Finn Kensing and Andreas Munk-Madsen

PD: STRUCTURE IN THE

e

TOOLBOX

L

in Scandinavia user participation arose in the context
of nction-oriented research with trade unions in the
late 1970s. Both authors participated in such projects
(also see the article by Clement et al. in this issue). The
approach was oriented toward increasing the influence
of workers and their unions over the development
and use of technology at their workplaces.

In this article, however, we argue from
an epistemological standpoint that
participatory design is needed to
gradually build up the knowledge
required for developing and using a
new system.

There is a common explanation
when an attempt to practice PD fails:
“The users and the system develop-
ers did not understand each other.”
The statement is often followed by
the recommendation of a specific
technique or tool to remedy the situ-
ation. However, in our experience
there is no foolproof method. System
development projects fail in commu-
nication even though they use the
most promising techniques.

In one project horizontal proto-
types were used extensively during
the time the requirements were de-
fined. A horizontal prototype shows
all intended functions, but they are
not implemented in detail as re-
quired in the final systern [16]. The
intention was to ensure that the users
understood what they accepted. The
system had to undergo substantial
changes, however, before it could be
used [2].

In another case the users were
unable to define system require-
ments at meetings with system devel-
opers. The system developers then
made an elaborate vertical prototype
and expected a response from the
users. A vertical prototype offers a
selection of functions iraplemented
in their intended final form [16].
However, they did not receive any
response from the users.

How do we account for these ap-
parent paradoxes? It is difficult to
find relevant explanations. Most
papers and books deal specifically

with techniques and tools, not with
underlying theories enabling us to
discuss the context and the limita-
tions of the techniques and the tools.
Comparative surveys of methods [3,
18, 29] are usually thorough on de-
tails but lacking in explanatory the-
ory.

In this article we suggest an an-
swer to the communication para-
doxes in terms of a model of user-
developer communication. The
model is based on theories dealing
with system development as well as
with communication. The model
may help us understand why some
approaches sometimes yield fruitful
communication, while in other situa-
tions the same approaches turn out
to be obstacles. The distinctions of-
fered by the model may act as a cata-
logue—or toolbox—where system
developers may find ideas appropri-
ate for specific situations. We use the
model to categorize communication
methods and description tools in re-
lation to their application area. Thus
our model may form the basis of a
contingency strategy, as proposed by
Davis [11] and Boehm [4].

The model covers communication
related to analysis and design (i.e., to
defining requirements and creating
solutions). It does not cover all user-
developer communication. It ex-
cludes communication related to
management and implementation.

User-Developer Communication
in System Development

We want to discuss possibilities and
obstacles for successful communica-
tion in system development. There-
fore we relate the communication
processes to their results and to the

78 June 1993/Vol.36, No.4 COMMUNICATIONS OF THE ACM

context in which they take place.
Describing the system develop-
ment process, Clements and Parnas
[8] state: “The most useful form of a
process description will be in terms
of work products.” They proceed by
describing the documents they would
produce during a project’s lifetime.
We agree with them, although our
concept of results is not confined to
documents alone. We would also like
to include the knowledge developed
by the people involved as results.

What then are the results of the
system development process? The
final results are, of course, a system
and a completed technical and orga-
nizational implementation process.
Intermediate results are documents
and knowledge obtained by the par-
ticipants. Regardless of the develop-
ment model—be it waterfall, spiral,
incremental or parallel—these re-
sults form the basis of important de-
cisions. These decisions deal with
determining the system’s level of
sophistication, evaluating the useful-
ness of the system, freezing the re-
quirements, and designing the sys-
tem’s internal structure.

Thus the goal of analysis and de-
sign activities is to produce docu-
ments and knowledge enabling deci-
sion-making with regard to the
system and its environments. How
can we produce these results (i.e.,
what kind of methods do we need?)
That depends on the prerequisites
for the development process, espe-
cially the limitations of user-devel-
oper communication. The following
section presents a model of commu-
nication in order to answer this ques-
tion.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F153571.163278&domain=pdf&date_stamp=1993-06-01

Communication Models
Communication is of course a key
issue in collective activities such as
system development. People with
different backgrounds, education,
training, and organizational roles
exchange facts, opinions, and visions
in order to inform, persuade, and
maybe even threaten one another.
How is communication possible in
such a context.

We sketch two communication
models relevant to understanding
and designing user-developer com-
munication: a traditional model and
an alternative model. It is our opin-
ion that many current tools and tech-
niques rely heavily on the first
model.

