
Finn Kensing and Andreas Munk-Madsen

P U) : S T R U C T U R E I N T H E
T O O L B O X

I n S ~ a n d i n a v i a u s e r p a r t i c i p a t i o n a r o s e in t h e c o n t e x t
o f a c t i o n - o r i e n t e d r e s e a r c h w i t h t r a d e u n i o n s in t h e

l a t e 1970s . B o t h a u t h o r s p a r t i c i p a t e d in s u c h p r o j e c t s
(a l s o s e e t h e a r t i c l e b y C l e m e n t e t a l . in t h i s issue) . T h e
a p p r o a c h w a s o r i e n t e d t o w a r d i n c r e a s i n g t h e i n f l u e n c e

01" w o r k e r s a n d t h e i r u n i o n s o v e r t h e d e v e l o p m e n t
a n d u s e o f t e c h n o l o g y a t t h e i r w o r k p l a c e s .

In this article, however, we argue from
an epistemological s tandpoint that
pa r t i c ipa tory design is needed to
gradual ly build up the knowledge
required for developing and using a
new system.

T h e r e is a common explanat ion
when an a t tempt to practice PD fails:
"The users and the system develop-
ers did not unders tand each other."
The statement is often followed by
the recommendat ion of a specific
technique or tool to remedy the situ-
ation. However, in our experience
there is no foolproof method. System
development projects fail in commu-
nication even though they use the
most promising techniques.

In one project horizontal proto-
types were used extensively dur ing
the time the requirements were de-
fined. A horizontal prototype shows
all in tended functions, but they a r e

not implemented in detail as re-
quired in the final system [16]. The
intention was to ensure that the users
unders tood what they accepted. The
system had to undergo substantial
changes, however, before it could be
used [2].

In another case the users were
unable to define system require-
ments at meetings with system devel-
opers. The system developers then
made an elaborate vertical prototype
and expected a response from the
users. A vertical prototype offers a
selection of functions i raplemented
in their in tended final form [16].
However, they did not receive any
response fi:om the users.

How do we account for these ap-
parent paradoxes? It is difficult to
find relevant explanations. Most
papers and books deal specifically

with techniques and tools, not with
under ly ing theories enabling us to
discuss the context and the limita-
tions of the techniques and the tools.
Comparat ive surveys of methods [3,
18, 29] are usually thorough on de-
tails but lacking in explanatory the-
ory.

In this article we suggest an an-
swer to the communicat ion para-
doxes in terms of a model of user-
developer communication. The
model is based on theories dealing
with system development as well as
with communicat ion. The model
may help us unders tand why some
approaches sometimes yield fruitful
communicat ion, while in o ther situa-
tions the same approaches turn out
to be obstacles. The distinctions of-
fered by the model may act as a cata-
l o g u e - o r t oo lbox - -whe re system
developers may find ideas appropr i -
ate for specific situations. We use the
model to categorize communicat ion
methods and descript ion tools in re-
lation to their applicat ion area. Thus
our model may form the basis of a
contingency strategy, as p roposed by
Davis [11] and Boehm [4].

The model covers communicat ion
related to analysis and design (i.e., to
def ining requirements and creat ing
solutions). It does not cover all user-
developer communicat ion. It ex-
cludes communicat ion related to
management and implementat ion.

User-Developer Communication
in System Development
We want to discuss possibilities and
obstacles for successful communica-
tion in system development . There-
fore we relate the communicat ion
processes to their results and to the

context in which they take place.
Describing the system develop-

ment process, Clements and Parnas
[8] state: "The most useful form of a
process descript ion will be in terms
of work products." They proceed by
describing the documents they would
produce dur ing a project 's lifetime.
We agree with them, al though our
concept of results is not confined to
documents alone. We would also like
to include the knowledge developed
by the people involved as results.

What then are the results of the
system development process? The
final results are, of course, a system
and a completed technical and orga-
nizational implementat ion process.
In te rmedia te results are documents
and knowledge obtained by the par-
ticipants. Regardless of the develop-
ment m o d e l - - b e it waterfall, spiral,
incremental or pa ra l l e l - - these re-
sults form the basis of impor tant de-
cisions. These decisions deal with
de te rmin ing the system's level of
sophistication, evaluating the useful-
ness of the system, freezing the re-
quirements , and designing the sys-
tem's internal structure.

