Exploration of Memory Hierarchy Configurations for
Efficient Garbage Collection on High-Performance
Embedded Systems

Jose Manuel Velasco
DACYA-Complutense
Univ. of Madrid (UCM)

Avenida Complutense s/n,
28040 - Madrid, Spain.

mvelascc@fis.ucm.es

ABSTRACT

Modern embedded devices (e.g., PDAs, mobile phones) are now
incorporating Java as a very popular implementation language in
their designs. These new embedded systems include multiple ap-
plications that are dynamically launched by the user, which can
produce very energy-hungry systems if the interactions between the
applications and the garbage collectors (GCs) are not properly un-
derstood. In this paper we present a complete exploration, from
an energy viewpoint, of the different possibilities of memory hi-
erarchies for high-performance embedded systems when used by
state-of-the-art GCs. Moreover, we explore the potential pefor-
mance improvement and energy reductions of using a scratchpad
memory directed by the virtual machine to store critical code and
data structures of the GCs; thus, enabling up to 40% performance
improvements and 41% leakage reduction with respect to classical
cache-based memory architectures. Our experimental results show
that the key for an efficient low-power implementation of Java Vir-
tual Machines (JVM) for high-performance embedded systems is
the synergy between the GC choice, the memory architecture tun-
ing, and the inclusion of power management schemes controlled by
the JVM, exploiting knowledge of the used GC.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection, Storage hierarchies

General Terms

Design, Measurement, Performance

Keywords

Garbage collection, Java, Memory exploration, Embedded systems

1. INTRODUCTION
Java is becoming one of the most popular choices for embed-
ded portable environments. In fact, currently there are more than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GLSVLSI’09, May 10-12, 2009, Boston, Massachusetts, USA.

Copyright 2009 ACM 978-1-60558-522-2/09/05 ...$5.00.

David Atienza
Embedded Systems
Laboratory-EPFL
EPFL-STI-IEL-ESL
1015 Lausanne, Switzerland
david.atienza@epfl.ch

Katzalin Olcoz
DACYA-Complutense
Univ. of Madrid (UCM)

Avenida Complutense s/n,
28040 - Madrid, Spain.
katzalin@dacya.ucm.es

5 millions of Java code developers and it is expected that the num-
ber of Java-based systems, such as mobile phones, PDAs, etc. will
increase [19]. One of the main reasons for this large growth is
that the use of Java in high-performance embedded systems allows
developers to design new portable services, which can effectively
run in almost all the available platforms without the use of special
cross-compilers to port them, as happens with other languages (e.g.,
C or C++). Nevertheless, the abstraction provided by Java creates
an additional major problem, which is the performance degradation
of the system due to the inclusion of an additional component, i.e.,
the Java Virtual Machine (JVM), to interpret the native Java code
and execute it onto the underlying architecture.

In recent years, a very important research effort has been done
for Java-based systems to improve performance up to the level re-
quired in new embedded devices. This research has been mainly
performed in the JVM. More specifically, it has focused on opti-
mizing the execution time spent in the automatic object reclama-
tion or Garbage Collector (GC) subsystem, which is one of the
main sources of overall performance degradation of the system. As
a result, state-of-the-art GCs (e.g., generational GCs, incremental
mark-and-sweep algorithms) have reduced their latency of response
and the amount of time that the system needs to be stopped to com-
pact the whole list of unused objects in Java-based designs. How-
ever, the increasing need for low-power systems limits very signif-
icantly the use of Java for new embedded devices since GCs are
usually efficient enough in performance, but very costly in energy
and power. Thus, optimized (from the energy viewpoint) automatic
dynamic memory reclamation mechanisms and methodologies to
define them have to be proposed for a complete integration of Java
in the design of forthcoming high-performance embedded systems,
which include tight low-power constraints for portability purposes.

In this paper we present a detailed exploration of energy vs per-
formance memory hierarchy trade-offs for embedded systems in
presence of a complete range of different state-of-the-art GCs (e.g.,
generational GCs, mark-and-sweep, etc.), which is the first step
to define suitable memory management optimizations for energy-
aware Java-based embedded systems. Then, we present two tech-
niques for reducing the energy consumption of the whole mem-
ory system: using an instruction scratchpad memory directed by
the virtual machine and using GC information for leakage energy
consumption reduction. Our results show up to 40% performance
improvements and 41% leakage reduction with respect to classical
cache-based JVM memory architectures.

