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ABSTRACT
Chip Multiprocessor (CMP) memory systems suffer from the ef-
fects of destructive thread interference. This interference reduces
performance predictability because it depends heavily on the mem-
ory access pattern and intensity of the co-scheduled threads. In
this work, we confirm that all shared units must be thread-aware
in order to provide memory system fairness. However, the cur-
rent proposals for fair memory systems are complex as they require
an interference measurement mechanism and a fairness enforce-
ment policy for all hardware-controlled shared units. Furthermore,
they often sacrifice system throughput to reach their fairness goals
which is not desirable in all systems.

In this work, we show that our novel fairness mechanism, called
the Dynamic Miss Handling Architecture (DMHA), is able to re-
duce implementation complexity by using a single fairness enforce-
ment policy for the complete hardware-managed shared memory
system. Specifically, it controls the total miss bandwidth avail-
able to each thread by dynamically manipulating the number of
Miss Status Holding Registers (MSHRs) available in each private
data cache. When fairness is chosen as the metric of interest and
we compare to a state-of-the-art fairness-aware memory system,
DMHA improves fairness by 26% on average with the single pro-
gram baseline. With a different configuration, DMHA improves
throughput by 13% on average compared to a conventional mem-
ory system.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General; B.3 [Hardware]:
Memory Structures; I.6 [Computing Methodologies]: Simulation
and Modeling
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1. INTRODUCTION
The multi-core paradigm has become the norm for high perfor-

mance processors. Commonly, these processors share part of the
memory system which creates the possibility that memory requests
from different processing cores can interfere with each other and
increase latencies. Depending on the amount of Instruction Level
Parallelism (ILP) available in the application, this can increase the
processors’ stall time and degrade performance. This performance
reduction is unpredictable as it depends heavily on the memory ac-
cess patterns and access intensity of the applications running on the
other processing cores. A large, unpredictable latency variation is
clearly undesirable, and an important design goal for a Chip Multi-
processor (CMP) memory system is to limit these effects by provid-
ing some form of performance isolation. Unfortunately, the mem-
ory systems employed in CMPs today have no means of controlling
this interference, but a number of researchers have proposed tech-
niques that alleviate this problem [3, 18, 19, 28].

A good performance isolation technique should provide both
fairness and Quality of Service (QoS). A memory system is fair
if the performance reduction due to interference between threads
is distributed across all processes in proportion to their priorities
[14]. QoS is provided if it is possible to put a limit on the maxi-
mum slowdown a process can experience when co-scheduled with
any other process [3]. Furthermore, the allowed slow-down can de-
pend on the priority of the process. It is also common to divide
fairness/QoS into mechanisms and policies [19]. Here, the policy
decides the desired resource allocation and implements it with the
primitives provided by the mechanism.

CMPs are commonly used in enterprise IT data centres. In this
setting, it is important to have absolute control over how different
threads and processes interfere with each other in order to guaran-
tee that the resources specified in the Service Level Agreement are
made available. Therefore, complex techniques that can provide
QoS are needed. However, CMPs are also used in desktop comput-
ers, often running a collection of single-threaded processes. Here,
a less complex solution that achieves good fairness can be more
appropriate.

The main contribution of this work is a novel, light-weight mech-
anism called the Dynamic Miss Handling Architecture (DMHA).



DMHA’s key feature is that it makes it possible to change the num-
ber of Miss Status Holding Registers (MSHRs) available in the
private L1 data caches at runtime. These registers determine the
number of misses the cache can sustain without blocking, and a
blocked cache can not receive any requests. Consequently, the pro-
cessor will quickly stall as it will be unable to fetch more data, thus
reducing its execution speed. DMHA uses this effect to match the
execution speeds of the processors such that the slowdown due to
memory system interference is equalized across threads.

DMHA divides the total miss bandwidth between all cores at
the end of the private memory system. In this work, we show that
DMHA is able to provide fairness values comparable to a state-of-
the-art fairness-aware memory system or improve throughput com-
pared to a conventional memory system. We establish this result
by exhaustively simulating all 256 combinations of 1, 4, 8 and 16
L1 data cache MSHRs in a 4-core CMP for 10 randomly generated
multiprogrammed workloads with SPEC CPU2000 benchmarks. In
other words, we measure the metric value DMHA is able to attain
if provided with a good policy for this metric. A fairness policy
that uses DMHA as its mechanism can improve on this result by
adapting the number of MSHRs to interference patterns at runtime
as well as using more fine grained MSHR allocation.

To show that DMHA can be used as the mechanism in a practical
fairness implementation, we implement a simple interference mea-
surement scheme which we call Interference Points (IP). Here, we
add a few registers to each shared unit and increment these with a
fixed value each time we detect a certain type of interference. This
measurement technique builds on previous work, and our contribu-
tion is to integrate it into a coherent whole [17, 28]. In addition, we
implement a simple hardware policy that searches through differ-
ent DMHA configurations at runtime to reduce interference. The
combination of these techniques result in a fairness management
system which we call the Fair Adaptive Miss Handling Architec-
ture (FAMHA). FAMHA is suitable for systems where strict QoS
is not needed and a trade-off between fairness and throughput is
desired.

