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ABSTRACT

The propagation speed of fast scanning worms and the stealthy

nature of slow scanning worms present unique challenges to
intrusion detection. Typically, techniques optimized for de-
tection of fast scanning worms fail to detect slow scanning
worms, and vice versa. In practice, there is interest in de-
veloping an integrated approach to detecting both classes of
worms. In this paper, we propose and analyze a unique inte-
grated detection approach capable of detecting and identify-
ing traffic flow(s) responsible for simultaneous fast and slow
scanning malicious worm attacks. The approach uses a com-
bination of evidence from distributed host-based anomaly
detectors, a self-adapting profiler and Bayesian inference
from network heuristics to detect intrusion activity due to
both fast and slow scanning worms. We assume that the
extreme nature of fast scanning worm epidemics make them
well suited for extreme value theory and use sample mean
excess function to determine appropriate thresholds for de-
tection of such worms. Random scanning worm behavior
is considered in analyzing the stochastic time intervals that
affect behavior of the detection technique. Based on the
analysis, a probability model for worm detection interval
using the detection scheme was developed. Simulations are
used to validate our assumptions and analysis.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
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1. INTRODUCTION AND RELATED WORK

Worm detection techniques are typically designed based
on some unique characteristic(s) of the worm to be detected.
Fast scanning worms typically exhibit an abnormally high
number of connections or traffic flows which are detectable
in the network or on end hosts, while slow scanning worms
propagate more stealthily, enabling them to blend with nor-
mal traffic patterns and evade intrusion detection systems
(IDS) that depend on only anomalous network heuristics
for detection. Most proposed techniques for detection of
fast scanning worms [2] [22] [14] [4] are unable to detect
slow scanning worms. Slow scanning worms are usually in-
distinguishable from normal traffic seen on the network, or
seen by end host network connections and are therefore diffi-
cult to detect. However, both types of worms pose a serious
threat to vulnerable systems and investigating detection sys-
tems capable of detecting and defending against both type
of worms is relevant.

Some recent works have attempted to address the chal-
lenge of detecting both fast and slow worms. In [1], adap-
tively adjusting the detection threshold on end host de-
tectors based on observed traffic was proposed as a way
to detect both fast and slow worms. A supervised classi-
fier predicts the time-varying distribution of outgoing traffic
based on previous observations and this was used for the
adjustment. In [16] a multi-resolution approach for worm
detection was proposed to deal with the limitations of sim-
ple threshold-based detection methods. Using number of
unique destinations contacted as a basis for anomaly detec-
tion, the multi-resolution approach used different thresholds
during different time windows to detect attacks of different
speeds. Faster scanning attacks were detected with smaller
time windows while slower attacks were detected with larger
time windows.

We point out that a common characteristic of most schemes
proposed for worm detection is the use of connection counts,
traffic rates and traffic trends [23] as the basis for anoma-



lous detection. This approach inherently carries a high rate
of false positives and false negatives because worms are capa-
ble of propagating at rates and exhibiting trends similar to
that of normal traffic flows and therefore can camouflage as
normal traffic. Also, information about vulnerabilities and
attempted exploits do not exist in the network layer, hence
such techniques are unable to provide verifiable evidence of
malicious intrusions. In fact, the assumption that malicious
attacks necessarily cause anomalous activity in the network
in terms of host or network traffic was recently challenged
in [7].

Host-based Anomaly Intrusion Detection Systems (AIDS)
which infer suspicious activity when a detector endpoint ex-
periences an intrusion that attempts to alter a pre-defined
standard state ! of the endpoint have been more success-
ful at detecting malicious worm intrusions irrespective of
scanning behavior of worms. Typically, such attempts are
in the form of anomalous system calls [11] or unauthorized
intrusions which cause the host AIDS to trigger an alert. Re-
cent work [6] and vendor implementations [19] have recorded
success in using host AIDS for detecting unauthorized intru-
sions. Host AIDS are capable of leveraging large amounts
of detailed context about applications and system behav-
ior to effectively detect anomalous host behaviors [18]. The
technique adopted in [6] shows that with properly instru-
mented detection software, host-based intrusion detection is
effective and capable of eliminating false positives. Though
host-based AIDS can successfully detect malicious intrusions
on a host and therefore determine the attempted exploit,
host-based AIDS on a single host alone is not capable of
determining the actual traffic flow responsible for the intru-
sion. During multiple simultaneous attacks, determination
of traffic flows responsible for the attacks become even more
difficult, and at the same time crucial for rapid or automated
defense.

In this paper, we propose an integrated detection system
for fast and slow scanning worms which uses host-based
AIDS in combination with Bayesian inference and a self-
adapting profiler to achieve detection. Our underlying as-
sumption is that intrusions that attempt to alter the stan-
dard state of a hardened endpoint is verifiable evidence of
unauthorized or malicious activity. We also assume that
fast scanning worm attacks are extreme events which ex-
hibit an extremely high number of connection attempts on
vulnerable targets. Such attacks have been known to cause
very abnormal increase in observed network traffic patterns
[10] [17] and therefore seem to be well suited for extreme
value theory (EVT) [9] [15]. Hence, we use sample mean
excess function [15] [9] to determine appropriate thresholds
used for Bayesian inference during fast worm detection. The
proposed detection technique is unique because it leverages
evidence from distributed host-based AIDS about unautho-
rized intrusions, as well as correlation of network heuristics
based on Bayesian inference and adaptive profiling to achieve
stmultaneous detection and identification of both fast and
slow scanning intrusion traffic. Based on literature survey,
the adaptive anomaly detection approach proposed in [1],
which uses a traffic predictor to control a time-varying de-
tection threshold for worm detection is closest to our work.
Our work is however distinct from this work in the following
ways.