The rest of the paper is organized as follows. In Section 2 we
summarize related work in the area of JVM design and GCs opti-
mizations. In Section 3 we describe the experimental setup used

to investigate the energy consumption features of the various mem-
ory hierarchies possibilities, the representative state-of-the-art GCs
used and the considered applications. In Section 4, we present the
experimental results. Finally, in Section 5 we draw our conclusions.

2. RELATED WORK

Nowadays a very wide variety of well-known techniques for unipro-

cessor GCs (e.g., reference counting, mark-sweep collection, copy-
ing GCs) are available in a general-purpose context within the soft-
ware community [11]. A lot of research on GC policies and archi-
tectural exploration has mainly focused on performance [3]. Our
work extends this research for an overall memory hierarchy explo-
ration of high-performance embedded systems.

Eeckout et al. [7] investigate the micro-architectural implications
of several virtual machines including Jikes. In this work, each vir-
tual machine has a different GC, so their results are not consistent
related to memory management. Similarly, Sweeney et al. [18] con-
clude that GC increases the cache misses for both instruction and
data. However, they do not analyze the impact of different strate-
gies in the total energy consumed in the system as we do. In a
recent study, [5] explores the performance and power consumption
of the overall Java virtual machine to propose microarchitectural
changes, but for much larger memories in desktop and server sys-
tems. Thus, their results are complementary to our analysis for
embedded systems.

Chen et al. [6] focus on reducing the static energy consumption
in a multi-banked main memory by tuning the collection frequency
of a Mark&Sweep-based collector that shuts off memory banks that
do not hold live data. The static leakage is decreased by turning
off the unnecessary banks. In [8], it is proposed a scratchpad al-
location scheme that is completely implemented inside the JVM,
which does not use compiler support, but this paper does not ex-
plore the effects in power consumption and does not explore dif-
ferent garbage collection algorithms. A more complete study re-
garding energy is performed in [4], which proposes two implemen-
tation strategies for allocating objects that can significantly reduce
the memory system energy consumption of Java applications. The
first strategy uses a part of the on-chip memory resources as a local
memory to achieve better performance than a cache-only architec-
ture, where the object allocation strategy is implemented using an
annotation-based approach and shown to be effective in improving
performance and reducing the memory system energy consump-
tion. The second strategy is object co-location, which exploits the
temporal locality already present in heap references to achieve bet-
ter spatial locality and less cache misses, with a subsequent energy
consumption reduction. The object co-location approach and the
use of local memories to reduce energy consumption is parallel to
our memory hierarchy exploration; thus, the previous mechanisms
can be additionally used in combination to our memory hierarchy
customization for high-performance embedded systems.

3. EXPERIMENTAL FRAMEWORK

In this section we first describe the overall simulation environ-
ment used to obtain detailed memory access profiling of the JVM
(for both the application and the collector phase), which is based
on cycle-accurate simulations of the original Java code of the ap-
plications under study. Then, we summarize the representative set
of considered GCs in our experiments and the set of applications
used as case studies.

3.1 Simulation Environment

Our simulation environment is depicted in Figure 1 and consists

Proposed Simulation Environment]

Dynamic SimpleScalar

Linux/ IA32

tcross-compiler

Jikes RVM
Linux/ PowexrPC

Simulation results
(instruction and data accesses)

analytical Cacti Model for 0.09um
(active/leakage power calculations)

Figure 1: Overview of the overall simulation environment

of three different parts. First, the detailed simulations of our case
studies have been obtained after modifying significantly the code
of Jikes Research Virtual Machine (RVM) from the IBM Watson
Research Center [9]. Jikes RVM is a Java virtual machine designed
for research. It is written in Java and the components of the vir-
tual machine are Java objects [10], which are designed as a mod-
ular system to enable the possibility of modifying extensively the
source code to implement different GC strategies and custom GCs.
We have used version 2.3.2 along with the Java Virtual memory
Management Toolkit (JVMTk) [9].