The rest of this paper has the following outline. First, section 2
gives the necessary background information on fairness techniques,
MHAs and metrics. Then, section 3 presents our DMHA mecha-
nism before section 4 discusses IP interference measurement and
our hardware policy. Section 5 discusses our simulation method-
ology before we present our results in section 6. Finally, section
7 discusses possible DMHA extensions before section 8 concludes
the paper and gives indications for further work.

2. BACKGROUND
There are three types of shared resources in a typical CMP mem-

ory system: the crossbar or some other form of interconnect, one
or more shared caches and a memory bus. Previous research has
established that thread interference is undesirable as it can lead
to unpredictable performance. Consequently, there is a need to
control this interference, and researchers have investigated shared
cache fairness/QoS [3, 9, 10, 11, 14, 21, 22, 28], memory bus fair-
ness/QoS [17, 18, 20, 23] or both [2, 12, 19]. We start this section
by illustrating the common points of these proposals in sections 2.1
and 2.2. Our novel DMHA mechanism extends the Miss Handling
Architecture (MHA) of the private L1 caches to enable chip-wide
allocation of miss bandwidth. Therefore, a brief introduction to
MHA design is given in section 2.3. Finally, section 2.4 discusses
the performance evaluation metrics we use in this work.

2.1 Shared Cache QoS and Fairness
Techniques

In a shared cache, there are two resources that must be man-
aged in order to provide fairness: capacity and bandwidth. In
current CMPs, cache capacity is managed by a least recently used
(LRU) policy, and cache bandwidth is distributed on a first come,
first served (FCFS) basis [21]. When a cache is shared, more so-
phisticated techniques are needed to control the sharing of these
resources. The main reason is that a thread with a higher access
frequency will get a larger share of the resource with both the LRU
and the FCFS policy.

The proposed cache capacity sharing techniques often use way-
partitioning to control the cache capacity usage of each thread [11,
12, 14]. Consequently, a thread ID has to be stored in every cache
block. Then, the replacement algorithm is modified to use these
IDs to keep the number of blocks in a set within a quota. Normally,
a single spatial partition is used as long as the running threads are
in stable program phases. However, Chang and Sohi [3] observed
that using multiple time sharing partitions can improve throughput
compared to single partition techniques while still providing QoS.
If only resource usage measurement is required, set sampling [28]
can be used to reduce the area overhead. Here, the thread IDs are
only stored for a subset of cache sets.

Nesbit et al. [21] investigated how cache bandwidth could be
fairly distributed between threads. They showed that the order in
which the requests are delivered to the cache must be controlled
in order to provide fairness/QoS, and accomplished this by using
an approach inspired by Network Fair Queueing. If there are P
processors, an access latency of l cycles and all other processors
have pending requests, processor A must wait l · P cycles between
each access. Consequently, each processor is under the impression
that it has a private cache that is P times slower than the shared
one.

2.2 Memory Bus Scheduling
Memory bus scheduling is a challenging problem due to the 3D

structure of DRAM consisting of rows, columns and banks. Com-
monly, a DRAM read transaction consists of first sending the row
address, then the column address and finally receiving the data.
When a row is accessed, its contents are stored in a register known
as the row buffer, and a row is often referred to as a page. If the row
has to be activated before it can be read, the access is referred to as
a row miss or page miss. It is possible to carry out repeated column
accesses to an open page, called row hits or page hits. This is a
great advantage as the latency of a row hit is much lower than the
latency of a row miss. Furthermore, a DRAM page is commonly
much larger than a cache line which increases the probability of
this event. DRAM accesses are pipelined, so there are no idle cy-
cles on the memory bus if the next column command is sent while
the data transfer is in progress. Furthermore, command accesses
to one bank can be overlapped with data transfers from a different
bank.

If data from a different row is requested, the open row must be
written back into the DRAM array. This is accomplished with a
precharge command. With a closed page policy, the page is writ-
ten back when there are no pending requests for that row. If a row is
left open until there is a request for a different row in the bank, the
controller uses an open page policy. The situation where two con-
secutive requests access the same bank but different rows is known
as a row conflict. In this case, the old row must be precharged
before the row and column commands can be sent. This is very
expensive in terms of latency. We refer the reader to Cuppu et al.
[4] for more details regarding the DRAM interface.



Rixner et al. [24] proposed the First Ready - First Come First
Served (FR-FCFS) algorithm for scheduling DRAM requests. Here,
memory requests are reordered to achieve high page hit rates which
results in increased memory bus utilization. This algorithm priori-
tizes requests according to three rules: prioritize ready commands
over commands that are not ready, prioritize column commands
over other commands and prioritize the oldest request over younger
requests. A number of researchers have extended the FR-FCFS al-
gorithm to handle multiple threads with different priorities [8, 17,
18, 20]. Common to these techniques is that they augment the ba-
sic FR-FCFS algorithm with additional rules so that the memory
bandwidth is divided among threads in a fair manner.