!Pre-defined standard states of endpoints are typically de-
termined by established security policies and standards.

First, the technique proposed in [1] is based on the as-
sumption that a worm infection necessarily increases the
outgoing connection rate of the infected host. While this
may be true for fast scanning worms, slow scanning worms
can propagate stealthily and may not cause an increase in
the outgoing connection rate of the infected host. In compar-
ison, our detection approach uses properly tuned host-based
AIDS capable of providing verifiable evidence of unautho-
rized intrusions during a worm attack with very low false
positives for detection, and correlates intrusion information
received from independent detectors within a network cell
only to “investigate” and probabilistically determine the traf-
fic flow(s) responsible for the observed intrusion(s).

Second, the approach in [1] uses anomaly detectors that
predict the time-varying distribution of outgoing traffic based
on previous measurements and adjust the threshold settings
for worm detection based on the predictions. Again, while
fast propagating worms can be easily detected using this ap-
proach, slow scanning worms that exhibit connection rates
similar to normal traffic or even less than normal traffic
can evade this detection scheme. On the other hand, our
proposed detection technique infers unauthorized intrusion
when a detector endpoint experiences an intrusion attempt
to alter a pre-defined standard state of the endpoint. In
addition, we use Bayesian inference and a self-adapting pro-
filer to distinguish network heuristics associated with slow
scanning worms and therefore provide an integrated detec-
tion system capable of detecting simultaneous fast and slow
scanning worm attacks.

The main contributions of this work are:

e We propose a unique integrated detection technique
capable of detecting and identifying traffic flow(s) re-
sponsible for simultaneous fast and slow scanning mali-
cious worm attacks. We use a combination of evidence
from host-based anomaly detectors, a self-adapting pro-
filer and Bayesian inference from network heuristics for
detection.

e Based on the assumption that fast scanning worm at-
tacks are extreme events that seem to be applicable to
extreme value theory, we use sample mean excess func-
tion to determine appropriate thresholds for detection
of such worms.

e Worm detection interval is modeled as a stochastic
variable and we present an analysis of detection in-
terval for both fast and slow scanning worms using the
proposed detection technique.

e We then develop probability models for worm detec-
tion interval for both fast and slow scanning worms and
validate the models using Markov’s Inequality. Using
the models, we show that the accuracy of detecting
worms using our approach can be improved signifi-
cantly by following certain network design principles.
This can be useful to network and security architects
deploying detection systems for worms.

e Experimenting on a live test-bed we evaluate the inte-
grated detection technique and show that the results
obtained concur with our analytical model and results.



Target Network-C

Target Network-A

Attacking
Network - 1

Attacking /

Network - 2
® Gateway router

O Cell within target network

Target Network-B

Target Network-D

» Direction of malicious

traffic flow

Figure 1: Typical worm attack on multiple networks

1.1 Outline

Section 2 and 3 present a description and analysis of the
integrated detection technique. In section 4, we develop
probability models for worm detection interval and validate
the models using Markov’s Inequality. Experimentation on
a live test-bed with the proposed technique is presented in
section 5. Section 6 concludes the paper and points to future
work.

2. INTEGRATED DETECTION APPROACH

Fig. 1 depicts a typical attack scenario in which single or
multiple attackers in Network-1 and Network-2 launch scan-
ning worm attacks on several enterprise networks (Target
Network-A, Target Network-B, Target Network-C, Target
Network-D). Typically, well-designed enterprise networks are
logically subdivided into cells or network zones as shown in
Fig. 1. The detection scheme uses detector endpoints within
distributed cells in a target network for detection of intru-
sion attempts and correlates captured intrusion information
on the gateway router of the cells. The detection scheme
consists of detection and correlation phases described in the
next section.

2.1 Detection Phase

The scheme uses two instances of detector agents, fast
worm detector agent (FDA) and slow worm detector agent
(SDA) both running simultaneously on hardened detector
endpoints (DEs) located within distributed cells in the net-
work and responsible for capturing intrusion attempts tar-
geted at the cells. The detector agents run similar host-
based anomaly detection software configured to alert and
capture intrusion data when anomalous system calls or unau-
thorized intrusions attempts are made. However, the FDA
and SDA are used for detection of fast and slow scanning
malicious worms respectively by capturing intrusion data
during two different time intervals. The FDA captures in-
trusion data for a short interval while the SDA captures for
a larger interval. Table 1 describes some of the detection
algorithm parameters.

Table 1: Some Detection Algorithm Parameters

Notation | Explanation
SW; j** slow worm detection window
FW;; [ i'" fast worm detection window within SW;
ts duration of slow worm detection window
ty duration of fast worm detection window
U; set of profiles captured by the SDA during SW;
Xij fast scanning worm profiles detected during FW;;
Y; set of profiles forwarded to slow worm correlation engine

2.1.1 Fast Worm Detection

When an FDA running on a detector endpoint (DE) de-
tects a malicious or unauthorized intrusion that attempts
to alter the baseline configuration of the DE, the following
occurs:

1. The FDA immediately sends a notification signal to
other participating FDAs respectively within the cell.
FDAs communicate only with other FDAs.