The main modifications in Jikes have been performed to inte-
grate in it the Dynamic SimpleScalar framework (DSS) [20], which
is an upgrade of the well known SimpleScalar simulator [2]. DSS
enables a complete Java virtual machine simulation by supporting
dynamic compilation, threads scheduling and garbage collection.
It is based on a PowerPC ISA and has a fully functional and ac-
curate cache simulator. We have included a cross-compiler [13] to
be able to run our whole Jikes-DSS system onto the Pentium-based
platform available for our experiments instead of the PowerPC tra-
ditionally used for DSS.

Finally, after the simulation in our Jikes-DSS environment, en-
ergy figures are calculated with an updated version (v4.1) of the
CACTI model [1], which is a complete energy/delay/area model,
scalable to different technology nodes, for embedded SRAMs and
that includes leakage as well as active power in the different compo-
nents of the memory cells. For our results of Section 4, we use the
.09um technology node. In the energy results for the SDRAM main
memory, we also include static power values (e.g., bank precharg-
ing, page misses.) derived from a power estimation tool of Micron
16 MB mobile SDRAM [14].

3.2 Studied State-of-the-art GCs

Next, we describe the main differences among the studied GCs
to show how they can cover the whole state-of-the-art spectrum of
choices in current GCs. We refer to [11] for a complete overview of
garbage collection techniques used in our experiments with Jikes [9].

First, we need to distinguish between the garbage collector and
the mutator, as described in Dijkstra’s terminology [11]. During
the collector phase, the JVM is executing the garbage collection al-
gorithm (distinguishing and reclaiming garbage), while the mutator
phase refers to the JVM executing the user application along with
its remaining tasks. We report the performance and energy results
for these two phases for all the considered GCs. In our study, all the
collectors fall into the category of GCs known as tracing stop-the-
world [11]. This implies that the running application (or mutator)
is paused during garbage collection to avoid inconsistencies in the
references to dynamic memory in the system. To distinguish the
live objects among the garbage, the tracing strategy relies on deter-

mining which objects are not pointed to by any living object. To
this end, it needs to traverse the whole relationship graph through
the memory recursively. The way of reclaiming the garbage pro-
duces the different tracing collectors of this paper. Inside this class
we study the following representative GCs for embedded devices:

- Mark-and-sweep (or MS): the allocation policy uses a set of
different block-size free-lists. This produces both internal and ex-
ternal fragmentation. Once the tracing phase has marked the living
data, the collector needs to sweep all the available memory to find
unreachable objects and reorganize the free-lists. The sweeping
of the whole heap is very costly and to avoid it in the Jikes vir-
tual machine, the sweep-phase is implemented as lazy [11]. This
means that the sweep is delayed up to the allocation phase. This is
a classical collector implemented in several Java virtual machines
as Kaffe [12], JamVM [15] or Kissme [16], and in the Virtual Ma-
chines of other languages as Lisp, Scheme or Ruby. It is also used
as a complement to traditional reference counting collectors [11],
like in the Perl VM or in the Python VM.

- Copying collector (SemiSpace or SS): it divides the available
space of memory in two halves, called semispaces. The objects
that are found alive are copied in the other semispace in order and
compacted. Finally, the references between the blocks and from
the root set are updated to the new semispace. Allocation can be
performed easily incrementing a pointer across the unused semis-
pace. Since both the new objects and the copied ones are allocated
into contiguous blocks, the memory shows little fragmentation. By
counterpart, this strategy entails other disadvantages that arise in
the reclaiming phase. The immortal data, during the time of an
execution, are scanned and copied repeatedly with the consequent
unproductive overhead. The available memory is reduced to half
and most of the time this space is wasted.

- Generational Collectors: in this kind of GCs, the heap is di-
vided into areas according to the antiquity of the data. When an
object is created, it is assigned to the youngest generation, the nurs-
ery space. As objects survive different collections they mature, that
is to say, they are copied into older generations. The frequency with
which a collection takes place is lower in older generations. In or-
der to operate correctly the virtual machine has a write-barrier for
instructions that can modify a pointer to an object. This way the
collector is able to follow the references of objects in the mature
generations on objects in the youngest generations without collect-
ing the mature spaces. These references are saved in the remem-
bered set. This task seems to entail an important overload and
makes the difference relative to the non-generational ones during
the mutator phase (see Section 4 for more details). Thus, collecting
generations instead of the full heap produces a bigger amount of
collections of much lesser cost.