Current methods usually support
written communication based on for-
malized languages, prototyping
being the major exception. These
methods rely on a communication
model which can be described by a
tube-for-communication metaphor.
Communication is perceived as
something created at one place (e.g.,
the developers’ office), then carried
through “a tube” to the receivers
(e.g., the users). The tube could be
some kind of written system descrip-
tion. This communication model
takes for granted that successful
communication is determined by the
“sender’s” ability to form a rigorous
message. How is it, that the same
message in the same form can be in-
terpreted so differently by various
“receivers”?

An alternative communication
model focusing on the prerequisites
of those involved in a communicative
situation enables us to approach this
question. When people communi-
cate, the speaker’s words may trigger
a change of state in the listeners. Ac-
cording to Maturana and Varela [27]
“communication depends on not
what is transmitted, but on what hap-
pens to the person who receives it.”
The key criteria for successful com-
munication within this model relates
to the people involved, rather than to
some kind of ‘tube’ between them.
Thus, successful communication
depends on the ability to establish sit-
uations in which mutual perturba-
tions trigger changes in the state of
those involved, which in turn lead to

structural congruence (social cou-
pling) among communicating part-
ners. Writing and speaking do not
guarantee reading or listening—or,
even more important—do not guar-
antee the establishing of the concepts
and models intended by the ‘sender’.
Communication is created by people
who interact.

Maturana and Varela state that a
person’s interaction domain is his or
her domain of cognition. This im-
plies that the kinds of activities in
which we are involved delimit the
kinds of knowledge we are able to
develop. It further implies that the
tools we apply in these activities de-
limit the kind of knowledge we are
able to develop. The rejection of the
tube-for-communication metaphor
implies that developers and users
must set aside much time for discus-
sions and for joint activities. This is
done at the expense of working alone
and communicating solely in writing,
which current methods primarily
support. Techniques such as proto-
typing, mapping, future workshops,
and metaphorical design (see section
entitled “Tools and Techniques for
Knowledge Development), are alter-
natives which support the develop-
ment of social coupling, and thereby
successful communication.

A Model of User-Developer
communication

We want to be able to address such
questions as: “Why did a specific
project fail even though it contained
many user-related activities?”
“Which methods should be applied
in specific system development situa-
tions?” “How do system developers
ensure active user participation?”

In order to discuss these questions
we have created a model of the com-
munication between users and sys-
tem developers. The model high-
lights important factors and relates
them to one another. The factors
are: the results of the system develop-
ment process (including intermedi-
ate results); the participants’ prerequi-
sites, and tools and techmiques for
system description. The model is
based on two distinctions—dealing
with three domains of discourse and two
levels of knowledge. The three domains
of discourse are illustrated in

Figure 1.

Figure 1 illustrates the idea that
design is bridge-building, since
something new is created from two
separate things. Design is based on
two domains of discourse: the users’
present work and the technological
options. Here technology incorpo-
rates not only hardware and soft-
ware, but also work organization.
While this may seem strange, in this
context we find it useful and accept-
able to group these matters. Various
organizational options, as well as sev-
eral hardware and software options,
should be considered and coordi-
nated in order to fit together as well
as possible. The result is a third do-
main of discourse: a new (or
changed) computer system and
changes in the content and the orga-
nization of the users’ work.

These domains typically reflect the
users’ and developers’ knowledge
and understanding prior to entering
the system development process. At
the outset the users have some
knowledge of their present work and
of organizational options. The sys-
tem developers have some knowl-
edge of the technical options with
regard to hardware and software. At
the outset this is all they need to
know.

Based on this distinction we state:

Thesis: The main domains of dis-
course

The main domains of discourse in design
are:

* users’ present work

* technological options

* new system

Knowledge of these domains must be de-
veloped and integrated in order for the
design process to be a success.

The second distinction is illus-
trated in Figure 2. It shows we need
two levels of knowledge. We need
abstract knowledge to get an over-
view of a domain of discourse and we
need concrete experience in order to
understand the abstract knowledge.

We combine the two distinctions
into the model shown in Table 1. The
model describes three main domains
of discourse on two levels of abstrac-
tion. Altogether, we get six areas of
knowledge in user-developer commu-
nication (Table 1).

