
Proof:

by concavity of . Hence

which proves part 1.
Now, is piecewise-linear, concave, and increasing by

assumption. Thus, is a piecewise-linear, concave ,and
increasing function of as well. Part 2 follows by (23).

The significance of the -residual bid function is given by the
following lemma.

Lemma 4: Suppose the bid function of network is ,
and it is successively allocated secondary throughputs of

. Let denote the -residual bid
function of network , for . Then

(24)

Proof: By definition

which implies that

(25)

Similarly

(26)

(27)

where the second step follows from (25). Similarly proceeding
for steps, we get the desired result (24).

Thus, the significance of the residual bid function is that if
a network is successively allocated chunks of sec-
ondary throughput (e.g., by successive steps of an algorithm),
then we can keep track of its residual bid function after every
allocation so that the extra money that network is willing to
pay for the th allocation is simply . Moreover, this
tracking can be done using the update rule in part 1 of the fol-
lowing lemma to calculate from .

Lemma 5: Let and be the -residual bid function
and -residual bid function of network , respectively.
Then:

1) ;

2) .
Proof:

Hence, is the -residual bid function corresponding to the
bid function . Thus, by Lemma 3, .

C. Algorithm Description

We now describe the greedy 2-approximation algorithm.
The algorithm determines , the set of secondary networks
on channel for . Denote by , the amount
of secondary throughput allocated by the greedy algorithm to
network in the th channel. Since each network in equally
shares the secondary throughput on channel , we have

if

else.
(28)

Let be the -residual bid function of net-
work , that is, its residual bid function after accounting for the
secondary throughput allocated to it in channels 1 to . Note that
for each network , is the bid function .

The greedy algorithm successively determines , for
, one channel at a time. Suppose the algorithm has de-

termined , and for each network , has found
the residual bid function . It assigns channel using the
following steps:

STEP1: For , find the maximum increase
in revenue obtainable from channel by dividing the
channel into secondary parts using the following rule.

Sort the set of numbers

into decreasing order. Let denote the th

largest element. Then, is given by

STEP2: Find the maximum among .
Suppose is the maximum. Then, divide the
th channel into secondary parts. On the th

channel, the networks with the largest values

, which were de-
termined in STEP1, become secondary networks. This
determines .
STEP3: For each , find the function from its
bid function and . Note that is given
by (28).

Comments on Algorithm:
1) Once channels have been allocated, steps 1

and 2 allocate channel so as to obtain the maximum pos-
sible increase in revenue over the revenue from channels

. This property will be crucial in proving the
approximation ratio of 2.
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2) In Step 3, for conceptual clarity, we have not presented the
most efficient implementation. Specifically, the function

need not be computed from scratch. It can be found
iteratively from using the update rule in part 1 of
Lemma 5. See Section VII-E for details.

D. Approximation Ratio

Theorem 3: Let be the maximum possible revenue under
any allocation of the rights to be secondary networks on the

channels, and let be that achieved by the above greedy
algorithm. Then, .

Proof: Let be the increase in revenue obtained by the
greedy algorithm from allocating the th channel. By part 2 of
Lemma 5

(29)

From the discussion after Lemma 4, it follows that after chan-
nels were allocated, the extra money network was
willing to pay for its share in channel is . More-
over, if the greedy algorithm were to allocate the th channel to
the same set of networks, , to whom it actually allocated
the st channel, then we would have the following.

1) Each network in would have received on the th
channel, a throughput of , which equals by

(28).
2) After channels were allocated, the extra money

network would be willing to pay for its share in channel
would have been , and hence by (29),

3) the increase in revenue from the th channel would have
been at least .

However, the actual increase in revenue from the th channel,
, is, by definition of the greedy rule, the maximum possible

from allocating the th channel. Hence, . Thus, we
get

Since , we get

(30)

Now, let be the total secondary throughput allocated by the
optimal algorithm to network and be that allocated by the
greedy algorithm. Also, let be the set of secondary networks
on the th channel, , in the optimal allocation.
Next, we will upper-bound , the excess revenue of
the optimal allocation over the greedy allocation. To this end,
for each network , we account for its payment for

, the excess secondary throughput if any, of the optimal
allocation over the greedy algorithm’s allocation, by accounting
for its payments for the chunks . Here, is
the contribution of channel to the excess , once

the contributions of channels have been accounted
for, and is given by

(31)

(32)

We motivate the expressions above. The second term in the
in (31) is equal to the as-yet unaccounted for excess, if any, ob-
tained by subtracting the contributions of chan-
nels from the total excess throughput

. Also, since channel is shared by networks,

. Hence, is the minimum of the two terms in (31).
From (31) and (32), it can be shown using a simple, yet te-

dious, case-by-case analysis that

(33)

Let be the -residual bid function
of network .

Now

by (33) and since is increasing

by Lemma 4

(34)

where the last step follows since if by (32) and
since .

Now, by the definitions of and , part 2 of
Lemma 5, and (34), we get

(35)

Now, by (31) and (32), and since is
increasing by part 2 of Lemma 3, we get the following inequality
from (35):

(36)

Now, we have

(37)
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because when the greedy algorithm was about to allocate
channel , the increase in revenue it would have got from the
channel if it allocated the channel to the networks in the
set is equal to the expression on the left-hand side of (37)
(refer to Lemma 4 and the discussion immediately following
it). This expression is at most since the greedy algorithm
allocates the th channel so as to maximize the increase in
revenue from it.