2. When the notification signal is received, the FDAs
within the target cell start real-time recording of pro-
files for all network traffic originated from outside their
cell and targeted at the DEs for a pre-set capture in-
terval. We refer to the FDA capture interval as the
fast worm detection window with duration t;. We also
define a profile as a 4-tuple consisting of srcIP, dstport,
proto, payload. srcIP is the source IP address in the IP
header of packets captured by the DE, dstport is the
target port, proto is the transport layer protocol used
and payload is the content of the payload of the IP
packet. This profile format was chosen because it con-
tains sufficient information to implement a traffic flow
filter on most real-world routers. With deep packet
inspection some routers are capable of performing in-
telligent content-based filtering [21].

3. At the end of the fast worm detection window, the
FDAs on all DEs in the cell transfer their records
to their upstream gateway router (GR) and continue
monitoring the DEs for unauthorized intrusions.

2.1.2 Slow Worm Detection

The SDAs perform continuous real-time capturing of pro-
files of all network traffic originated from outside their cell
and targeted at the DEs in epochs of interval ¢, which we
refer to as the slow worm detection window. During a slow
worm detection window, if an SDA running on a DE detects
a malicious or unauthorized intrusion that attempts to al-
ter the DE’s baseline configuration it captures the nature of
the attempted alteration and continues real-time recording
of incoming traffic profiles. The capture reveals useful infor-
mation about a possible exploit and vulnerability on hosts
in the cell. At the end of a slow worm detection window,
the SDAs on all DEs in the cell transfer their records to
their upstream GR and immediately start the next epoch of
recording. Unlike the FDAs, the SDAs do not wait for an
alert before capturing intrusion data. Intrusion data is cap-
tured in periodic slow worm detection windows of duration
ts.

DEs are dedicated to the function of detecting malicious
intrusions. They do not initiate communication with any
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Figure 2: Series of epochs showing fast and slow worm detection windows

host outside their cell nor do they participate in normal traf-
fic transactions. Traffic hits from outside their cell, recorded
by FDAs and SDAs must therefore be as a result of verifi-
able unauthorized intrusions or benign network scans.

2.1.3 Detection Windows

We refer to an epoch that spans a capture interval as a
detection window. Fast worm detection window refers to
an epoch of duration t; started as a result of an intrusion
attempt detected by an FDA. The slow worm detection win-
dow refers to a periodic epoch of duration ¢ which runs con-
tinuously on each SDA. Fig. 2 shows a snapshot of a series
of epochs during which the FDA and SDA carry out real-
time recording of network traffic profiles. Typically, ts > t¢,
hence during multiple simultaneous fast and slow scanning
worm attacks there could be multiple fast worm detection
windows within a single slow worm detection window as de-
picted in Fig. 2. At the end of a fast worm detection window,
all profiles recorded by an FDA running on a DE in the cell
are transferred to the GR for correlation. Thereafter, the
FDA continues to monitor for future intrusion attempts.
The SDAs wait until the end of the slow worm detection
window before transfering captured records to the GR. The
next slow worm detection window is started immediately
after the transfer.

2.2 Correlation Phase

A process running on the upstream gateway router (GR)
monitors the transfer of records from the FDAs and SDAs
on DEs in the target cell. The GR runs two correlation en-
gines, fast worm correlation engine (FCE) which executes
a fast worm correlation algorithm (FCA) and a slow worm
correlation engine (SCE) which executes a slow worm corre-
lation algorithm (SCA). Both FCA and SCA use Bayesian
inference to probabilistically determine the most likely pro-
file(s) of the unauthorized intrusion(s). Records from the
FDAs are forwarded to the FCE (Fig. 4).

2.2.1 Fast Worm Correlation Algorithm (FCA)
The subroutines that comprise the FCA are:

Fast worm bayesian modeling.

Let B; be the event that hits from traffic profile ¢ were
recorded by an FDA in the target cell. Also, let N;; be the
number of hits belonging to traffic profile ¢ recorded by the
FDA on the ji* DE. If there are m DEs in the target cell and
y profiles recorded by FDAs on DEs in the target cell, the a
priori probability P(B;) that event B; occurred is expressed
as:

m
> Nij
=1

P(Bi) = — (1)

Let A be the event that an unauthorized intrusion due to a
fast scanning worm is in progress. Host-based AIDS on the
FDAs provide verifiable evidence of this event. We model
the observation of profile i by the FDA on the j** DE using
a Bernoulli random variable, I;;. When the j** FDA expe-
riences a hit as a result of traffic profile ¢, I;; = 1, otherwise
I;; = 0. We expect that during a fast scanning worm attack,
all FDAs in the target cell will experience worm scan hits.
Therefore, the likelihood function P(A|B;) is the probability
that a profile i is observed on an FDA, and is expressed as:

m
> L
P(A|B;) = =

(2)

If profile 7 is observed on all FDAs in the target cell, then
P(A|B;) =1.

The a posteriori probability, P(B;|A) of event B; is a mea-
sure of how responsible profile 4 is for the observed unautho-
rized intrusion and using Bayes theorem it can be expressed



as:

p(B,|4) = LABIPE) 3)

> P(AIB:)P(B:)

i=1

The following conditions are executed to identify a suspi-
cious profile associated with the fast scanning worm.