COMMUNICATIONS OF THE ACM June 1993/Vol.36, No.4 79

Table 1. Six areas of knowledge in user-developer communication

New system

Technological options

Abstract Relevant Visions {5) Overview of “@
knowledge structures on and design proposals techniological options

users’ present work
Concrete Concrete 0 Concrete (6) Concrete (3)
experience experience with users’ experience with the new experience with

present work system technological options

The numbering 1 to 6 in Table 1
does not reflect a time sequence, (i.e.,
we are not proposing a new waterfall
model). The numbering is done for
the purpose of convenient reference.
Various methods propose different
sequencing when dealing with the six
areas. Normally we would expect
some degree of iteration. However, a
discussion of methods is beyond the
scope of this article. The six areas of
knowledge comprise a classification
of system development tools and
techniques. The following subsec-
tions discuss each area in more detail.
The reader may wish to look ahead
at Table 2 to see examples of tools
and techniques in each area.

Concrete Experience with Users’
Present Work

Developers need this area of knowl-
edge [19]. They must have some feel-
ing for the users’ work in order to be
able to understand and to produce
structured descriptions or represen-
tations of this work (area 2). They
cannot rely on users’ talking about
their work, and they cannot rely on a
requirement specification. Develop-
ers must experience users in action.

If developers have no concrete
experience with what is going on in
the user organization and if they
have no idea of the cultural poten-
tials for change, they cannot judge
the relevance of a structured descrip-
tion of the work. User representation
in the design team does not overrule
this statement.

The results of dealing with this
area of knowledge may come in
terms of experiencing differences in
working styles, normal and stress sit-
uations, exceptions, power relations,
and so forth. Results may also be the
formation of a common language
among users and developers.

Users’ present
work

Technological
options

Design process

Figure 1. Three domains of
discourse in the design process

Abstract knowledge

1
ey

Concrete knowledge

Figure 2. TWO levels
of knowledge

Relevant Structures on Users’
Present Work

A relevant structure defines a com-
mon and rigorous language in which
users and developers can communi-
cate. A structure is a model of the
present situation in the user organi-
zation. The model is used to identify
desired changes and to evaluate con-
sequences of proposed designs. We
refer to structures in the plural, as we
cannot expect to capture the richness
of the users’ work in a single struc-
ture.

Which structures are relevant de-
pends on the situation. Information
flow is a structure offered by many
methods. It is relevant when we want
to automate existing data processing.
A control model is a relevant struc-
ture when we want to discuss man-

80 June 1993/Vol.36, No.4 COMMUINICATIONS OF THE ACM

agement information systems. A
model showing the variety and inter-
relationship of tasks carried out by
individuals or a group during a typi-
cal working day is relevant when we
want to discuss requirements for a
new communication system.

concrete Experience with
Technological Options

If we want users to play an active role
in system development we must pro-
vide them with technological options.
This is done to stimulate their imagi-
nation and to enable them to better
understand abstract descriptions of
technical and organizational solu-
tions.

The relevance of activities in this
area is of course dependent on the
users’ present experience. Even if
they are daily users of some kind of
system, they might not have experi-
enced the variety of existing hard-
ware and software.

If we want designers to play an
active role in designing the wuse of
technology in organizations (al-
though this is seldom an explicit goal,
they often do this anyway) they must
have organizational options. This is
done to stimulate their organiza-
tional thinking and to enable them to
understand the users’ concrete expe-
riences with, as well as their abstract
descriptions of, organizational op-
tions.

Overview of Technological Options

This area of knowledge is the input
of technical and organizational ideas
into the design process. The system
developers must be well informed
about possibilities and limitations
regarding hardware and software in
order to justify their presence in the
process. If nobody in the user orga-
nization has an overview of organiza-

tional options, then this subarea has
to be developed during the design
process to ensure that the new com-
puter system and the new organiza-
tion fit together.

Visions and Design Proposals
These descriptions are developed
throughout a project’s lifetime. Here
too, it is a questions of many struc-
tures, as one alone cannot capture
the totality of a new computer system
and its use. The structures document
the actual progress of the project as it
approaches the final result, forming
the basis for renewed contracts, even
if these may be informal. Therefore
some of these descriptions must be
understandable to the users.
Abstract descriptions are normally
required as part of a system develop-
ment project. These may be difficult
for the users to understand, but they
are necessary to the developers. We
stress that in order for users to make
decisions and assign priorities, they
too need abstract descriptions to pro-
vide them with relevant structures of
the new computer system, as well as
of the organization in which it is to be
implemented. These descriptions
might very well differ from those
needed by the developers.

concrete Experience with
the New System

The purpose of this area is to enable
the users to understand abstract de-
scriptions of the new system (area 5),
and to let them experience how the
new system meets their needs. The
system developers also need concrete
experience with the new system in
order to check whether it fulfills the
descriptions. In a specific project this
area may already be covered through
experience with technological op-
tions (area 3). This depends first and
foremost on how radically the new
system transcends current practice.