We have experimented with a flexible nursery size generational
collector, which is usually known as Appel collector [11]. The
generational Appel collector divides the heap into two generations:
nursery and mature. When an object is created, it is assigned to
the youngest generation, the nursery space, in which all free space
is contained. When the nursery is full, the collector copies all sur-
viving objects to the mature space, and then reduces the nursery
size by the same volume. It repeats this process until the nursery
size falls below a certain threshold, at which point it performs a
full heap collection. The collector returns the freed space to the
nursery. In Jikes RVM, this threshold is fixed by default to 0.5 Mb.
This strategy has been proved to be the best performing one for
generational GCs [11].

The generational collector can manage the distinct generations
with the same policy or assign to each one different strategies. We
consider here two options. First, the GenCopy, which is a genera-

tional collector with semispace copying policy in both nursery and
mature generation. The SUN Java 2 Standard Edition (J2SE) JVM
by default uses a GC very similar to this one, with a Mark&Compact
strategy in the mature generation. Second, the GenMS, which is
a hybrid generational collector with semispace copying policy in
the nursery and mark-and-sweep strategy in the mature generation.
The Chives Virtual Machine [11] uses a hybrid generational collec-
tor but with three generations instead of only two.

- Copying collector with Mark-and-Sweep (or CopyMS in our
experiments): It is the non-generational version of the previous one.
Objects that survive a collection are managed with a mark-and-
sweep strategy and therefore they are not moved any more. Since it
is not generational it avoids the overhead instructions of the write
barriers in the mutator phase. It is the best performing considering
the number of collections, but all collections are full heap; Thus,
consuming more energy per collection.

In Jikes, these five collectors manage objects bigger than a cer-
tain threshold (by default 16K) in a special area. The JIMTK re-
serves for larger objects a region of the heap, the Large Object
Space (LOS). The new large objects are allocated in a Baker’s
tread-mill style [11], namely using a doubled linked list of fixed-
size blocks. Jikes also reserves space for immortal data and meta
data (where the references among generations are recorded, usu-
ally known as the remembered set). These special memory zones
are also studied in our experimental results.

Finally, although we study all the previous GCs with the purpose
of covering the whole range of options for automatic memory man-
agement, real-life Java-based embedded systems typically employ
MS or SS since they are initially the GCs that possess less complex
algorithms to implement. Thus, they theoretically put less pressure
in the processing power of the final embedded system and achiev-
ing good overall results (e.g., performance of memory hierarchy,
L1 cache behavior, etc.). We will demonstrate that generational
GCs achieve much better global results.

3.3 Case Studies

We have implemented the GCs presented in the previous subsec-
tion in the proposed experimental setup, and tested them while run-
ning the most representative benchmarks in the suite SPECjvm98 [17],
modeling a complex memory hierarchy, representative of latest high-
performance embedded devices. These benchmarks are launched
as dynamic services and extensively use dynamic data allocation.
The applications considered in our experiments are:

_222 mpegaudio: it is an MPEG audio decoder. It dynamically
allocates to up to 8 MB and 2MB in the LOS.

_201_compress: it compresses and then uncompresses a large
file. It mainly allocates objects in the LOS (18 MB) while it uses
only 4MB of small objects.

_202_Jess: it is the Java version of an expert shell system using
NASA CLIPS. It is compound fundamentally of structures of sen-
tences Sif-thenS. It allocates 48 MB (plus 4 MB in the LOS) and
most objects are short-lived.

_209_DB: builds an in-memory data base and operates on it. The
data base is a 1 MB file, which is resident in memory. It allocates
up to 224 MB of data.

_205_Raytrace: raytraces a scene into a memory buffer. It allo-
cates a lot of small data (155 MB + 1 MB in the LOS) with different
lifetimes.

_213_javac: it is the java compiler. It has the highest program
complexity and its data is a mixture of short and quasi-immortal
objects (35 MB + 3 MB in the LOS).

_228_jack: it is a Java parser generator with lexical analysis. It
allocates up to 480 MB of short lived data.