If (y=1), then P(B;|A)=1,
{
select profile ¢ =1;
trigger automated containment;

}
If (y > 1), then P(B;|A)< 1,
{
transition to Threshold-based selection
subroutine;
If (y=0),

abort and wait to be activated again;

}

Fast worm threshold-based selection.

Based on our assumption that fast scanning worm intru-
sions are well suited to extreme value theory, we use sample
mean excess function to determine a threshold, ®; used for
identifying profiles with a posteriori probabilities associated
with fast scanning worm intrusion. The following if loop is
carried out for all y profiles observed on the DEs.

1t (P(B;|A) > @),
{
then select profile ¢;
trigger automated containment;

}
If (P(BZ|A) S CI)f),
{

then do not select profile i;

}

It is expected in the Correlation phase that during a fast
scanning malicious worm or distributed denial of service
(DDoS) attack, there is a very high probability that FDAs
located in a cell under attack will observe early intrusion
attempts and therefore record the profile(s) of the intrusion
traffic. Previous work reveals that several recent scanning
worms such as Code RED II [10] and Nimda [5] preferen-
tially target other hosts from IP address ranges closer to the
vulnerable target host (i.e. in the same /24 or /16 network).
Intrusion attempts as a result of flash worm activity which
does not exhibit such scanning worm patterns will also be
captured by the FDAs if the DEs run the same vulnerable
software as hosts within the cell they are located and there-
fore cannot be differentiated from the vulnerable hosts. The
assumption will fail only if an attacker has prior knowledge
of the DEs and instruments a worm that selectively avoids
intrusion attempts on the DEs. A hitlist worm is an example
of such a worm. Also, worm infections that require the vul-
nerable host to first initiate outgoing connections would not
be detectable using our technique since DEs do not initiate

communication with any host outside their cell. However,
the vast majority of worms seen in the wild are scanning
worms which lack precise knowledge of hosts and ports on
the target network that are currently active [8], and there-
fore can be detected using our proposed technique.

2.2.2 Brief discussion of threshold determination

Suppose that X, X, ....., X, is a sequence of indepen-
dent and identically distributed random variables from an
unknown distribution function F(z) and let u be a pre-
determined threshold for the random variables. The ex-
ceedance of X over u given that X exceeds the threshold
can be expressed as:

Y =[X —ulX >4

Let F, denote that conditional distribution of the exceedance
Y = X — u given that X exceeds the threshold. Hence,

F(y+u) — F(u)

FW) = =5 "F@

According to an extreme value theorem by Picklands [13]
and Balkema & de Haan [3], the distribution of the ex-
ceedances converges in distribution to the generalized Pareto
distribution, G¢,,(y) provided a high enough threshold w is
chosen. This offers an opportunity for appropriate selec-
tion of thresholds when extreme events such as fast scanning
worm invasions occur.

Gerlr) ={ 1240

if € £0
if € =0

where 0 <y < (zp —u) if £ > 0, andOSyS—%if§<0.
xr denotes the rightmost point of the distribution function

The peak over threshold (POT) method [15] [9] is one ap-
proach to selecting a threshold in extreme value statistics. It
offers a graphical tool, the mean excess function e(u) which
is used to determine appropriate thresholds based on theo-
retical knowledge that the mean excess function for a gen-
eralized Pareto distribution is a straight line with a positive
gradient. Hence,

Utgu c+&u>0

e(u) =
(=75
The sample mean excess function e, (u) is an empirical esti-
mate of the mean excess function and is defined as:

>~ max(0, X; — u)

en(u) — i=1 -
Z 1xisu
i=1
where 1x,

;> is the indicator function with value 1if X > u
and 0 otherwise.

If the sample mean excess plot is approximately linear with
positive gradient above a certain threshold value w, then
it is an indication that the exceedances follows a general-
ized Pareto distribution with positive shape parameter, and
as a consequence the threshold u was appropriately chosen.
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Fig. 3 shows a sample mean excess plot for P(B;|A) gener-
ated using simulations of fast and slow worm attacks. The
sample mean excess plot is linear with a positive gradient
over a wide region. The vertical line, v = 0.15 marks our
chosen threshold since there is evidence that the plot is lin-
ear with a positive gradient beyond the chosen threshold.
This method of determining an appropriate threshold was
similarly applied in our experimentation in section 5.1.

2.2.3 Adaptive Profiler

Let F'W;; be the ** fast worm detection window within
the j** slow worm detection window ST; (see Table 1 and
Fig. 2). We use X;; to model a set with elements correspond-
ing to profile(s) identified as associated with fast scanning
worm intrusions(s) by the FCE from records captured dur-
ing FW;; (Fig. 4). We also use U; to model the set with
elements corresponding to all profiles captured by the SDAs
in the cell during the slow worm detection window SW;. For
each slow worm detection window, the adaptive profiler tags
traffic profiles determined to belong to fast scanning intru-
sions and periodically adapts the input into the slow worm
correlation engine (SCE) by filtering out fast scanning intru-
sion profiles. This ensures that only profiles that have not
been previously selected by the FCE as associated with fast

scanning worms are forwarded to the SCE (Fig. 4). If Yj is
the set with elements corresponding to profiles forwarded to
the SCE, then Yj is expressed as:

Y; =U; \ (le UXsj U..... UXij) (4)

This profiler algorithm ensures that for every slow worm de-
tection window, SWj, the corresponding Y; is adapted with
outputs, X;; from the FCE. At the end of a slow worm de-
tection window, only profiles that are not deemed to belong
to fast scanning worms by the FCE are forwarded to the
SCE for slow worm detection and identification. This mech-
anism provides a capability for detection and identification
of traffic flow(s) responsible for simultaneous fast and slow
worm attacks. The SCE runs the slow worm correlation al-
gorithm (SCA) described in the next section.