Theses Based on the Model

We now relate the model to the par-
ticipants’ prerequisites and we dis-
cuss which areas of knowledge each
party must develop in order to facili-
tate genuine cooperation. The mini-
mal starting point for a design pro-
cess is actually rather narrow.
Therefore it is the system developers’

Table 2. Tools and techniques for knowledge development

Tools and techniques

Observations (24, 30]

Areas of knowledge

Interviewing users

Self-registration [17]

Developers doing users’ work

Videorecording [23,:30]

Mock-ups [13, 14]

Think-aloud experiments [23]

Drawing rich: pictures [7]

Conceptual modelling [7}

Culture . analysis [b]

Object-oriented analysis. [9]

=200 I N=0F O 1S

Object-oriented design [10]

Event lists [28]

Entity-relationship diagrams {28]

Wall graphs

Mapping [25]

Future workshop [21-23]

N N 1] RO NG
(¥

Metaphorical design [23,26]

Dataflow diagrams-[12]

Language analysis [24; 30; 31]

Card games|15]

Prototyping [1, 6; 16, 20]

Visits to other installations

Literature study

Study. standard software

Forum theater

responsibility to apply tools and tech-
niques which allow the participants
to acquire an understanding of areas
in which they have little or no knowl-
edge.

Thesis: Areas covered by the users.
We can usually be sure that users cover
area 1: Concrete experience with user
work. We can usually expect nothing
more.

Obviously, users may be ignorant
of technological options and the fu-
ture system. However, it is not so
obvious that they normally do not
possess relevant structures or repre-
sentations of their own work. The
keyword here is “relevant.”

Traditional structures, such as
organization diagrams and descrip-
tions of the formal division of labor
are not necessarily relevant. They

COMMUNICATIONS OF THE ACM Junc 1993/Vol .36, No.4 81

may be insufficient when it comes to
discussing inexpediencies in the
users’ present work and require-
ments for new systems, since they do
not necessarily reflect what can be
observed in the organization. Relying
on such descriptions has often led to
solving the wrong problems.

Thesis: Areas covered by the system
developers.

We can usually be sure that system devel-
opers cover areas 3 and 4: technological
options. We can usually expect nothing
more.

The first part of this thesis is
rather obvious, or designers would
have no role in the process. How-
ever, designers may also be chal-
lenged by the technological options.
For example, when new develop-
ment tools are applied, when simul-
taneous development of basic soft-
ware and applications occurs, and
when new standard software or
hardware is introduced.

With regard to the second part of
the thesis, the developers may of
course have worked for the organiza-
tion before, or they may have worked

The ETHICS
Approach
Enid Mumford

CHESHIRE, ENGLAND

ffective Technical and Human

Implementation of Computer-

based Systems—ETHICS—Is a
technique and aiso a phllosophy that
future users of new technical systems
should be able to participate in the de-
sign process and help create systems
that are humanistic and friendly as well
as efficlent and effective.

ETHICS has three principal objectives:

¢ to enable future users to play a major
role In system design, and to assume
responsibliity for designing the work
structure that surrounds the technology.
This involves a leamning process and a set
of simple dlagnostic and socio-technical
design tools.

e to ensure that new systems are ac-
ceptable to users because they both In-
crease user efficlency and Job satisfac-
ton.

¢ to assist users to become Increasingly
competent In the management of their
own organizational change, so that this
becomes a shared activity with the tech-
nical specialists and reduces the de-
mands on scarce technical resources.

The methodology Is not necessarlly
almed at producing a computer-based
solution, as the emphasls Is on obtaining
the right balance between the soclal and
technical aspects of the complete sys-
tem. ETHICS Incorporates the Joint phill-
osophies of participation and soclo-
technical design.

It assists user design groups to create
a declslon structure that Incorporates all
Interested groups affected by the new
system; a process that enables the de-

sign task to be smoothly carried forward
from Identification of need to change, to
successful operation of the new system.
It also sets an agenda that enables busl-
ness efficiency and employee Job satis-
faction Improvements to be consldered
In parallel and given equal welght.