Global Access

——
col-L2 ===

col-data-L1

1.2e+11 | col-ins-L1 === -
mut-L2 E===1

mut-data-L1

mut-ins-L1

Testl - CopyMS 59 col]

Pl

8e+10 [4
MarkSweep 31 col

GenCopy 142|col
GenMS 124 col

number

S
6e+10 =
il ST

2e+10

=

12 4 12 4 12 4 1.2 4
Cache 32-256x4 heap 16 Mb

Figure 2: Cache memory hierarchy accesses for all studied GCs

_227_mitrt: it is a dual-threaded version of raytrace. It can allo-
cate up to 355 MB of data.

The suite SPECjvm98 offers three input sets(referred as s1, s10,
s100), with different data sizes. In this study we have used the
medium input data size, represented as s10, as size s100 is not rep-
resentative of the different possible input sets and may give too
much influence to the garbage collection phase with respect to re-
alistic working conditions. The simulations of the different bench-
marks correspond to multiple executions of the different bench-
marks to reach an average execution time of 10 minutes, in order
to reach a stationary situation regarding processing and memory
utilization. Furthermore, to better explore the influence of garbage
collection, the considered execution mode allowed us to run a pre-
defined number of times the different benchmarks without detonat-
ing a memory flush between them. Finally, our results report av-
erage figures from 10 iterations of our experimental setup in each
case, where all the results were very similar.

4. EXPERIMENTAL RESULTS

This section shows the application of the previously explained
experimental setup (see Section 3 for more details) to perform a
complete study of automatic garbage collection mechanisms for
high-performance embedded systems according to their key met-
rics (i.e., energy, power and performance of the memory subsys-
tem). In our experiments, the memory architecture consists of three
different levels: an on-chip SRAM L1 memory (with separated D-
cache/I-cache), an on-chip unified SRAM L2 memory and an off-
chip SDRAM main memory, both distinguishing leakage and dy-
namic power in a .09um technology node (Section 3). We have
run our experiments with four different L1 sizes: 8K, 16K, 32K
and 64K, using a block size of 32 bytes and testing associativity
between 1-way and 4-ways, typical for high-performance embed-
ded systems with low-power constraints. The experiments have
been repeated using different blocks replacement policies, namely,
Least Recently Used (LRU), First-In First-Out (FIFO) and random,
but only the LRU results are shown in the paper due to space lim-
itations. Then, the L2 size is always fixed to 256 KB, with a basic
block size of 128 bytes, using a 4-way associativity, and an LRU-
based replacement policy. Finally, the main memory size is 16 MB.

4.1 Pressure of GCs in the cache memory or-
ganization
Figure 2 indicates the number of accesses of the mutator and col-

Gilobal Cycles

——
col-ciclos ==
25e+11 | mut-ciclos

2e+11 CopyMS 59 col 1

1.5e+11 |- B

number

p 31 col

1es11 GenCapy 142|col

GenMS 124 col

5e+10

12 4 12 4 1.2 4 1.2 4
Cache 32-256x4 heap 16 Mb

Figure 3: Global execution cycles for different GCs

lector to the different caches, differentiating both instructions and
data accesses, and reporting the number of collections for each GC
(31 for MarkSweep, 59 for CopyMS, 124 for GenMS and 142 for
GenCopy). The configuration shown uses 32 KB for the L1 data
and instruction caches, but the results are very similar for other
cache sizes. These results sweep the associativity range from 1
to 4. As this figure shows, the mutator accesses are very simi-
lar for all the GCs, but the number of accesses to L1 caches (for
both instructions and data of the mutator and collector) are always
smaller in the generational collectors, i.e., approximately 33% less
for GenMS than CopyMS. The reason is that, although the gener-
ational GCs have a much larger amount of collection phases, they
are mainly local (i.e., covering in the end only a small percentage of
the heap), while the non-generational collectors perform complete
heap collections. Then, the number of accesses to the L2 caches
decreases linearly when the L1 size increases, but there is a more
important reduction effect in the number of accesses when the as-
sociativity of the L1 cache increases for a certain size. Indeed, for
32 KB, comparing a direct cache with a 4-way one, the number
of L1 misses can vary up to 65% for the different configurations,
while the GC algorithm does not seem to have a large influence.
This conclusion is valid for all the tested L1 cache sizes, as a 4-
way configuration achieves a 45% decrease with respect to a direct
cache for 8 KB, 50% for 16 KB and 75% for 64 KB. Furthermore,
L2 misses are smaller than 2% in all the cases, and L1 is the main
source of power consumption reductions in the different memory
configurations.