2.2.4 Slow Worm Correlation Algorithm (SCA)

The SCE runs the slow worm correlation algorithm (SCA)
on Y;. The subroutines that comprise the SCA are:

Slow worm bayesian modeling.

Let S; : S; € Y be the event that hits from traffic profile
i were recorded by an SDA in the target cell. Also, let M;;
be the number of hits belonging to traffic profile ¢ recorded
by the SDA on the j** DE. If there are m DEs in the target
cell and n profiles recorded by SDAs on DEs in the target
cell, the a priori probability P(S;) that event S; occurred is
expressed as:

P(Si) = 57— (5)

Let H be the event that an unauthorized intrusion due to
a slow scanning worm is in progress. Host-based AIDS on
the SDAs provide verifiable evidence of this event. We refer
to SDAs that experience an intrusion attempt and therefore
have evidence of an intrusion attempt as witness slow de-
tector agents (WSDA). Assuming there are £ WSDAs out
of m SDAs in the target cell, we model the observation of
profile i by the WSDA on the j** DE using a Bernoulli ran-
dom variable, L;;. When the WSDA on the j'* DE has
record of a hit as result of traffic profile ¢, L;; = 1, other-
wise L;; = 0. We expect that during a slow scanning worm
attack, all WSDAs in the target cell will have records of the
malicious worm scan hits. Therefore, the likelihood function
P(H|S;) is the probability that a profile ¢ is observed on a
WSDA, and is expressed as:

T
j=1
T

P(H|S;) = (6)
If profile 7 is observed on all WSDAS in the target cell then
P(H|S;) =1 and if profile ¢ is not observed on any WSDA,
P(H|S;) =0.

The a posteriori probability, P(S;|H) of event S; is a mea-
sure of how responsible profile 4 is for the observed unautho-
rized intrusion and using Bayes theorem it can be expressed



as:

P(S;|H) = nP(H|S")P(S") i<n (7)

ZP(H|S¢)P(S¢)

The following conditions are executed to identify a suspi-
cious profile associated with the slow scanning worm.

If (n=1), then P(S;|H)=1,
{
select profile ¢ =1;
trigger automated containment;
}
If (n>1), then 0 < P(S;|H) <1,
{
select profile ¢ in sequence ordered by
P(S;|H); trigger automated containment;

If (n=0),

abort and wait to be activated again;

}

For a single slow worm attack, n = 1 and the GR identi-
fies a single traffic profile ¢ = 1. For multiple simultaneous
slow worm attacks the GR identifies all traffic profiles in a
sequence ordered by the value of P(S;|H). Hence, profile u
is identified before profile v if,

P(Su|H) > P(S,|H) ¥(u,v) (8)

It is expected in the Correlation phase that during a slow
scanning malicious worm attack, all WSDAs in the target
cell will have a record of the malicious worm scan hits. How-
ever, the slow scanning worm will be sucessfully detected if
at least one of the SDAs in the target cell experiences a
malicious intrusion attempt due to the worm.

3. ANALYSIS OF DETECTION

In this section we present a stochastic analysis of the de-
tection interval for fast and slow random scanning worms.
Stochastic variance in such intervals have been known to
impact analysis of worm behavior [12].

3.1 Fast Worm Detection Interval, ¢,

Detection interval for fast worms, ts4 is the interval be-
tween the time a worm scan first hits a target cell and the
time the worm is successfully detected by the FDAs in the
target cell. It comprises the total inter-infection interval, ¢ ¢,
and the total time to infect, tinfect.

tra =tro + tinfect

3.1.1 Total inter-infection interval, ty,

Inter-infection interval for fast worms is the time interval
between successive hits experienced by hosts in a target cell
as a result of a particular fast scanning worm. The total
inter-infection interval, ¢y, is the sum of inter-infection in-
tervals until all FDAs in the target cell have experienced
worm scan hits. For successful detection of worm activity
all FDAs in the target cell must have records of the worm’s
traffic profile and therefore must be scanned by the worm

for detection to be achieved. We model scanning of hosts in
the target cell by a Poisson process with an average rate of
r hosts/second (h/s). Use of Poisson distribution to model
scanning worm behavior is not new [12]. The inter-infection
interval between hosts is an exponential random variable >
with mean 1 and the total inter-infection interval, ¢, is the
sum of inter-infection intervals until all DEs in the target cell
are scanned. Therefore, ¢y, is also an exponential random
variable. Let us assume that there are a total of W hosts in
the target cell comprising m DEs and W — m non-detector
endpoint hosts and that the hosts are scanned only once in
a single worm attack instance.