Thus the goal of analysis and de-
sign activities is to produce docu-
ments and knowledge enabling deci-
s ion-making with regard to the
system and its environments . How
can we produce these results (i.e.,
what kind of methods do we need?)
Tha t depends on the prerequisites
for the deve lopment process, espe-
cially the limitations of user-devel-
oper communicat ion. The following
section presents a model of commu-
nication in o rde r to answer this ques-
tion.

78 June 1993/Vol.36, No.4 ¢ O M M U N | ¢ A T I O N $ OP T H E A C M

http://crossmark.crossref.org/dialog/?doi=10.1145%2F153571.163278&domain=pdf&date_stamp=1993-06-01

Communication Models
Communicat ion is of course a key
issue in collective activities such as
system development. People with
different backgrounds, education,
training, and organizational roles
exchange facts, opinions, and visions
in o rder to inform, persuade, and
maybe even threaten one another.
How is communicat ion possible in
such a context.

We sketch two communicat ion
models relevant to unders tanding
and designing user-developer com-
munication: a tradit ional model and
an alternative model. It is our opin-
ion that many current tools and tech-
niques rely heavily on the first
model.

Current methods usually suppor t
written communicat ion based on for-
malized languages, proto typing
being the major exception. These
methods rely on a communicat ion
model which can be described by a
tube-for-communicat ion metaphor .
Communicat ion is perceived as
something created at one place (e.g.,
the developers ' office), then carried
through "a tube" to the receivers
(e.g., the users). The tube could be
some kind of written system descrip-
tion. This communicat ion model
takes for granted that successful
communicat ion is de te rmined by the
"sender 's" ability to form a r igorous
message. How is it, that the same
message in the same form can be in-
te rpre ted so differently by various
"receivers"?

An alternative communicat ion
model focusing on the prerequisites
of those involved in a communicative
situation enables us to approach this
question. When people communi-
cate, the speaker 's words may tr igger
a change of state in the listeners. Ac-
cording to Maturana and Varela [27]
"communication depends on not
what is transmitted, but on what hap-
pens to the person who receives it."
The key criteria for successful com-
munication within this model relates
to the people involved, ra ther than to
some kind of ' tube' between them.
Thus, successful communicat ion
depends on the ability to establish sit-
uations in which mutual per turba-
tions tr igger changes in the state of
those involved, which in turn lead to

structural congruence (social cou-
pling) among communicat ing part-
ners. Writ ing and speaking do not
guarantee reading or l i s ten ing--or ,
even more i m p o r t a n t - - d o not guar-
antee the establishing of the concepts
and models in tended by the 'sender ' .
Communicat ion is created by people
who interact.

Maturana and Varela state that a
person's interaction domain is his or
her domain of cognition. This im-
plies that the kinds of activities in
which we are involved delimit the
kinds of knowledge we are able to
develop. I t fur ther implies that the
tools we apply in these activities de-
limit the kind of knowledge we are
able to develop. The rejection of the
tube-for-communicat ion metaphor
implies that developers and users
must set aside much time for discus-
sions and for jo int activities. This is
done at the expense of working alone
and communicat ing solely in writing,
which current methods primari ly
support . Techniques such as proto-
typing, mapping, future workshops,
and metaphorical design (see section
enti t led "Tools and Techniques for
Knowledge Development), are alter-
natives which suppor t the develop-
ment of social coupling, and thereby
successful communication.

A Model of User-Developer
Communication
We want to be able to address such
questions as: "Why did a specific
project fail even though it contained
many user-related activities?"
"Which methods should be appl ied
in specific system development situa-
tions? How do system developers
ensure active user participation?"

In o rde r to discuss these questions
we have created a model of the com-
munication between users and sys-
tem developers. The model high-
lights impor tant factors and relates
them to one another . The factors
are: the results of the system develop-
ment process (including intermedi-
ate results); the part icipants ' prerequi-
sites, and tools and techniques for
system description. The model is
based on two dis t inc t ions--deal ing
with three domains of discourse and two
levels of knowledge. The three domains
of discourse are illustrated in

Figure 1.
Figure 1 illustrates the idea that

design is br idge-building, since
something new is created from two
separate things. Design is based on
two domains of discourse: the users'
present work and the technological
options. Here technology incorpo-
rates not only hardware and soft-
ware, but also work organization.
While this may seem strange, in this
context we find it useful and accept-
able to g roup these matters. Various
organizational options, as well as sev-
eral hardware and software options,
should be considered and coordi-
nated in o rde r to fit together as well
as possible. The result is a third do-
main o f discourse: a new (or
changed) computer system and
changes in the content and the orga-
nization of the users' work.