2.3 Miss Handling Architectures
A Miss Handling Architecture (MHA) consists of one or more

Miss Status/Information Holding Register (MSHR) files. The MSHR
file consists of n MSHRs which contain space to store the cache
block address of the miss, some target information and a valid bit.
The cache can handle as many misses to different cache block ad-
dresses as there are MSHRs without blocking. Each MSHR has
its own comparator and the MSHR file can be described as a small
fully associative cache. For each miss, the information required for
the cache to answer the processor’s request is stored in the Target
Information field. However, the exact Target Information content
of an MSHR is implementation dependent. The Valid (V) bit is set
when the MSHR is in use, and the cache must block when all valid
bits are set. A blocked cache cannot service any requests.

Another MHA design option regards the number of misses to
the same cache block address that can be handled without block-
ing, and we refer to this aspect of the MHA implementation as
target storage. Kroft used implicit target storage in the original
non-blocking cache proposal [15]. Here, storage is dedicated to
each processor word in a cache block. Consequently, additional
misses to a given cache block can be handled as long as they go
to a different processor word. Farkas and Jouppi [6] proposed ex-
plicitly addressed MSHRs which improves on the implicit scheme
by making it possible for any miss to use any target storage loca-
tion. Consequently, it is possible to handle multiple misses to the
same processor word. This improvement increases hardware cost
as the offset of the requested processor word within the cache block
must be stored explicitly. In this paper, we use explicitly addressed
MSHRs because they provide low lock-up time for a reasonable
hardware cost.

2.4 CMP Performance Evaluation Metrics
To evaluate fairness or QoS it is necessary to identify a fair con-

figuration which can be used as a performance baseline. We use the
three metrics in table 1 to compare the thread’s performance in the
shared environment with the baseline. Eyerman and Eeckhout [5]
recently showed that these three metrics are sufficient to measure
system throughput (STP), how fast a single program is executed
(average single program turnaround time) and to what extent the
effects due to sharing affect all threads equally (fairness). In table
1, P is the total number of processors and i and j are arbitrary pro-
cessor IDs. In this paper, we use the abbreviations AWS and HMoS
to refer to the Aggregate Weighted Speedup and Harmonic Mean
of Speedups, respectively. We use HMoS instead of Eyerman and
Eeckhout’s Average Normalized Turnaround Time (ANTT) metric
because a higher value on the HMoS metric is better (ANTT is the
inverse of HMoS). This makes our plots easier to read as higher is
better on all metrics. When we compare the fairness of different
architecture configurations, we use the arithmetic mean of the per
workload fairness metric values to produce a single fairness num-
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Figure 1: Dynamic Miss Handling Architecture

ber for each configuration.
Researchers have previously used two different fairness/QoS base-

lines. Firstly, it is possible to use the benchmark running alone as
the baseline [2, 5, 18]. This baseline is often used when investigat-
ing memory bus fairness as any interleaving of requests might de-
stroy page locality. For shared cache research, it is more common
to compare to a static allocation where each processor is guaran-
teed an amount of cache space proportional to its assigned priority
[3, 10]. Although this allocation gives insights into a thread’s per-
formance with a given amount of cache space, it removes all infor-
mation on the thread’s ability to put a larger cache capacity to good
use. Since it is reasonable to assume that the choice of baseline will
influence the results, we use both baselines in this work. We will re-
fer to them as the Single Program Baseline (SPB) when comparing
to the benchmark running alone and the Multiprogrammed Base-
line (MPB) when comparing to the benchmark in a configuration
with equal and static shares of all resources.

3. THE DYNAMIC MISS HANDLING
ARCHITECTURE

Earlier research on memory system fairness has focused on achiev-
ing fairness by dividing bandwidth or capacity between threads for
a single shared unit. Our approach differs in that it allocates per
thread miss bandwidth by manipulating the number of available
MSHRs at runtime. Figure 1 shows an MHA where the number
of MSHRs can be dynamically reconfigured. The main difference
between this MHA and a conventional MHA is the addition of a
Usable (U) bit to each MSHR. If this is set, the MSHR can be used
to store miss data. By manipulating these bits, it is possible to dy-
namically change the number of available MSHRs. The maximum
number of MSHRs is determined by the number of physical reg-
isters and decided at implementation time. As in the conventional
MSHR file, the Valid (V) bit is set if the MSHR contains valid miss
data.

The other addition needed to support DMHA is Mask Control.
This control unit manipulates the values of the U bits subject to
the commands given by the miss bandwidth allocation policy. For
instance, if the number of MSHRs in cache A should be reduced,
cache A’s Mask Control sets the U bits for some MSHRs to 0.
When the number of MSHRs is decreased, it is possible that some
registers that contain valid miss data are taken out of use. Con-
sequently, these registers must be searched when a response is re-
ceived from the next memory hierarchy level. However, the cache
should block immediately to reflect the policy decision. This prob-
lem is solved by taking both the V and U bits into account on a
cache miss and for the blocking decision. Furthermore, all regis-
ters that contain valid data (i.e. have their V bit set) are searched
when a response is received.