If G is the number of scanned non-detector endpoints in the
target cell before all m DEs are successfully scanned, then G
is a uniformly distributed random variable G ~ U (0, W —m).
tfv, being the sum of inter-infection intervals until all DEs in
the target cell are scanned is an exponential random variable
with mean ’”T*'G Hence,

m+G

Elts|G] = G~UW0,W —m)
3.1.2  Total time to infect, tinfect

This is the time interval it takes to scan and infect a vul-
nerable host in the target cell. This time is largely dependent
on the nature of the intrusion attack and the vulnerability

being exploited on the endpoint. For analysis we assume
that:

1. All hosts in the target network are vulnerable and
tinfect is uniform for all vulnerable hosts. Therefore,
each scan results in an infection.

2. tinfect is negligible for virulent worms.

For fast scanning worms, detection interval ¢ ;4 can therefore
be expressed as:

tra =1tfo 9)
Then,
Eltsq] = E[E[ts0|G]]
— W+m

tya = o (10)

Similarly, since ty, is the sum of independent inter-infection
intervals, Var(ts,) can be expressed as

m+G
7'2

Var(ts|G) =

Using total variance,

Var(tq) = Var(ts,) = E[Var(ts|G)] + Var(E[ts.|G])

m+G]_ W+m

E[Var(ts|G)] = E|

r? 2r2
Also,
1 2 2
Var(E[ts|G]) = 1272 (W* +m” —2Wm)
Hence
Var(tsa) = 121T2 (W? +m” —2Wm +6m +6W)  (11)

2The inter-infection intervals are independent and identi-
cally distributed (i.i.d).
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Figure 5: Average detection intervals and

Using Matlab simulations, Fig. 5(a) and Fig. 5(b) were gen-
erated from (10) and (11). The figures show that average
detection interval 74, as well as variance in ¢4 decrease pro-
gressively with increase in worm scanning rate. The target
cell size, W was varied to investigate impact of cell size on
detection, and Fig. 5(a) and Fig. 5(b) show that mean and
variance of t¢q increases progressively with increase in W.
Smaller cell sizes will therefore result in faster host-based
detection and containment of fast worm attacks.

3.2 Slow Worm Detection Interval, ¢,,

Detection interval for slow worms, tyq is the interval be-
tween the time a worm scan first hits a target cell and the
time the worm is successfully detected by at least one DE in
the target cell. It comprises the total inter-infection interval,
ts» and the total time to infect, tinfect.

tsq = tsw + tinfect

3.2.1 Total inter-infection interval, t,

Inter-infection interval for slow worms is the time interval
between successive hits experienced by hosts in a target cell
as a result of a particular slow scanning worm. The total
inter-infection interval, ts, is the sum of inter-infection in-
tervals until at least one DE in the target cell experiences a
worm scan hit. For successful detection of slow worm activ-
ity, at least one SDA in the target cell must have record of
the worm’s traffic profile and therefore must be scanned by
the worm for detection to be achieved. We model scanning of
hosts in the target cell by a Poisson process with an average
rate of r hosts/minute (h/m). The inter-infection interval
between hosts is an exponential random variable with mean
% and the total inter-infection interval, ts, is the sum of
inter-infection intervals until at least one DE in the target
cell is scanned. Therefore, ts, is also an exponential random
variable. Let us assume that there are a total of W hosts
in the target cell comprising m DEs, and that the hosts are
scanned only once in a single worm attack instance. Hence,
the probability of randomly scanning a DE in a target cell
is 7.

We model the number of hosts scanned until the first DE is
scanned as a geometric random variable Z. t,,, being the
sum of inter-infection intervals until the first DE in the tar-
get cell is scanned is an exponential random variable with
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(d) Variance in slow worm
detection interval. W = 128

(C) Average slow worm detec-
tion interval, t,4. W = 128.

variance in detection intervals. m = 4

mean Z. Hence,
Z
Eftsy|Z] = =
T

3.2.2 Total time to infect, tinfect

Based on the same assumptions made in section 3.1.2,
tinfect is considered negligible for slow scanning virulent
worms. Detection interval ¢ts4 can therefore be expressed
as:

tsqd = tsow (12)
Then,
Eltsa] = E[E[tsy|Z]]
w

m*x7r

ted = (13)

Similarly, since t, is the sum of independent inter-infection
intervals, Var(ty) can be expressed as

Z
Var(tsv|Z) = 2

Using total variance,

Var(tsa) = Var(tsy) = E[Var(tsy| Z)] + Var(E[tsy| Z])

Z w
E[Var(ts|2)] = E[ﬁ] = Zm
Also,
. Z\ _WW —-m)
Var(E[tsy|Z]) = Var(T> T
Hence
w W —m
) = 14X -m 14
Var(d) = - (14 =) (14)

Using Matlab simulations, Fig. 5(c) and Fig. 5(d) were
generated from (13) and (14). The figures show that aver-
age detection interval 54, as well as variance in ts;4 decrease
progressively with increase in worm scanning rate. The ra-
tio m/W was varied to investigate the impact of number
of detectors and cell size on distributed cellular detection.
Fig. 5(c) and Fig. 5(d) show that mean and variance of tq
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Figure 7: Simulations with probability model for slow worm detection interval.

increases progressively with decrease in m/W. Smaller cell
sizes or deployment of more detectors will therefore result in
faster host-based detection of slow scanning worm attacks.

It can be shown using total probability that:

W—m
P(tra <t) = / Py (tra <t|G = g)fc(g)dg
0

1

4. PROBABILITY MODEL FOR DETECTION "here fa(g) = 5. Solving,

INTERVAL

Scanning rates vary with different types of worms and in
practice there is interest in predicting responsiveness and ac-
curacy of worm defense systems. In this section, we present
a probability model for detection interval and use Markov’s
Inequality to validate the model.