These domains typically reflect the
users' and developers ' knowledge
and unders tanding pr ior to enter ing
the system development process. At
the outset the users have some
knowledge of their present work and
of organizational options. The sys-
tem developers have some knowl-
edge of the technical options with
regard to hardware and software. At
the outset this is all they need to
know.

Based on this distinction we state:

Thesis: The main domains o f dis-
course
The main domains of discourse in design
a r e 2

* users' present work
* technological options
* new system
Knowledge of these domains must be de-
veloped and integrated in order for the
design process to be a success.

The second distinction is illus-
trated in Figure 2. It shows we need
two levels o f knowledge. We need
abstract knowledge to get an over-
view of a domain of discourse and we
need concrete experience in o rde r to
unders tand the abstract knowledge.

We combine the two distinctions
into the model shown in Table 1. The
model describes three main domains
of discourse on two levels of abstrac-
tion. Altogether, we get six areas of
knowledge in user-developer commu-
nication (Table 1).

COMIMUNIClATIIOI~IS OF THIE ACM June 1993/Vol.36, No.¢ 7 9

Table 1. Six areas of know ledge in user -deve loper c o m m u n i c a t i o n

Abstract
knowledge

Concrete
experienoe

Relevant
structures on
users' present work

C o n c r e t e

experience with users'
present work

(2)

(1)

Visions
and design proposals

Concrete
experience with the new
system

(5)

(6)

Overview of (4)
technological options

Concrete
experience with
technological options

(3)

The number ing 1 to 6 in Table 1
does not reflect a time sequence, (i.e.,
we are not proposing a new waterfall
model). The number ing is done for
the purpose of convenient reference.
Various methods propose different
sequencing when dealing with the six
areas. Normally we would expect
some degree of iteration. However, a
discussion of methods is beyond the
scope of this article. The six areas of
knowledge comprise a classification
of system development tools and
techniques. The following subsec-
tions discuss, each area in more detail.
The reader may wish to look ahead
at Table 2 to see examples of tools
and techniques in each area.

Concrete Experience with Users'
Present Work
Developers need this area of knowl-
edge [19]. They must have' some feel-
ing for the users' work in order to be
able to unders tand and to produce
structured descriptions o1" represen-
tations of this work (area 2). They
cannot rely on users' talking about
their work, and they cannot rely on a
requirement specification. Develop-
ers must experience users in action.

I f developers have no concrete
experience with what is going on in
the user organization and if they
have no idea of the cultural poten-
tials for change, they cannot judge
the relevance of a structured descrip-
tion of the work. User representation
in the design team does not overrule
this statement.

The resuhs of dealing with this
area of knowledge may come in
terms of experiencing differences in
working styles, normal and stress sit-
uations, exceptions, power relations,
and so forth. Results may also be the
formation of a common language
among users and developers.

Figure 1. Three d o m a i n s of
d iscourse in t he des ign process

Figure 2. Two levels
of know ledge

Relevant Structures on Users'
Present Work
A relevant structure defines a com-
mon and rigorous language in which
users and developers can communi-
cate. A structure is a model of the
present situation in the user organi-
zation. The model is used to identify
desired changes and to evaluate con-
sequences of proposed designs. We
refer to structures in the plural, as we
cannot expect to capture the richness
of the users' work in a single struc-
ture.

Which structures are relevant de-
pends on the situation. Information
flow is a structure offered by many
methods. It is relevant when we want
to automate existing data processing.
A control model is a relevant struc-
ture when we want to discuss man-

agement information systems. A
model showing the variety and inter-
relationship of tasks carried out by
individuals or a group dur ing a typi-
cal working day is relevant when we
want to discuss requirements for a
new communicat ion system.

Concrete Experience with
Technological Options
If we want users to play an active role
in system development we must pro-
vide them with technological options.
This is done to stimulate their imagi-
nation and to enable them to better
unders tand abstract descriptions of
technical and organizational solu-
tions.

The relevance of activities in this
area is of course dependent on the
users' present experience. Even if
they are daily users of some kind of
system, they might not have experi-
enced the variety of existing hard-
ware and software.

If we want designers to play an
active role in designing the use of
technology in organizations (al-
though this is seldom an explicit goal,
they often do this anyway) they must
have organizational options. This is
done to stimulate their organiza-
tional thinking and to enable them to
unders tand the users' concrete expe-
riences with, as well as their abstract
descriptions of, organizational op-
tions.