Then, as Figure 3 shows for 32 KB L1-caches (other L1 cache
sizes show similar trends), the number of total cycles for the ex-
ecution of the application and the virtual machine is less for gen-
erational collectors and decreases significantly in each type of GC
when the associativity increases, namely, 50% less execution time
for GenMS with respect to CopyMS. Similarly, Figure 4 shows that
the energy consumption (distinguishing leakage and dynamic parts)
for the different levels of the memory hierarchy (L1, L2 and main
memory), for both the mutator and the GC, is significantly smaller
in generational collectors than in more classic non-generational
GCs.

However, regarding energy consumption, as Figure 4 indicates,
the decrease in cache misses as the associativity increases is not
large enough to compensate for the larger energy per access to
caches with higher associativity. Therefore, the energy consump-
tion increases more with associativity than execution time decreases.

Global Energy

col-Main-Memory Iil‘
L col-L2 4
1.6e+10 col-data-L1 =
col-ins-L1 ===
L doso mut-Main-Memory
4e+10 | mut-L2 b
CopyMS 59 col mut-data-L1 ===
mut-ins-L1 ===
1.2e+10 1

MarkSweep 31 col
1e+10 |- GenCopy 142 col

u GenMS 124 col M
8e+09 -
6e+09 Q:ﬁ F

4e+09
0
12 4 12 4 12 4 1.2 4

Cache 32-256x4 heap_16 Mb
Figure 4: Energy breakdown for a 32KB L1-cache

njul

4.2 Exploration of energy-performance trade-

offs for cache memory configuration in GCs

The previously observed conflicting trends between energy and
performance for different memory configurations create a very in-
teresting design space to be explored for each type of GC. In Fig-
ure 5, we present the different energy and performance trade-offs
for the best collection algorithm, GenMS. In this figure, the total
execution time (in seconds) is depicted against the global energy
consumption of the memory (in J) for the twelve more relevant L1
configurations explored, namely, L1 data and instruction caches us-
ing associativity values of 1, 2 and 4, with different total sizes 8K,
16K, 32K and 64K. The Pareto-optimal curved is composed of the
points 7, 5, 8, 6 and 9 in Figure 5. Similar Pareto-optimal curves
have been obtained for the other GC algorithms explored. These re-
sults indicate that the lowest L1 cache energy solution is obtained
using a direct cache of 32 KB (point 7 in the figure), followed by a
2-way cache of 16 KB (point 5) and a 2-way 32 KB (point 8). Con-
versely, the fastest solutions are always the ones corresponding to
both sizes with 4-way associativity (points 6 and 9). Furthermore,
the 4-way 64KB L1 cache (point 12) is only slightly faster than the
previous one of 32 KB (less than 5%), but it consumes 40% more
energy than the other solutions. Thus, although theoretically it can
be considered part of the Pareto curve, it cannot be considered a
good solution for embedded systems.

4.3 Leakage reduction opportunities in GCs

In the previous set of results, the generational GCs have shown to
be the best ones regarding overall energy consumption. Indeed, this
effect is the result of performing a large number of local garbage
collections instead of global ones. Furthermore, this type of GCs
use write barriers to remember the references to the explored parts
of the mature region, the stored large objects (LOS region) and the
immortal objects stored [11]. Therefore, the main memory devoted
to store these elements is not accessed during the non-global col-
lections, except the phase when the pointers to these regions are
updated, which occurs when the part of the stack that stores the
write barriers is processed. Hence, apart from the few main mem-
ory banks that store the nursery generation, nursery reserve and the
part of the stack with the memory barrier references, the rest of
the main memory banks can be put in low power mode, showing
important leakage power reductions in this type of GCs.