4.1 Fast Worm

Using assumptions made in section 3.1.1, if G ~ U(0, W —
m) is the number of scanned non-detector endpoints in the
target cell before all m DEs are successfully scanned, then
the cumulative distribution function (cdf) of tfq can be ex-
pressed as a function of G, Pig)(tra < t):

F’(G)(tfdSt’):1—6_7’:{fc‘v tZO

1 W—m rt
Pltrg<t)= ——— 1—e m+ad 15
(tra <) = g | e~ adg  (15)
This probability model computes the probability, P(tsq < t)
that ¢ is an upper bound for detection interval ¢ s4.
According to Markov’s Inequality,

P(tja >t) < M
Since,
Pltsa > 1) < Pltga > t) < 201
then,

Eltsd]

{1-P(ta<t)} < — (16)



Fig.6(a) was generated using {1—P(t;q <t)} and il fd and
it shows that the developed probability distribution (15) for
t¢q satisfies (16) irrespective of worm scanning rates.

4.2 Slow Worm

Using assumptions made in section 3.2.1, if Z is the num-
ber of hosts scanned until the first DE is scanned in the
target cell, then the cumulative distribution function (cdf)
of t.q can be expressed as a function of Z, P z)(tsa < t):

Pyt <t)=1-€¢"%  £>0

It can be shown using total probability that:

W—m+1
P(tsa <t)= Y Pzt <tZ =2)Ps(2)
z=1
where Pz(z) = 2 (W)~ !, Solving,
W—m+1 z—1
re.m (W —m
P(ta <t) = l—e )| —r 17
asn= 3 a-HE(TET)

This probability model computes the probability, P(tsq < t)
that ¢ is an upper bound for detection interval ts4.
According to Markov’s Inequality,

E[tsd]
t
Fig. 7( ) and Fig.7(b) were generated using {1 — P(tsq <)}
and Z ;d and they show that the developed probability

distribution (17) for t.q satisfies (18) irrespective of worm
scanning rate and m/W ratio.

{1-P(tua<t)} < (18)

4.3 False Detection

False detection occurs when either a false negative or a
false positive occurs. With the proposed detection scheme,
a false negative would occur if the host AIDS on the DEs
fail to detect occurrence of a malicious intrusion activity.
Scenarios in which this can happen include:

1. If the host-based AIDS running on the DEs is not
tuned to detect anomalies caused by the unauthorized
intrusion worm activity. This scenario can be avoided
by ensuring proper tuning.

2. If for fast scanning worms, the worm takes more time
to scan all the DEs in the target cell than the FDA cap-
ture interval, ty. Note that for fast scanning worms,
the time it takes to scan all DEs in the target cell is the
total inter-infection interval s, (section 3.1.1), which
is equivalent to the detection interval, 74 (9). Using
(15), the probability that this false detection scenario
occurs can be expressed as:

P(tfd >ty) =1—P(tsa <t5)

W—m rty
—1- / 1— e~ mtidg (19)

Wm

Fig. 6(b) shows that the probability of false detection
decreases progressively with increase in worm scanning
rate or with increase in ty. Fig. 6(c) also shows that
this probability reduces with smaller cell sizes.

3. If for slow scanning worms, the worm takes more time
to scan at least one DE in the target cell than the SDA
capture interval, t; configured on the DEs. For slow
scanning worms, the time it takes to scan at least one
DE in the target cell is the total inter-infection interval
tsy (section 3.2.1), which is equivalent to the detection
interval, tsq4 (12). Using (17), the probability that this
false detection scenario occurs can be expressed as:

SR TR ()

Fig. 7(c) shows that the probability of false detection
decreases progressively with increase in worm scanning
rate or with increase in t,. Fig. 7(d) also shows that
this probability reduces with increase in m/W. There-
fore, increasing number of detectors or reducing the
cell size reduces false detection probability.

5. EXPERIMENTATION

To evaluate the functionality and performance of the pro-
posed detection scheme on a live testbed, we emulated self
propagating slow worm attacks using a modified blaster worm
source code. To emulate multiple malicious attacks the
source code was used to instrument two worms that ex-
ploited two different vulnerabilities. The first, worm-1 was
instrumented to create a directory named /root/infected-1
on the target host and copy a file named malicious-1 into
that directory over TCP port 888. The second, worm-2 was
instrumented to create a directory named /root/infected-2
on the target host and copy a file named malicious-2 into
that directory over UDP port 999. Fig. 1 shows the net-
work topology of our live test-bed. Hosts in network-1 and
network-2 were used to launch worm-1 and worm-2 random
attacks respectively on hosts in the target networks (net-
work A, network B, network C, and network D). We used
OpenVZ virtualization ® [20] to create the required vulnera-
ble host population in the target networks. Up to 254 virtual
hosts were created on individual Linux workstations running
OpenVZ kernel-2.6.22 to emulate a class C network popula-
tion in each target network.