Overview of Technological Options
This area of knowledge is the input
of technical and organizational ideas
into the design process. The system
developers must be well informed
about possibilities and limitations
regarding hardware and software in
order to justify their presence in the
process. If nobody in the user orga-
nization has an overview of organiza-

8 0 June 1993/Vol.36, No.4 ¢OMMUI~I |¢ATIONS OF THE ACM

tional options, then this subarea has
to be developed dur ing the design
process to ensure that the new com-
puter system and the new organiza-
tion fit together.

visions and Design Proposals
These descriptions are developed
throughout a project 's lifetime. Here
too, it is a questions of many struc-
tures, as one alone cannot capture
the totality of a new computer system
and its use. The structures document
the actual progress of the project as it
approaches the final result, forming
the basis for renewed contracts, even
if these may be informal. There fo re
some of these descriptions must be
unders tandable to the users.

Abstract descriptions are normally
required as par t of a system develop-
ment project. These may be difficult
for the users to unders tand, but they
are necessary to the developers. We
stress that in o rde r for users to make
decisions and assign priorities, they
too need abstract descriptions to pro-
vide them with relevant structures of
the new computer system, as well as
of the organization in which it is to be
implemented. These descriptions
might very well differ from those
needed by the developers.

Concrete Experience with
the New System
The purpose of this area is to enable
the users to unders tand abstract de-
scriptions of the new system (area 5),
and to let them experience how the
new system meets their needs. The
system developers also need concrete
experience with the new system in
o rde r to check whether it fulfills the
descriptions. In a specific project this
area may already be covered through
experience with technological op-
tions (area 3). This depends first and
foremost on how radically the new
system transcends cur ren t practice.

Theses Based on the Model
We now relate the model to the par-
ticipants' prerequisites and we dis-
cuss which areas of knowledge each
party must develop in o rde r to facili-
tate genuine cooperation. The mini-
mal starting point for a design pro-
cess is actually ra ther narrow.
Therefore it is the system developers '

Table 2. TOOLS and techniques for knowledge development

Videorecording [23, 301

Think-aloud experiments [23] 1

Drawing rich pictures [7] 1 2

Conceptual modelling [7] 2

Culture analysis [5] 1 2

Object-oriented analysis [91 2

Object-oriented design [10]

Event lists [28] 2

Entity-relationship diagrams [28] 2

Wall graphs 2

Mapping [25] 2 5

Future workshop [21-23] 2 5

Metaphorical design [23, 26] 2 5

Dataflow diagrams [12] 2 5

Language analysis [24, 30, 31] 2 5

Card games [15] 1

Prototyping [1, 6, 16, 20] 3 5

Visits to other installations 3 4

Literature study 4

Study standard software 3 4

Forum theater

responsibility to apply tools and tech-
niques which allow the participants
to acquire an unders tanding of areas
in which they have little or no knowl-
edge.

Thesis: Areas covered by the users.
We can usually be sure that users cover
area 1: Concrete experience with user
work. We can usually expect no th ing
more.

6

6

Obviously, users may be ignorant
of technological options and the fu-
ture system. However, it is not so
obvious that they normally do not
possess relevant structures or repre-
sentations of their own work. The
keyword here is "relevant."

Tradi t ional structures, such as
organization diagrams and descrip-
tions of the formal division of labor
are not necessarily relevant. They

COMMUI~IC:ATIONS OIm'rlNIIE ACM.June 1993/Vol.36, No.4 81

gather information in cooperat ion
with users,]produce descriptions in
isolation, and finally present, discuss,
and alter the descriptions again to-
gether with the users. Techniques
such as fu ture workshops and mock-
ups belong to the first category, while
object-oriented analysis and concep-
tual model ing belong to the latter.

A presentat ion of the tools and
techniques chosen to illustrate the
use of the toolbox is beyond the
scope of this article. The interested
reader may find addit ional informa-
tion in the references indicated in
Table 2.

Conclusion
We find the model listing areas of
knowledge in Table l useful for a
classification of tools and techniques.
Developers may find this classifica-
tion helpful when planning a project.

We also find theses discussed in
the previous section, "Theses Based
on the Model" useful in explaining
why projects run into trouble. This
may be related to power games in the
user organization or to o ther factors
which are most often out of the de-
velopers ' control. However based on
our own research [2], we claim that
far too often problems in real-life
projects are caused by developers
using inadequate tools and tech-
niques.