ETHICS Incorporates the following diag-
nostic and design tools:

* a framework to assist the Identification
of mission, key tasks, Important con-
straints and factors critical to effective
operation,

¢ a variance analysls tool to assist the
Identification of systemic and opera-
tdonal problems and problem areas,

¢ a questionnaire to measure Job satis-
faction,

¢ a framework to Identify what Is likely
to change In the Internal and external
environments, and

¢ a set of guidiines for Individual and
group work design.

The approach Is currently used In
three ways. First, It Is used for the task
for which It was originally designed—to
help future users dlagnose thelr needs
and problems, setting nontechnical ob-
Jectives for the system and restructuring
thelr work situation. In this form It has
been used by shop floor and office
workers, sales staff and nurses.

ETHICS Is also asslisting managers to
define thelr Information needs prior to
Introducing a semantic logic-based exec-
utive Information system. Here, a simpll-
fled form of ETHICS, called QUICKethlcs—
Quality information from Consldered
Knowledge—has been developed.

Finally, the method Is employed as a
general problem-solving tool to enable
groups to systematically analyze needs
and problems with a view to Improving
performance. @

Mumford deveioped the ETHICS approach.

'2 June 1993/Vol.36, No.4 COMMWSCATIONS OF THE AT

for a similar organization. In that
case they may have concrete experi-
ence as well as abstract knowledge
about the users’ present work. This
would make things easier, but this is
not something that can generally be
taken for granted. Also when it
comes to the new system, developers
may have prior experience (e.g.,
from implementing standard sys-
tems). However, neglecting the char-
acteristics of the specific organization
will prevent the new computer sys-
tem and the organization from fit-
ting together.

Thesis: Areas of knowledge to be
acquired by the users through the
development process.

It is the system developers’ responsibility to
apply tools and techniques allounng users
to develop

* relevant structures on users’ present
work (area 2),

* visions and design proposals (area 5),
* concrete experience with the new system
(area 6).

The reasons for this thesis are the
following: abstract descriptions of
the new system (area 5) and relevant
structures on users’ preset work (area
2) are needed when the users evalu-
ate design proposals. As some part of
the user organization must normally
make a decision about accepting or
rejecting proposals, the users’ knowl-
edge of these areas is indispensable.

In order for users to play a crea-
tive role in design they need abstract
descriptions of their present work
(area 2) as well as of the new system
(area 5). Concrete experience is also
needed, however, in order to under-
stand abstract descriptions. Thus the
users need concrete experience with
the new system (area 6) before they
can understand abstract descriptions
of the new system (area 5).

Thesis: Areas of knowledge to be
acquired by the system developers
through the development process.
It is the developers’ responsibility to apply
tools and technigues allowing them to de-
velop

* visions and design proposals (area 5),
* relevant structures on users’ present
work (area 2),

* concrete experience with users’ present
work (area 1),

* concrete experience with the new system
(area 6).

It goes without saying that the
developers must understand abstract
descriptions of the new system (area
5) since they are major intermediate
results. Relevant structures on users’
present work (area 2) must be under-
stood in order to identify and evalu-
ate desirable changes.

The developers must have con-
crete experience with users’ present
work (area 1) in order to understand
and produce descriptions of relevant
structures on the users’ present
work. System developers who have
developed this area of knowledge
have a better background for com-
municating with the users, as they
are able to refer to and understand
references to concrete events in the
users’ organization.

Finally, the developers must have
concrete experience with the new
system (area 6) in order to be able to
test and evaluate the products of
their own work.

We conclude this section with the
observation that our theory recog-
nizes that all areas of knowledge
must be dealt with in any normal sys-
tem development process. The tool-
box necessary for this work is dis-
cussed briefly in the following
section.

Tools and Techniques for

Knowledge Development

Our model of user-developer com-
munication can be used to define a
toolbox for tools and techniques to
facilitate this communication. The
toolbox presented in Table 2 consists
of 6 sections, one for each of the
areas of knowledge discussed in the
previous section. It accentuates the
differences between the purposes of
the tools and techniques, even
though some fit into more sections.