First, as shown in the first column of Table 1 for GenMS, 70%
of the main memory energy consumption of the GC is static. The
second columns shows the percentage of saved leakage power. For

Collector GenMS Global Energy <-> Global Time
700 T T T T T T T
1 1-> L1 8K LRU
2->L18K2LRU
3->L18K4LRU
4->L1 16K LRU
5-> L1 16K 2LRU
6-> L1 16K 4LRU
600 | 7-> L1 32K LRU 4
7 8-> L132K 2LRU
9-> L1 32K 4LRU
10-> L1 64K LRU
11-> L1 64K 2LRU 7
12-> L1 64K 4LRU

550 | 310

Time Seconds

500 - B

450

400 L L L L L L L

Energy juls

Figure 5: Memory energy consumption (in J.) versus Global
Time (in sec.) for the GenMS collector

GenMS, more than 60% of the leakage consumption of the GC can
be saved. Thus, we reach main memory energy savings of 24%, as
we use the low-power mode of the memory banks devoted to the
mature generation, immortals and LOS during the local collection
phases.

Furthermore, a similar (but even more aggressive) leakage power
optimization approach, controlled by the JVM, can be applied on
copy-based generational GCs. In this type of GCs, the available
space is divided in two halves [11]. In the first half, a continu-
ous assignment of objects is done, and the second half is used to
copy the objects that survive the collection. Hence, in particular
in the case of GenCopy, while the mutator is running, no access
can occur to the main memory space reserved to copy the nursery
generation and the mature generation, which enables shutting down
these memory banks. Therefore, as Table 1 shows, more than 40%
gains in overall main memory power reductions can be achieved for
GenCopy, since this GC enables to shut-down the memory banks
both in the case of the mutator and collector: using the low-power
mode of the memory banks devoted to reserves during the muta-
tor, as well as the memory banks devoted to the mature generation,
immortals and LOS during the collector phase.

These results show very clear opportunities for leakage power re-
ductions in JVM by using the knowledge of the specific GC mech-
anism used, in combination with the low-power technology fea-
tures added to the latest SDRAM memories [14] available for high-
performance embedded systems. Thus, further research in the fu-
ture needs to be performed in this area.

4.4 Exploiting scratchpad memories in GCs

According to the misses penalties observed by the different cache
memories (Section 4.1), in this section we assess the potential ben-
efits (in performance increase and energy consumption reduction)
of including a scratchpad memory that is controlled by the JVM.
In particular, after a design time analysis, we have included in the
JVM a control of the segregation of the GC virtual machine in-
structions stored in the different memories, such that we can use
the scratchpad memory to store the most accessed methods of the
collector while its execution occurs, and we can disable the scratch-
pad during the mutator phase. Thus, few conflicts exist between
the mutator and the collector during the execution. Hence, Figure 6
and Figure 7 show the energy consumption and execution cycles of
a 32-KB direct-mapped configuration (corresponding to the low-
est energy solution in the design space) with respect to the same

Leakage % (of energy) Leakage Reduction % (of total leakage) Final Overall Reduction %
mutator collector mutator collector final
GenMS 20.7 70.1 0 62.5 24.6
GenCopy 20.4 49.5 23 59.2 41.2

Table 1: Summary of energy reduction of main memory due to leakage reduction for different GCs

Colection Energy Consumption Reduction %

oci med Ocle ochih

21

a0 !

a0 _ L

=
oo (oo e oo |o o ‘ oo ‘ O I I T
Fe I I~ N O O O I A O v I I I I I
=] w) =t =] w) =t =] w o =t o« w) =t
=lm & =l=m 13 = lw | & = lm &
Matk Sweepn Copy s Gent s GenCopy

Figure 6: Memory energy consumption of the collector for dif-
ferent scratchpad sizes, with a 32 KB direct-mapped L1 cache

O Colector Cicles Reduction %

i

0 —

=)
a5F
asp

asp

G45P

o | o
[]
@ | &
= |l m

G45P
G45P
G45P

M arkSweep

Figure 7: Cycles of the collector for different scratchpad sizes,
with a 32 KB direct-mapped L1 cache

configuration after adding an scratchpad of 8 KB, 16 KB, 32 KB
and 64 KB. The results for each GC algorithm are normalized to
the only-cache configuration for the same GC algorithm. This ap-
proach achieves a significant reduction in the GC energy consump-
tion (50%) and execution time (15%), which saturates with the 64-
KB scratchpad configuration, since most of the GCs accesses are
already captured in this scratchpad size, and further increases in the
size of the scratchpad only produce a larger overhead per access,
but not a significant reduction in the amount of L1 cache misses.