Table 1: CMP Performance Metrics
Metric Formula System-Level Meaning [5] Reference

Aggregate Weighted Speedup (AWS)
PP

i

IPCshared
i

IPCbase
i

System Throughput (STP) Snavely and Tullsen [25]

Harmonic Mean of Speedups (HMoS) PPP
i

IPCbase
i

IPCshared
i

Inverse of Average Normalized
Turnaround Time (ANTT)

Luo et al. [16]

Fairness (for one workload) min(
IPCshared

i

IPCbase
i

)/max(
IPCshared

j

IPCbase
j

) Assumed by system software Gabor et al. [7]

Find maximum Interference Point (IP) value
if Maximum Value > Max allowed IP then

if Same interfering and delayed processor as last time then
if Repeat counter > Repeat Threshold then

Reduce MSHRs
else

Increment repeat counter
Algorithm 1: Fairness Policy Algorithm
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Figure 2: Fair Adaptive MHA (FAMHA) Block Diagram

4. THE FAIR ADAPTIVE MISS HANDLING
ARCHITECTURE (FAMHA)

A practical fairness system needs to carry out three tasks: mea-
surement, allocation and enforcement. In this section, we discuss
our proposals for the measurement and allocation tasks as these
are needed to use DMHA for fairness enforcement. Figure 2 il-
lustrates how our Interference Point (IP) measurement technique
provides data to the allocation module (FAMHA Engine) which in
turn controls the DMHA mechanism. Periodically, the allocation
module uses the interference measurements to modify the number
of MSHRs available in each private data cache. In this work, we
present a simple hardware policy for the FAMHA Engine but it is
also possible to implement more sophisticated software policies for
flexibility.

4.1 Measuring Interference with Interference
Points

When implementing the allocation module, it is useful that a
common representation of interference is available. Consequently,
we introduce the notion of Interference Points (IPs). Table 2 shows
the different types of interference accounted for in our interfer-
ence point measurement technique. Since each L2 cache bank in
our model has one input/output channel which is connected to all
L1 data and instruction cache pairs, it is contention for this chan-
nel that results in both crossbar and shared cache bandwidth in-
terference. Furthermore, we assume that the shared cache can ac-
cept a new request every Ccache cycle time processor clock cycles.
Since the crossbar is pipelined, it can schedule a new request every
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Figure 3: Interference Point Storage

Ccache cycle time cycles and a delayed request is therefore delayed
by Ccache cycle time cycles. We add Ccache cycle time for each pro-
cessor which has one or more delayed requests. The reason is that
misses that are clustered together usually have a smaller perfor-
mance impact than solitary misses.

Interference due to contention for cache capacity is an impor-
tant source of interference in CMP memory systems. However, it
is difficult to estimate the extra delay resulting from one proces-
sor exceeding its cache space quota. Since our hardware fairness
policy is simple, we choose the low complexity option of using the
number of blocks the processor is using beyond its equal allocation
baseline as the interference point value. This is easy to measure
as it simply consists of adding a register for each processor which
is incremented when the processor brings a block into the cache
and decremented on a replacement. Zaho et al. [28] showed that
such measurements could be implemented with a small area over-
head by using set sampling. In this work, we assume that we know
which processor brought each block into the cache which results
in an area overhead comparable to that of a way-partitioned cache
fairness technique. We also avoid the problem of estimating the
impact of this overuse on the other processors by assuming that it
affects all processors by an equal amount. If more accurate mea-
surements are needed, it is possible to include the interference and
sharing measurement techniques proposed by Zaho et al. [28].

Mutlu and Moscibroda [17] recently proposed a low overhead
scheme for measuring memory bus interference. We use a simpli-
fied version of their technique in this work. Firstly, we account for
interference due to accesses being serialized on the memory bus.
In this case, we add an IP quantity that corresponds to the num-
ber of processor cycles used to transfer one last-level cache block
over the memory bus (Cbus). Secondly, processor A might have a
request for a bank in which processor B already has an activated
page. This situation is known as a row conflict. Consequently, it
is necessary to precharge the bank before sending the row address
and column address of processor A’s request. Here, we approxi-
mate the actual delay by adding Cprecharge + Crow + Ccol cycles.
This is only an approximation since the actual additional delay may
vary depending on the number of cycles the bank has been in the
read or write states [13]. Furthermore, the cost of this delay can be
amortized over requests to other banks. Therefore, we use Mutlu
and Moscibroda’s bank parallelism estimator to reduce the impact
of this factor depending on the number of requests processor A has



Table 2: Interference Point Formulae
Shared Resource Requirement IP Value

Crossbar Bandwidth At least one request is delayed Ccache cycle time

Shared Cache Capacity The processor uses more than its static share max(Occupied Blocks− Total Blocks
P

, 0)

Memory Bus Bandwidth [17] At least one ready request is delayed Cbus

Row conflict (Crow+Ccol+Cprecharge)

BankParallelism(i)

waiting for other banks.
We are now left with a collection of cycle-based and block-based

interference measurements. Consequently, there is a need to com-
bine these in a meaningful way. Generally, the total interference
points follow the formula IPtotal = α · IPcycles + β · IPblocks.
Consequently, the constants α and β should be chosen to reflect
the relative importance of the cycle-based and block-based mea-
surements. Since interference measurement is not the main focus
of this work, we use α = 1 and β = 1. This was sufficient for our
simple allocation technique, but more sophisticated policies might
need better control of the relative impact of block- and cycle-based
metrics.