We can now explain apparen t par-
adoxes such as: "Horizontal proto-
types are insufficient" [20] and "Pro-
totypes do not substitule analysis"
[1]. A horizontal prototype does not
really give users an experience with
the future system. It is more like an
abstract system description: the
menu hierarchy implemented on
edp-hardware . Thus, inexper ienced
users will not obtain sufficient un-
ders tanding of the system's func-
tions. Vertical prototypes used suc-
cessfully might solve the problem.
On the other hand, proLotyping di-
verts attention from general ques-
tions such as: Do we need a new com-
puter system? To answer this
question knowledge area 2 in Table 1
must be dealt with. Analysis tech-
niques must also be used.

Table 2 not only indicates the
areas of knowledge, in which the var-
ious tools and techniques are ade-

quate but at the same time also high-
lights the areas in which they are
inadequate. Conclusions concerning
the more established tools and tech-
niques such as dataflow diagrams are
interesting. One of many conclusions
we may draw from Table 2 is that all
t radit ional system development
methods deal only with areas 2 and 5,
result ing in abstract descriptions.
Thus, by themselves they are insuffi-
cient as guidelines for the entire sys-
tem deve lopment process. They
must be supplemented by techniques
giving concrete experiences of user
work and computer technology.

Acknowledgments
We thank Kaj GrCnba~k, Jesper
Holck, Lucy Suchman, Randy Trigg
and Ter ry Winograd for comments
on earl ier drafts. Also we would like
to thank Jenn i fe r Oakley for a seri-
ous language tune-up.

References
1. Andersen, N.E. Brug af prototyper

(in Danish) (Using Prototypes),
Datacentralen, 1987.

2. Andersen, N.E. et al. Professional Sys-
tems Development. Prentice-Hall, En-
glewood Cliffs, N.J., 1990.

3. Blank et al. Software Engineering:
Methods and Techniques. Wiley-Inter-
science, 1983.

4. Boehm, B. A spiral model of software
development and enhancement. Com-
puter (May 1988).

5. BCdker, K. and Pedersen, J.S. Work-
place cultures--Looking at artifacts,
symbols, and practice. In [19].

6. BCdker, S. and GrCnb~ek, K. Design in
action From prototyping by demonstra-
tion to cooperative prototyping. In [19].

7. Checkland, P. Systems Thinking, Sys-
tems Practice. Wiley, New York, 1981.

8. Clements, P.C. and Parnas, D.L. A
rational design process: How and
why to fake it. In Proceedings of the In-
ternational Joint Conference on Theory
and Practice of Software Development.
Springer Verlag, New York, 1985.

9. Coad, P. and Yourdon, E. Object-
Oriented Analysis. Prentice Hall, En-
glewood Cliffs, N.J., 1991.

10. Coad, P. and Yourdon, E. Object-
Oriented Design. Prentice Hall, Engle-
wood Cliffs, N.J., 1991.

11. Davis, G.B. Strategies for informa-
tion requirements determination.
IBM Syst. J. 21 (1982), 4-30.

12. DeMarco, T. Structured Analysis and
Systems Specification. Yourdon Press,
1978.

13. Ehn, P. Work-oriented design of
computer artifacts. Arbetslivscentrum
1988.

14. Ehn, P. and Kyng, M. Cardboard com-
puters-Mocking-it-up or hands-on the
future. In [19].

15. Ehn, P. and Sj6gren, D. From system
descriptions to scripts for action. In [19].

16. Floyd, C. A Systematic Look at Prototyp-
ing. In Approaches to Prototyping. R.
Budde et al, Eds., Springer Verlag,
New York, 1984.

17. Foged, J. et al. H~ndbog om Klubar-
bejde, edb-projekter og nye ar-
bejdsformer. (in Danish). TIK-TAK
projektet, Axhus University, Den-
mark, 1987.

18. Freeman, P. and Wasserman, A.I.
Software Development Methodologies and
Ada. DoD, 1982.

19. Greenbaum, J. and Kyng, M. Eds.,
Design at Work: Cooperative Design of
Computer Systems. Lawrence Erlbaum,
1991.

20. GrCnba~k, K. Rapid Prototyping with
Fourth Generation Systems--An Empiri-
cal Study. DAIMI PB-270, A.rhus Uni-
versity, Denmark, 1988.