By (36) and (37), we get

from (30)

The result follows.

E. Efficient Implementation

We now describe an efficient implementation of the greedy
algorithm.

We first discuss how to store the function so that
can be found for any in time. Recall from part 2
of Lemma 3 that is piecewise-linear. Similar to the repre-
sentation of the bid function , is stored by storing its
value at values , which are the breakpoints of

the piecewise-linear function . Also, , where
is found by linear interpolation similar to (21)

(38)

Now, the numbers and the numbers

can be stored in two sorted arrays, so

that for any , and can be accessed in constant
time. Also, since (see the last step in the steps
below), given any , we can find such that
by binary search [13] in time. Once this is found,
we can find in constant time using (38).

Suppose the algorithm has allocated the first channels
and hence has computed and .
Also, suppose the th channel has been divided into sec-
ondary parts. While allocating channel , in Step 3, can be
found as follows from using the update rule in part 1 of
Lemma 5. For network , first find out such that

Then, find using (38). Next, perform the fol-
lowing steps:

for do

end for
.

The second statement in the for loop implements the update
rule in part 1 of Lemma 5. Also, it can be checked that the first
statement in the for loop appropriately sets the breakpoints of
the function .

It can be shown that the running time of the greedy algorithm
is when the presented implemen-
tation is used.

VIII. SIMULATIONS

In Section VII-D, we proved that the greedy approximation
algorithm achieves an approximation ratio of 2. In this section,
we show via simulations that in fact, for a variety of scenarios,
the greedy algorithm achieves the optimal revenue.

In all our simulations, we used the values ,
, , and . First, we simulated

the case in which the bid function of every network is different
and is a piecewise-linear approximation of a quadratic function.
Let , , and be parameters such that

and . Consider the following quadratic
function:

(39)

The bid function of network is chosen to be a piece-
wise-linear approximation of the above function, where the pa-
rameters are uniformly spaced in the interval

(40)

With these bid functions, we found the revenue using the
greedy approximation algorithm and the optimal revenue using
the dynamic programming algorithm in Section VI. We used
small values for and since the running time of the dy-
namic programming algorithm grows rapidly with these param-
eters (see Section VI-B). For different values of the parameters

, , , and , we evaluated the revenues of the
greedy algorithm and the optimal revenue for varying from 5
to 60 and found that the greedy algorithm achieves the optimal
revenue.

Next, we considered the case in which there are two classes of
networks and the bid function of each network in the same class
is the same. The bid functions of networks
and of networks are piecewise-linear approx-
imations of the following exponential functions, respectively

(41)

(42)

where , , , , and are parameters. For different
values of these parameters, we evaluated the revenues of the
greedy algorithm and the optimal revenue for varying from 5
to 60 and found that the greedy algorithm achieves the optimal
revenue.

Thus, although the worst-case approximation ratio of the
greedy algorithm is 2, in a variety of scenarios, it achieves the
optimal revenue.
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Nevertheless, we could construct some pathological exam-
ples in which the greedy algorithm achieves a revenue equal to

times the optimal revenue and is therefore strictly suboptimal.
We now describe one such example. Let , , ,

, , and . The bid function of net-
work , , is given by

if
if

(43)

where , , and is a small positive
constant. It can be checked that the greedy algorithm assigns
channel 1 to networks 1 and 2 and channel 2 to networks 1, 2,
and 3 and achieves a revenue of . The optimal
algorithm assigns each one of channels 1 and 2 to networks 1,
2, and 3 and achieves a revenue of . Note that

equals in the limit as tends to 0.
In summary, the greedy algorithm is suboptimal only for

pathological input instances and is optimal for a large variety
of “well-behaved” inputs; thus, it performs well in practice.

IX. FUTURE WORK

We now describe some directions for future research. We
conjecture that the access allocation problem described in
Section VII-A is NP-hard. Our conjecture is motivated by the
facts that: 1) the bid function of each network can be an arbitrary
real-valued function satisfying the conditions in Section VII-A;
2) the number of secondary networks on each channel can be
selected from a possibly large set ; and 3) the
set of secondary networks on each channel can be an arbitrary
subset of the set of all networks. The proof of the conjecture
remains an open problem for future research.

Also, we considered the case when the channels are iden-
tical. The extension to nonidentical channels remains an open
problem.

When the auctioneer’s objective is to maximize its revenue,
note that the algorithms that we designed for the access alloca-
tion problem can be used to maximize the auctioneer’s revenue
given the bids of the bidders. To compute its bid, a bidder

may use different strategies, which it thinks will maximize its
net utility in (1). For example, when auctions are conducted pe-
riodically, a bidder may compute its bid based on its knowledge
of the outcomes of previous auctions. An open problem is the
design of allocation strategies for the auctioneer and bidding
strategies for the bidders when each player chooses its strategies
based on the outcomes of previous auctions in order to influence
the other players to act to its own advantage.
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