5. CONCLUSIONS

Due to the portable nature of Java applications, new high-performance

embedded devices are now including Java in their designs as one of
the most popular implementation languages. However, new com-
plex dynamic embedded applications (e.g., multimedia) demand
large processing power and possess specially energy-hungry fea-

tures for these latest embedded devices. Therefore, JVMs should
be designed trying to minimize energy consumption while preserv-
ing a minimum level of processing power. In this paper we have
shown that the GC is a critical element in the overall amount of
energy consumed by the JVM. Also, we have evaluated the im-
portance for energy consumption of the interactions between the
GC choice and the underlying memory hierarchy configuration.
In particular, we have presented a complete energy-performance
trade-off exploration of the different possibilities of memory hi-
erarchies for high-performance embedded systems when used by
state-of-the-art GCs. In addition, we consider the potential bene-
fits of including an scratchpad memory in the memory hierarchy
of high-performance embedded systems, controlled by the JVM to
store critical code and data structures of the GCs, which optimize
the energy and performance figures of the GCs, by 50% and 15%,
respectively, in comparison to classical cache-based memory ar-
chitectures. Furthermore, our experimental results have shown that
up to 40% performance improvements and 41% energy reduction
can be achieved in the main memory by efficiently exploiting the
low-power mode in the banks of the latest memories. All in all, effi-
cient low-power implementation of JVM can be achieved for high-
performance embedded systems by exploiting the synergy between
the specific GC algorithm used and the inclusion of power manage-
ment schemes, exploiting the hardware features of latest embedded
memories, controlled by the JVM.

6. REFERENCES

[1] V. Agarwal, et al. The effect of technology scaling on microarchitectural
structures. Tech. Report TR2000-02, University of Texas at Austin, USA, 2002.
[2] T. Austin. Simple scalar llc, 2004. http://simplescalar.com/.
[3] S. Blackburn, et al. Myths and reality: The performance impact of garbage
collection. In Proc.ICMMCS, 2004.
[4] S. Kim, et al. Energy-efficient Java execution using local memory and object
co-location In IEE Proc-CDT, 2004.
S Hu, et al. Impact of virtual execution environments on processor energy
consumption and HW adaptation. In Proc. VEE, 2006.
[6] G. Chen, et al. Tuning garbage collection for reducing memory system energy in
an embedded java environment. ACM TECS, November 2002.
[7]1 L. Eeckhout, et al. How java programs interact with virtual machines at the
microarchitectural level. In Proc. OOPSLA, 2003.
[8] N. Nguyen, et al. Scratch-pad memory allocation without compiler support for
java applications. In Proc. CASES, 2007.
[9] IBM. The jikes’ research virtual machine user’s guide 2.2.0., 2003. http:
//oss.software.ibm.com/developerworks/oss/jikesrvm/.
[10] The source for java technology, 2003. http://java.sun.com.
[11] R.Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. J.Wiley and Sons, 2000.
[12] Kaffe. A Java virtual machine, 2005. http://www.kaffe.org/.
[13] D. Kegel. Building and testing gcc/glibe cross toolchains, 2004.
http://www.kegel.com/crosstool/.
[14] ZBT@ sram and sdram products, 2006. http://www.micron.com/.
[15] Sourceforge. Jamvm - a compact java virtual machine, 2004.
http://jamvm.sourceforge.net/.
[16] Sourceforge. Kissme java virtual machine, 2005.
http://kissme.sourceforge.net.
[17] SPEC. Specjvm98 documentation, March 1999.
http://www.specbench.org/osg/jvm98/.
[18] P.F Sweeney, et al. Using HW performance monitors to understand the
behavior of java applications. In Proc. VM, 2004.
[19] D. Takahashi. Java chips make a comeback. Red Herring, 2001.
[20] The Univ. of Massachusetts Amherst and the Univ. of Texas. Dynamic simple
scalar, 2004. http://www—-ali.cs.umass.edu/DSS/index.html.

[5