21. Junk, R. and Mtiller, N. Future Work-
shops--How to Create Desirable Futures.
Institute for Social Invention, Lon-
don, 1987.

22. Kensing, F. Generation of Visions in Sys-
tems Development. In Systems Design for
Human Development and Productivity. P.
Docherty et al, Eds., Proceedings of the
IFIP TC 9/WG 9.1 Working Conference.
North-Holland, Amsterdam, 1987.

23. Kensing, F. and Madsen, K.H. Gen-
erating visions--Future workshops
and Metaphorical Design. In [19].

24. Kensing, F. and Winograd, T. The
language/action approach to design of
computer support for cooperative work--
A preliminary study in work mapping. In
Collaborative Work, Social Communica-
tions and Information Systems, R.K.
Stamper et al., Eds., Proceedings of the
IFIP TC8 Working Conference. North-
Holland, Amsterdam, 1991.

25. Lanzara, G.F. and Mathiassen, L.
Mapping situations within a system
development project. Inf. Manage. 8,
1.

26. Madsen, K.H. Breakthrough by
breakdown--Metaphors and struc-
tured domains. DAIMI PB-243,
,~.rhus University, Denmark, 1988.

27. Maturana, H.R. and Varela, F.J. The
Tree of Knowledge--The Biological Roots

8 4 juoe 1993/Vo1.36, No14 ¢ O M M I ~ I N | ¢ A T I O N S OIF THE ACM

of Human Understanding. New Science
Library, 1987.

28. McMenamin, S.M. and Palmer, J.F.
Essential Systems Analysis. Yourdon
Press, 1984.

29. Olle, T.W. et al. Information Systems
Methodologies. Addison-Wesley, Read-
ing, Mass., 1988.

30. Suchman, L.A. and Trigg, H.T. Un-
derstanding practice--Video as a
medium for reflection and design. In
[19].

31. Winograd, T. and Flores, F. Under-
standing Computers and Cognition--A
New Foundation for Design, Ablex,
1986.

CR Categories and Subject Descrip-
tors: C.4 [Computer Systems Organiza-
tion]: Performance of Systems; D.2.2
[Software]: Software Engineering--Tools
and Techniques; K.6.1 [Management of
Computing and Information Systems]:
Project and People Management

General Terms: Design
Additional Key Words and Phrases:

Case study, cooperative design, coordina-
tion, CSCW, evaluation, hypermedia

About the Authors:
FINN KENSING is associate professor of
computer science at Roskilde University,
Denmark. Current research interests in-
clude the study of work practices of users
and designers for the purpose of offering
theories of and methods for system devel-
opment. Author's Present Address:
Computer Science Department, Roskilde
University, DK-4000 Roskilde, Denmark;
email: kensing@dat.ruc.dk

ANDREAS MUNK-MADSEN is presi-
dent of Metodica, a consultant firm spe-
cializing in system development methods.
Author's Present Address: Metodica,
Nyvej 19, DK-1851 Frederiksberg C,
Denmark.

Permission to copy without fee all or part of
this mater ia l is granted provided that the
copies are not made or dis t r ibuted for direct
commercia l advantage, the A C M copyright
notice and the title of the publ icat ion and its
date appear, and notice is given that copying
is by permiss ion of the Associat ion for
Comput ing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© AGM 0002-0782/93/0600-078 $1.50

IT'SA
BEYOND l

/

tY 96,000 acres of i r replaceable rain forest are be ing burned
~ eve ry day. These once lush forests are be ing cleared for

grazing and farming. But the t ragedy is wi thou t the forest
this delicate land quickly tu rns barren.

In the smolder ing ashes are the remains of what had
taken thousands of years to create. The l ife-sustaining
nutr ients of the plants and l iving mat ter have been

des t royed and the e x p o s e d soil quickly loses its fertility.
Wind and rain reap fu r the r damage and in as few as five years

a land that was t eeming wi th life is tu rned into a wasteland.

T h e National Arbor Day Foundation, the world ' s largest t ree-plant ing envi-
ronmenta l organization, has launched Rain Forest Rescue. By jo in ing the
Foundation, you will help s top fu r the r burning. For the fu ture of our
planet, for hungry peop l e everywhere , suppor t Rain Forest Rescue. Call now.

Cal l R a i n F o r e s t R e s c u e .

1-800-255-5500
O The National ,Arbor Day Foundation

COMMUNICATION~ OF THII ! ACM June 1993/Vol.36, No.4 8 S