The use of any tool or technique
must be adapted to the particular
conditions of each system develop-
ment process. In particular, the
users’ prior experience with the tools
and techniques must be considered.
Some tools and techniques are almost
always used successfully by develop-
ers and users working together. Oth-
ers should rather be part of an ex-
tended process, in which developers

STEPS—A
Methodical
Approach to PD
Christiane Floyd

UNIVERSITY OF HAMBURG

oftware Technology for Evolu-

tionary Participatory System

Design—STEPS—Is a methodo-
logical framework for developing Inter-
active application systems. It guides de-
velopers and users In carrylng our thelr
cooperation as well as supports the de-
slgn of computer-based work. STEPS
emphasizes the development process
and Intertwines development with use.

The method has been tried success-
fully In participatory development of an
Information system called the PEtS proj-
ect, which Is designed for handling ar-
chives of unlon contracts In Germany.
This participatory project resulted In a
working system that Is still In use today.

STEPS conslders the anticlpation of use
an Inherent part of the development.
Whenever software systems—as tools or
media—are to be fitted Into work pro-
cesses, development consists In unfold-
Ing the problem as well as In elaborating
a solution. The technical concerns for
providing high-quality products are In-
herently tied up with Issues of commu-
nication, work, and soclal processes,
which define the very nature of the
problem.

Therefore, software development be-
comes a leamning process for both devel-
opers and users. In STEPS, evolution re-
fers to the emergence of Insights Into
the functionality and the potential use
of software. Participation refers to the
strategy of mutual learning. Those par-
ticlpating in a software development
project are creating a product, and at
the same time, the development process
itself. These two complementary dimen-
slons are reflected by product-oriented
and process-oriented activities. STEPS
provides guldance to developers and
users In both dimenslons.

This approach relles on perspectivity
for gaining Insight—making perspectives
explicit and allowing them to Interact.
The use perspective heid by those who
Interact with software Is distinct from
the development perspective held by
software developers. Furthermore, they
both arise In a variety of views related to
functional roles, collective Interests, and
Individual tastes. Multiperspectivity Is a
fundamental prerequisite for cooperative
work which rests on perspective-based

modeling and evaluation when using
software. Software requirements are re-
lated to the context of user work pro-
cesses as a whole. They cannot be com-
pletely fixed In advance as they evolve
because of changes In the organization.
Also, the software system Itself gives rise
to new requirements.

Thus, STEPS Is an approach that ac-
commaodates various forms of prototyp-
ing and portraying system development
In cycies of version production, applica-
tion and revislon. A system version con-
slsts of software and Its defining docu-
ments, supplemented by guldellines for
the organization of work to be sup-
ported. The Interplay between each soft-
ware version and the assoclated reorga-
nization of user work Is anticipated In
the cooperative design and evaluated In
the revision step. Thus, It supports mu-
tual learning by developers and users by
carefully establishing and coordinating
processes of cooperation.

STEPS rests on a project model sulta-
ble for PD. This model Is cycilcal, all de-
velopment steps and products being
subject to revision. it combines software
production and application, visualizing
the tasks of both developers and users.
It allows the cholce of a situation-
specific strategy In the actual project. It
relles on a minimum of predefined Inter-
mediate products, thus aliowing free-
dom for choosing them as needed. It
provides for temporal flexibllity In coop-
eration. It Incorporates the dynamic co-
ordination of the ongolng project
through establishment and reference
lines. STEPS embodies a human-centered
notion of quality and creates a platform
for discussing criteria on how to design
computer-supported work and facllitates
the emergence of quality through coop-
erative design. @

References

Foyud, C., Reisin, F.-M, Schmidt, G. STEPS tn Software De-
velopment with Users. C. Ghezzl, JA. McDermid, Eds.:
ESEC '89, Lecture Notes In Computsr Science Nr. 387,
Springer-veriag, 1989, pp. 46-64.

Foyd, C., Mehl, M., Reisin, F.-M., Schmidt, G., Woif, .
Projeit PEtS: Partizipative Entwicklung transparenzschaf-
fender Software fuer EDV-gest tzte Arbeits-pl Arbeit, Ge-
sundhett und Soziales des Landes Nordrhein-westfalen,
Technical University of Berlin, 1950.

Fioyd, C., ZIlghoven, H., Budde, R., Xell-Slawik, R., Eds.
Software Deveiopment and Reafity Canstruction. Springer
Verlag, 1992

COMMUMICATIONS OF THE ACM Junc 1993/Vol.36, No.4 83

gather information in cooperation
with users, produce descriptions in
isolation, and finally present, discuss,
and alter the descriptions again to-
gether with the users. Techniques
such as future workshops and mock-
ups belong to the first category, while
object-oriented analysis and concep-
tual modeling belong to the latter.