For our test, the host-based AIDS running on the fast
worm detector agent (FDA) and the slow worm detector
agent (SDA) were emulated using different instances of snort-
based IDS that constantly monitored the directory struc-
ture and content of the DE, and generated an alert when
a file named malicious-1 or malicious-2 was found in a di-
rectory named /root/infected-1 or /root/infected-2 respec-
tively on the DE. In our implementation, the snort-based
IDS was used for real-time recording on the FDA and SDA
4 t; and ts were set to 10 seconds and 25 minutes on the
FDA and SDA respectively. For effectiveness, the malicious
attacks randomly scanned hosts in one target network be-
fore selecting another target network. Worm scanning rates
were varied between 10hosts/second (h/s) to 40h/s and from

30penVZ is an operating system-level virtualization tech-
nology based on the Linux kernel and operating system.
“Note that our emulation of host-based detection with snort-
based alerts and real-time logging was only used to demon-
strate the behavior of the proposed detection technique.
Other host-based AIDS software such as Thirdbrigade host
AIDS, Cisco Security Agent and Tripwire host AIDS can be
used for detection in enterprise deployments.
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Figure 8: Experimental results with simultaneous fast and slow worm attacks.

2hosts/minute (h/m) to 12h/m to emulate fast and slow
scanning worms respectively. For each scanning rate, 20
runs of the attack were carried out to minimize statistical
errors. The gateway routers, GR-1 and GR-2 ran instances
of our proposed fast correlation engine (FCE) and slow cor-
relation engine (SCE).

The experiment was carried out to demonstrate and eval-
uate detection of simultaneous fast and slow worm attacks
using the proposed integrated detection technique.

5.1 Experiment: Multiple simultaneous fast
and slow worm attacks

In this experiment, four attacking hosts, two from network-
1 and two from network-2 in Fig. 1 were used to launch dif-
ferent attacks (worm-1 and worm-2 respectively) on hosts in
the target networks. The scanning rate of a pair of worm-1
and worm-2 attacks were set to 20h/s and 30h/s respectively
to emulate fast worms. The scanning rate of the second pair
of worm-1 and worm-2 attacks were set to 6h/m and 10h/m
respectively to emulate slow worms. The objective of the ex-
periment was to investigate the effectiveness of the proposed
detection scheme in detecting simultaneous fast and slow
scanning malicious worm attacks on a target network. The
target cell sizes (i.e W) were varied by varying the number of
vulnerable virtual hosts in the target network to investigate
impact of cell size.

Fig. 8(a) shows that average detection interval for the fast
worms reduces progressively with increase in worm scanning
rate. It also shows that smaller cell sizes result in faster de-
tection. These observations concur with results obtained an-
alytically in Section III. The results show that the proposed
detection scheme is capable of detecting malicious intrusion
attacks with scanning rate of 20h/s or more within 7 seconds
after starting the attack on a network with cells comprising
no more than 254 hosts.

Fig. 8(b) shows that average detection interval for slow
worms reduced progressively with increase in worm scan-
ning rate. It also shows that a reduction in the W which
increases the m/W ratio resulted in faster detection. These
observations also concur with results obtained analytically
in Section III. Fig. 8(b) shows that the detection scheme is
capable of detecting slow scanning worm attacks with scan-
ning rate of over 2h/m within 10 minutes after starting the

attack on cells with m/W ratio of & (0.0625) or more.

Fig.8(c) and Fig.8(d) show snapshots of results from both
the fast correlation algorithm (FCA) and slow correlation
algorithm (SCA) respectively. Fig.8(c) shows that though
the FCE received both fast and slow worm traffic profiles
during the fast worm detection window, only the fast worm
traffic profiles exhibited a posteriori probability, P(B;|A)
greater that the chosen threshold, ®; = 0.15 and therefore
were selected by the FCA. Also, even though both fast and
slow worm profiles are captured by the SDA during the slow
worm detection window, the adaptive profiler ensures that
only the slow worm profiles not selected by the FCA are
forwarded to the SCE. On the SCE, Fig.8(d) shows that
the slow worm traffic profiles exhibited P(B;|A) > 0 and
therefore were selected by the SCA.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a unique integrated detection
technique capable of detecting and identifying traffic flow(s)
responsible for simultaneous fast and slow scanning mali-
cious worm attacks. The detection approach uses a com-
bination of evidence from host-based anomaly detectors, a
self-adapting profiler and Bayesian inference from network
heuristics for detection. We assumed that fast scanning
worm attacks are extreme events which exhibit an extremely
high number of connection attempts on vulnerable targets
and therefore seemed to be well suited for extreme value the-
ory (EVT). Hence, we used an EVT graphical tool, sample
mean excess function to determine appropriate thresholds
used for Bayesian inference during fast worm detection.

Worm detection interval was modeled as a stochastic vari-
able and analysis of detection interval for both fast and
slow scanning worms using the detection technique was pre-
sented. Based on the analysis, a probability model for worm
detection interval was developed and validated using Markov’s
Inequality. The probability model was also used to show
that false detection rates can be reduced if certain network
parameters are optimized. We experimented with the inte-
grated detection scheme on a live test-bed and the generated
results concurred with our analytical model and results.

For future work, we intend to extend our work on inte-
grated detection of worms to peer-to-peer networks. With
proliferation of Web 2.0 and peer-to-peer social networks,



a new vulnerability and threat model for large scale infec-
tion of unprotected systems and networks by worms seem
quite conceivable. We are encouraged by the results of this
work and the observation that false detection rates of scan-
ning worms can be improved with optimization of certain
network parameters. More work is required to develop ade-
quate detection techniques for both fast and slow worms in
peer-to-peer networks.

Also, we intend to investigate the use of extreme value
theory for detection of DDoS attacks.
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