The interference point storage structure is shown in Figure 3.
Each shared unit has one such structure, and each entry is incre-
mented when interference is detected. At regular intervals, the in-
formation is read by the FAMHA Engine and the counters are reset.
The values on the diagonal are always zero, and it is not necessary
to allocate storage for these values. The IP structure is similar to
Zaho et al.’s interference tables [28]. The main difference is that
Zaho et al. only record cache capacity interference. Our interfer-
ence tables stores an interference point value which makes it possi-
ble to compare different forms of interference.

4.2 A Simple Fairness Policy
To verify that our DMHA mechanism can be used in a practical

system, we created a simple hardware policy that uses our interfer-
ence points measurement technique and the DMHA mechanism to
improve CMP memory system fairness. Every 500000 clock cy-
cles, the FAMHA Engine gathers the interference points from all
shared units. Then, it follows a greedy algorithm (Algorithm 1)
to determine which processor should have its number of MSHRs
reduced if any. At regular intervals, all processors are restored to
their maximum number of MSHRs to adapt to application phase
changes.

To control the aggressiveness of the adaptive policy, we add
two additional configuration parameters. First, we require that the
largest interference point value must be larger than a threshold for
an MSHR reduction to be considered. This parameter is neces-
sary to avoid reducing the MSHRs when there is little interference.
Secondly, we require that the greedy algorithm returns the same
interfering processor and delayed processor a configurable number
of times before the MSHR reduction is carried out. A high value
on this threshold both guards against making wrong decisions and
reduces the speed with which the number of MSHRs is reduced.

5. EVALUATION METHODOLOGY
We use the system call emulation mode of the cycle-accurate M5

simulator [1] for our experiments. The processor architecture pa-
rameters for the simulated 4-core CMP are shown in table 3, and
table 4 contains the baseline memory system parameters. We have
extended M5 with a FAMHA implementation, a crossbar intercon-
nect and a detailed DDR2-800 memory bus and DRAM model [13].
The shared cache is pipelined and can accept a new request every

Table 3: Processor Core Parameters
Parameter Value
Clock frequency 4 GHz
Reorder Buffer 128 entries
Store Buffer 32 entries
Instruction Queue 64 instructions
Instruction Fetch Queue 32 entries
Load/Store Queue 32 instructions
Issue Width 8 instructions/cycle
Functional units 4 Integer ALUs, 2 Integer

Multipy/Divide, 4 FP ALUs, 2 FP
Multiply/Divide

Branch predictor Hybrid, 2048 local history registers,
2-way 2048 entry BTB

Table 4: Memory System Parameters
Parameter Value
Level 1 Data Cache 64 KB 8-way set associative, 64B

blocks, 16 MSHRs, 3 cycles latency
Level 1 Instruction Cache 64 KB 8-way set associative, 64B

blocks, 16 MSHRs, 1 cycle latency
Level 2 Unified Shared Cache 8 MB 16-way set associative, 64B

blocks, 18 cycles latency, 16 MSHRs
per bank, 4 banks

L1 to L2 Interconnection Network Crossbar topology, 8 cycles latency,
64B wide

Main memory DDR2-800, 4-4-4-12 timing, 64 entry
read queue, 64 entry write queue, 1
KB pages, 8 banks, FR-FCFS
scheduling [24], Closed page policy

2 clock cycles. This value is based on the cycle time given by the
CACTI cache timing analysis tool [27].

We have implemented a state-of-the-art fairness-aware memory
system to evaluate our FAMHA technique. To manage cache ca-
pacity, we use Chang and Sohi’s Multiple Time-Sharing Partitions
(MTP) [3] which has been shown to outperform cache capacity
sharing that rely on a single spatial partition. To gather the miss rate
curves for each processor, we employ an auxiliary tag directory for
each processor core as suggested by Chang and Sohi. However, we
have not implemented their Cooperative Caching throughput opti-
mization because it can not be applied to shared caches where all
banks have a uniform latency.

Furthermore, we use two variants of Rafique et al.’s state-of-the-
art, thread-aware memory bus scheduling scheme based on Net-
work Fair Queueing (NFQ) [23]. NFQ-1 allows no access reorder-
ing while NFQ-3 allows at most three requests to pass the request
with the lowest virtual start time. Our fair crossbar provides fair-
ness with Start Time Fair Queueing [8]. It also provides fair cache
bandwidth allocation because the crossbar serializes requests to the
L2 banks in our model. The fair crossbar of Nesbit et al. [21] is
different from ours since it allocates cache bandwidth with virtual
deadline first scheduling.