A presentation of the tools and
techniques chosen to illustrate the
use of the toolbox is beyond the
scope of this article. The interested
reader may find additional informa-
tion in the references indicated in
Table 2.

conclusion

We find the model listing areas of
knowledge in Table 1 useful for a
classification of tools and techniques.
Developers may find this classifica-
tion helpful when planning a project.

We also find theses discussed in
the previous section, “Theses Based
on the Model” useful in explaining
why projects run into trouble. This
may be related to power games in the
user organization or to other factors
which are most often out of the de-
velopers’ control. However based on
our own research [2], we claim that
far too often problems in real-life
projects are caused by developers
using inadequate tools and tech-
niques.

We can now explain apparent par-
adoxes such as: “Horizontal proto-
types are insufficient” {20] and “Pro-
totypes do not substitute analysis”
{1]. A horizontal prototype does not
really give users an experience with
the future system. It is more like an
abstract system description: the
menu hierarchy implemented on
edp-hardware. Thus, inexperienced
users will not obtain sufficient un-
derstanding of the system’s func-
tions. Vertical prototypes used suc-
cessfully might solve the problem.
On the other hand, prototyping di-
verts attention from general ques-
tions such as: Do we need a new com-
puter system? To answer this
question knowledge area 2 in Table 1
must be dealt with. Analysis tech-
niques must also be used.

Table 2 not only indicates the
areas of knowledge, in which the var-
ious tools and techniques are ade-

quate but at the same time also high-
lights the areas in which they are
inadequate. Conclusions concerning
the more established tools and tech-
niques such as dataflow diagrams are
interesting. One of many conclusions
we may draw from Table 2 is that all
traditional system development
methods deal only with areas 2 and 5,
resulting in abstract descriptions.
Thus, by themselves they are insuffi-
cient as guidelines for the entire sys-
tem development process. They
must be supplemented by techniques
giving concrete experiences of user
work and computer technology.

Acknowledgments

We thank Kaj Grgnbak, Jesper
Holck, Lucy Suchman, Randy Trigg
and Terry Winograd for comments
on earlier drafts. Also we would like
to thank Jennifer Oakley for a seri-
ous language tune-up. @

References

1. Andersen, N.E. Brug af prototyper
(in Danish) (Using Prototypes),
Datacentralen, 1987.

2. Andersen, N.E. et al. Professional Sys-
tems Development. Prentice-Hall, En-
glewood Cliffs, N.J., 1990.

3. Blank et al. Software Engineering:
Methods and Techniques. Wiley-Inter-
science, 1983.

4. Boehm, B. A spiral model of software
development and enhancement. Com-
puter (May 1988).

5. Bgdker, K. and Pedersen, J.S. Work-
place cultures—Looking at artifacts,
symbols, and practice. In [19].

6. Bgdker, S. and Grgnbzk, K. Design in
action—From prototyping by demonstra-
tion to cooperative prototyping. In {19].

7. Checkland, P. Systems Thinking, Sys-
tems Practice. Wiley, New York, 1981.

8. Clements, P.C. and Parnas, D.L. A
rational design process: How and
why to fake it. In Proceedings of the In-
ternational Joint Conference on Theory
and Practice of Software Development.
Springer Verlag, New York, 1985.

9. Coad, P. and Yourdon, E. Object-
Oriented Analysis. Prentice Hall, En-
glewood Cliffs, N.J., 1991.

10. Coad, P. and Yourdon, E. Object-
Oriented Design. Prentice Hall, Engle-
wood Cliffs, N.J., 1991.

11. Davis, G.B. Strategies for informa-
tion requirements determination.
IBM Syst. J. 21 (1982), 4-30.

12. DeMarco, T. Structured Analysis and
Systems Specification. Yourdon Press,
1978.

BA june 1993/V01.36, No.4 COMMUNICATIONS OF THE ACM

13. Ehn, P. Work-oriented design of
computer artifacts. Arbetslivscentrum
1988.

14. Ehn, P. and Kyng, M. Cardboard com-
puters—Mocking-it-up or hands-on the
future. In [19].

15. Ehn, P. and Sjogren, D. From system
descriptions to scripts for action. In [19].

16. Floyd, C. A Systematic Look at Prototyp-
ing. In Approaches to Prototyping. R.
Budde et al, Eds., Springer Verlag,
New York, 1984.