We use the SPEC CPU2000 benchmark suite [26] to create 40
multiprogrammed workloads consisting of 4 SPEC benchmarks each



Table 5: Randomly Generated Multiprogrammed Workloads
ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks ID Benchmarks
1 perlbmk, ammp, parser,

mgrid
9 vortex1, apsi, fma3d,

sixtrack
17 perlbmk, parser, applu,

apsi
25 facerec, parser, applu,

gap
33 gzip, galgel, lucas,

equake

2 mcf, gcc, lucas, twolf 10 ammp, bzip, parser,
equake

18 perlbmk, gzip, mgrid,
mgrid

26 mcf, ammp, apsi, twolf 34 facerec, facerec, gcc,
apsi

3 facerec, mesa, eon, eon 11 twolf, eon, applu, vpr 19 mcf, gcc, apsi, sixtrack 27 swim, ammp, sixtrack,
applu

35 swim, mcf, mesa,
sixtrack

4 ammp, vortex1, galgel,
equake

12 swim, galgel, mgrid,
crafty

20 ammp, gcc, art, mesa 28 swim, fma3d, parser, art 36 mesa, bzip, sixtrack,
equake

5 gcc, apsi, galgel, crafty 13 twolf, galgel, fma3d, vpr 21 perlbmk, apsi, lucas,
equake

29 twolf, gcc, apsi, vortex1 37 mcf, gcc, vortex1, gap

6 facerec, art, applu,
equake

14 bzip, bzip, equake, vpr 22 mcf, crafty, vpr, vpr 30 gzip, apsi, mgrid, equake 38 facerec, mcf, parser,
lucas

7 gcc, parser, applu, gap 15 swim, galgel, crafty, vpr 23 gzip, mesa, mgrid,
equake

31 mgrid, eon, equake, vpr 39 twolf, mesa, eon, eon

8 swim, twolf, mesa, gap 16 mcf, mesa, mesa,
wupwise

24 facerec, fma3d, applu,
lucas

32 facerec, twolf, gap,
wupwise

40 mcf, apsi, apsi, equake

as shown in table 5. We picked benchmarks at random from the full
SPEC CPU2000 benchmark suite, and each processor core is ded-
icated to one benchmark. The only requirement given to the ran-
dom selection process was that each SPEC benchmark had to be
represented in at least one workload. To avoid unrealistic interfer-
ence when more than a single instance of a benchmark is part of a
workload, the benchmarks are fast-forwarded a different number of
clock cycles if the same benchmark is run on more than one core.
If there is only one instance of a benchmark in a workload, it is
fast-forwarded for 1 billion clock cycles. Each time the benchmark
is repeated, we increase the number of fast-forward clock cycles
by 20 million. Then, measurements are collected for 200 million
clock cycles.

6. RESULTS
In this section, we evaluate the fairness and throughput impact

of conventional fairness schemes and our new FAMHA technique.
First, we quantify the relative impact of unfairness in the different
shared units in section 6.1. In section 6.2, we quantify the potential
of the DMHA mechanism by simulating a large number of static
asymmetric MHAs. Here, we show that DMHA can provide sim-
ilar (MPB) or better (SPB) fairness as well as better performance
and throughput than a CMP with a state-of-the-art fairness enabled
memory system. Finally, we show that using DMHA with a sim-
ple measurement and allocation technique substantially improves
fairness compared to a conventional memory system in section 6.3.

6.1 Fairness Impact of Shared
Hardware-Managed Units

When designing a fair memory system, it is helpful to identify
the relative fairness impact of interference in the different shared
units. Figure 4 provides some insights into this issue. Here, we re-
port the fairness and throughput of the selected fairness techniques
and quantify their relative impact on fairness and throughput. As
expected, employing stricter fairness techniques improves fairness
for the multiprogrammed baseline (MPB) in Figure 4(a). However,
the stricter fairness enforcement techniques actually yield lower
fairness with the single program baseline (SPB). With SPB, slow-
downs should be proportional to the performance of the application
when running alone which is difficult to achieve due to the appli-
cations’ varying sensitivity to resource allocations. A resource al-
location sensitive application might experience a severe slowdown
with a static share while the performance of an allocation insensi-
tive thread would hardly change. If these threads are run together,

there is a large variation in their slowdowns relative to the baseline
which is interpreted as unfairness. Techniques that rely on resource
partitioning tend to make these problems worse, because they limit
the resources available to resource sensitive applications.

As expected, Figure 4(b) shows that stricter enforcement of fair-
ness reduces system throughput. The maximum AWS value is 4
for SPB (i.e. equal to the number of processors). The reason is
that SPB balances the shared mode performance against the per-
formance with exclusive access to all shared resources. For MPB,
the benchmark can seize more resources in the shared mode than
is available in the baseline. Consequently, it is difficult to set a
concrete bound on the AWS value for this baseline.

Figure 4(c) shows the relative impact of each fairness technique
with MTB. Here, the memory bus controller and cache capacity
sharing technique each account for about 50% of the total fairness
improvement with both the NFQ-1 and NFQ-3 controllers. How-
ever, the NFQ-3 controller is able to carry out this fairness increase
with a very low impact on system throughput as shown in Figure
4(d). Consequently, the fair cache sharing technique is responsible
for 95% of the throughput loss due to fairness with MPB. With the
NFQ-1 scheduler, the cache is responsible for 78% of the through-
put loss.

The cache is responsible for most of the throughput loss be-
cause of the focus on Quality of Service (QoS). In this case, per-
formance should never drop below a given baseline. Chang and
Sohi [3] define that QoS is achieved if the value on their QoS met-
ric (

PP
i min(0,

IPCshared
i

IPCMPB
i

− 1)) is larger than -0.05 for all work-
loads. In our experiments, only the configuration with the MTP
cache, NFQ-3 bus scheduling and the fair crossbar achieves this
goal. However, this configuration also reduces system throughput
by 7% (SPB) and 28% (MPB) on average.