17. Foged, J. et al. Hindbog om Klubar-
bejde, edb-projekter og nye ar-
bejdsformer. (in Danish). TIK-TAK
projektet, Arhus University, Den-
mark, 1987.

18. Freeman, P. and Wasserman, A.lL
Software Development Methodologies and
Ada. DoD, 1982.

19. Greenbaum, J. and Kyng, M. Eds,,
Design at Work: Cooperative Design of
Computer Systems. Lawrence Erlbaum,
1991.

20. Grgnbzk, K. Rapid Prototyping with
Fourth Generation Systems—An Empiri-
cal Study. DAIMI PB-270, Arhus Uni-
versity, Denmark, 1988.

21. Junk, R. and Miiller, N. Future Work-
shops—How to Create Desirable Futures.

Institute for Social Invention, Lon-
don, 1987.

22. Kensing, F. Generation of Visions in Sys-
tems Development. In Systems Design for
Human Development and Productivity. P.
Docherty et al, Eds., Proceedings of the
IFIP TC 9/WG 9.1 Working Conference.
North-Holland, Amsterdam, 1987.

23. Kensing, F. and Madsen, K.H. Gen-
erating visions—Future workshops
and Metaphorical Design. In [19].

24. Kensing, F. and Winograd, T. The
languagelaction approach to design of
compuler support for cooperative work—
A preliminary study in work mapping. In
Collaborative Work, Social Communica-
tions and Information Systems, R.K.
Stamper et al., Eds., Proceedings of the
IFIP TC8 Working Conference. North-
Holland, Amsterdam, 1991.

25. Lanzara, G.F. and Mathiassen, L.
Mapping situations within a system
development project. Inf. Manage. 8,
1.

26. Madsen, K.H. Breakthrough by
breakdown—Metaphors and struc-
tured domains. DAIMI PB-243,
Arhus University, Denmark, 1988.

27. Maturana, H.R. and Varela, F.]J. The
Tree of Knowledge—The Biological Roots

of Human Understanding. New Science
Library, 1987.

28. McMenamin, S.M. and Palmer, J.F.
Essential Systems Analysis. Yourdon
Press, 1984.

29. Olle, T.W. et al. Information Systems
Methodologies. Addison-Wesley, Read-
ing, Mass., 1988.

30. Suchman, L.A. and Trigg, H.T. Un-
derstanding practice—Video as a
medium for reflection and design. In
[19].

31. Winograd, T. and Flores, F. Under-
standing Computers and Cognition—A
New Foundation for Design. Ablex,
1986.

CR Categories and Subject Descrip-
tors: C.4 [Computer Systems Organiza-
tion]: Performance of Systems; D.2.2
[Software]: Software Engineering—Tools
and Techniques; K.6.1 [Management of
Computing and Information Systems]:
Project and People Management

General Terms: Design

Additional Key Words and Phrases:
Case study, cooperative design, coordina-
tion, CSCW, evaluation, hypermedia

About the Authors:

FINN KENSING is associate professor of
computer science at Roskilde University,
Denmark. Current research interests in-
clude the study of work practices of users
and designers for the purpose of offering
theories of and methods for system devel-
opment. Author’s Present Address:
Computer Science Department, Roskilde
University, DK-4000 Roskilde, Denmark;
email: kensing@dat.ruc.dk

ANDREAS MUNK-MADSEN is presi-
dent of Metodica, a consultant firm spe-
cializing in system development methods.
Author’s Present Address: Metodica,
Nyvej 19, DK-1851 Frederiksberg C,
Denmark.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/93/0600-078 $1.50

IT'S A TRAGEDY

96,000 acres of irreplaceable rain forest are being burned
every day. These once lush forests are being cleared for
grazing and farming. But the tragedy is without the forest
this delicate land quickly turns barren.

In the smoldering ashes are the remains of what had
taken thousands of years to create. The life-sustaining
nutrients of the plants and living matter have been
destroyed and the exposed soil quickly loses its fertility.

Wind and rain reap further damage and in as few as five years
a land that was teeming with life is turned into a wasteland.

The National Arbor Day Foundation, the world’s largest tree-planting envi-
ronmental organization, has launched Rain Forest Rescue. By joining the
Foundation, you will help stop further burning. For the future of our

planet, for hungry people everywhere, support Rain Forest Rescue. Call now.

RainForest
010

The National
) Arbor Day Foundation

Call Rain Forest Rescue.

1-800-255-5500

COMMUNICATIONS OF THE ACM June 1993/Vol.36, No.4 85