The configuration with the NFQ-1 bus does not provide QoS be-
cause MTP assumes that a thread’s performance is inversely pro-
portional to its miss rate. In workload 16, this assumption does
not hold because the total number of misses is increased by MTP’s
throughput optimization. This creates severe memory bus conges-
tion, and results in a slowdown for 3 out of 4 benchmarks. Note that
the fairness metric also takes into account that the performance im-
pact from sharing should affect all threads equally which results
in the NFQ-3 controller having considerably poorer fairness than
NFQ-1 in Figure 4(a).

Our results suggest that the fairness impact of introducing a fair
crossbar is very small. This differs from the results of Nesbit et al.



Table 6: List of Acronyms
AWS Aggregate Weighted Speedup HMoS Harmonic Mean of Speedups MTP Multiple Time Sharing Partitions [3]
CB Crossbar IP Interference Point NFQ Network Fair Queueing [20]
DMHA Dynamic MHA MHA Miss Handling Architecture QoS Quality of Service
FAMHA Fair Adaptive MHA MPB Multiprogrammed Baseline SPB Single Program Baseline
FR-FCFS First Ready - First Come First

Served
MSHR Miss Status/Information

Holding Register

[21] who reported a HMoS increase of 10% on average by imple-
menting fair cache bandwidth sharing. We believe that this differ-
ence is due to different cache modeling assumptions. In our cache,
all accesses take the same number of clock cycles. The cache is
also heavily pipelined, and we do not account for any resource de-
pendencies.

6.2 Static Asymmetric MHA Fairness
A good fairness mechanism should be able to achieve good fair-

ness, throughput and single program turn around time. This makes
it possible to create a policy that optimizes for the metric of interest
which may vary from system to system. In this section, we show
that our DMHA mechanism meets this requirement. To evaluate
DMHA, we simulate all possible asymmetric L1 data cache MHAs
with 1, 4, 8 and 16 MSHRs (i.e. 256 possible MHAs in a 4-core
CMP). We retrieve the best value for a given metric and workload
and refer to this as the offline-best-static MHA. Note that the con-
figuration that yields the best performance with one metric does
not necessarily yield the best performance on a different metric.
This is appropriate as the aim of the experiment is to show that
an asymmetric MHA can provide good performance on a given
metric when provided with an appropriate policy for this metric.
An adaptive policy might also outperform offline-best-static by dy-
namically changing the asymmetric MHA to adapt to application
phase changes.

Simulating many combinations of static MHAs quickly become
computationally infeasible. Consequently, we have selected 10 of
our 40 randomly generated workloads for this experiment. Specif-
ically, workloads 5, 6, 7, 8, 19, 23, 25, 29, 35 and 40 are used.
These workloads all have a fairness value of 0.5 or less for the con-
ventional memory system with both baselines.

Figure 5 shows the performance of the offline-best-static MHA
relative to a conventional memory system with no cache partition-
ing control, a FR-FCFS memory bus scheduler and conventional
crossbar. In addition, the values for the best performing fairness-
aware memory system (MTP cache partitioning, NFQ-3 bus sched-
uler and a conventional crossbar) and the multiprogrammed base-
line are shown. Figure 5(a) shows the average values of the dif-
ferent metrics for the subset of the randomly generated workloads
relative to the conventional memory system. With SPB, offline-
best-static MHA improves fairness by 26% compared to the best
performing fairness-aware memory system, and it improves AWS
by 13% compared to the conventional memory system. In addi-
tion, it performs better than both the conventional and the fairness-
aware memory system on all metrics and baselines except fairness
with MPB. In this case, the offline-best-static MHA is not able
to mirror the per-core performance with the static resource shar-
ing. This result is mainly due to workload 6 where the L1 data
caches of all processors that contribute to interference have been
reduced to a blocking configuration. Consequently, it is not pos-
sible to reduce performance of these benchmarks enough to match
the performance with a statically shared memory system. However,
offline-best-static MHA achieves fairness values comparable to the
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Figure 6: FAMHA Results

fairness-enabled memory system.
Figure 5(b) shows the fairness results for the selected workloads

with the SPB baseline. Here, the offline-best-static MHA outper-
forms both the conventional and fairness-enabled memory systems
for 8 of 10 workloads. This indicates that a good DMHA policy
should be able to approach the fairness of today’s state-of-the-art
fairness systems. In workload 23, mgrid (4 MSHRs in offline-
best-static) is allowed to use enough shared cache space to cre-
ate a slowdown for gzip (1 MSHR), mesa (4 MSHRs) and equake
(1 MSHR). However, reducing mesa’s number of MSHRs beyond
4 slows it down sufficiently to reduce overall fairness. The same
problem is responsible for the less than ideal performance in work-
load 29. Here, cache interference between apsi (4 MSHRs) and
gcc (16 MSHRs) reduces fairness regardless of what number of
MSHRs are assigned to them. Consequently, none of the asymmet-
ric MHAs used by offline-best-static achieves good fairness. How-
ever, it is possible that a more thorough search would uncover an
asymmetric MHA with better fairness than the ones evaluated here.

6.3 Fair Adaptive MHA (FAMHA) Results
In the previous section, we established that our DMHA mecha-

nism can achieve good results when an appropriate policy is pro-
vided. Here, we report the results of the full FAMHA system which
uses the IP measurement technique and the greedy allocation pol-
icy. Figure 6 shows the average values of all metrics with our best
performing FAMHA policy, the best fairness-enabled memory sys-
tem (MTP, NFQ-3 and a conventional crossbar) and the multipro-
grammed baseline. The FAMHA configurations evaluated here re-
sets the MSHRs after 40 events (20 million clock cycles) and allows
interference point values up to 5000. We investigated the impact of
varying these parameters and found that it was small as long as
FAMHA is given enough time to find a good solution. Further-
more, the allowed number of interference points should not be too
large. The difference between the FAMHA configurations shown
in Figure 6 is the number of times FAMHA must repeat a decision
before reducing the number of MSHRs.
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The aim of FAMHA is to achieve good results on all metrics.
FAMHA-2 achieves the best fairness with a 28% (MPB) improve-
ment over the conventional memory system. However, this results
in a reduction in single thread turn around time (HMoS) of 11%
(SPB) and 5% (MPB) as well as a throughput (AWS) reduction of
3% (SPB) and 15% (MPB). FAMHA-5 is the best performing con-
figuration when all metrics are taken into account. Here, fairness

is improved by 18% (MPB) with a reduction in single thread turn
around time of 4%(SPB) and 1%(MPB) and a throughput reduction
of 1%(SPB) and 6%(MPB). As a comparison, the fairness-enabled
memory system improves fairness by 67% (MPB). However, the
cost is significant: single thread turn around time is reduced by
14%(SPB) and 7%(MPB) and throughput is reduced by 7%(SPB)
and 28%(MPB).

To better understand how FAMHA impacts the fairness of a sin-
gle workload, we show FAMHA-2’s MPB fairness for the subset of
workloads used to create the offline-best-static MHA in Figure 7.
FAMHA performs as well as can be expected and reduces fairness
by 22% on average compared to the offline-best-static MHA. For
workloads 8, 23 and 35, FAMHA outperforms the fairness enabled
memory system. FAMHA achieves poor fairness on workload 6
which consists of the benchmarks facerec, art, applu and equake.
Since offline-best-static MHA performs well, this is due to an in-
adequate policy. The offline-best-static MHA uses 16 MSHRs for
equake and a blocking cache for the other benchmarks. FAMHA
eventually reaches the same solution, but it is too late to achieve
good fairness values. Consequently, a more aggressive version of
our algorithm would be appropriate for this workload. However,
this would degrade performance on other workloads.

Figure 8 shows FAMHA-2’s behaviour with workload 23 in three
allocation periods and illustrates how it can outperform offline-
best-static MHA. Here, the best static solution for fairness gives
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all applications a blocking cache. However, mesa and mgrid are
the major contributors to interference. FAMHA-2 always reduces
mgrid directly to a blocking cache configuration in all periods while
mesa is reduced to the blocking configuration in 4 out of 10 peri-
ods. Consequently, FAMHA-2 reduces the impact of short periods
of interference and the result is that it outperforms the best static
MHA.

7. DISCUSSION
Currently, FAMHA does not support multithreaded applications

or processor cores with SMT. To support multithreaded applica-
tions, we need to treat multiple processors as a single entity when
allocating miss bandwidth. This can be accomplished by letting
the operating system provide some simplified process IDs as dis-
cussed by Zaho et al. [28] to the measurement scheme and resource
allocation process. Introducing SMT further complicates matters
as each core now supports more than one hardware thread. Here,
we need to further extend the dynamic MHA to allocate a different
number of L1 MSHRs to each hardware thread. We leave the exact
implementation and evaluation of such extensions as further work.

8. CONCLUSION AND FURTHER WORK
In this work, we introduced a novel, light-weight fairness mecha-

nism called the Dynamic Miss Handling Architecture (DMHA). By
simulating a large number of static asymmetric MHAs, we showed
that the DMHA mechanism can be used to provide good fairness,
throughput or single program turnaround time. This result assumes
that an appropriate policy is provided, and we introduced a simple
policy which improves fairness considerably compared to a con-
ventional memory system. Our policy relies on an interference
measurement technique that makes it possible to coherently com-

pare different forms of interference. Together, these techniques
form a radically different approach to fairness which we call the
Fair Adaptive Miss Handling Architecture (FAMHA).

There are many possibilities for further work. One direction is
to investigate different policies to establish the practical limits on
achieving fairness with a DMHA. To achieve this, it is probably
necessary to verify that our interference measurement mechanism
accurately captures all forms of interference and weights them ap-
propriately. In particular, we plan to investigate the weighting of
the cycle based and block based measurements further. Further-
more, it is possible to integrate the DMHA mechanism with other
light-weight mechanisms to improve fairness beyond what DMHA
can achieve on its own. Finally, support for priorities, SMT pro-
cessing cores and multithreaded applications should be added.
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