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Abstract

If a class of games is known to have a Nash equilibrium with probability values that are
either zero or Ω(1) — and thus with support of bounded size — then obviously this equilibrium
can be found exhaustively in polynomial time. Somewhat surprisingly, we show that there is a
PTAS for the class of games whose equilibria are guaranteed to have small — O( 1

n ) — values,
and therefore large — Ω(n) — supports. We also point out that there is a PTAS for games with
sparse payoff matrices, a family for which the exact problem is known to be PPAD-complete [6].
Both algorithms are of a special kind that we call oblivious: The algorithm just samples a fixed
distribution on pairs of mixed strategies, and the game is only used to determine whether the
sampled strategies comprise an ǫ-Nash equilibrium; the answer is “yes” with inverse polynomial
probability (in the second case, the algorithm is actually deterministic). These results bring
about the question: Is there an oblivious PTAS for finding a Nash equilibrium in general games?
We answer this question in the negative; our lower bound comes close to the quasi-polynomial
upper bound of [18].

Another recent PTAS for anonymous games [13, 14, 7] is also oblivious in a weaker sense
appropriate for this class of games (it samples from a fixed distribution on unordered collections
of mixed strategies), but its running time is exponential in 1

ǫ . We prove that any oblivious
PTAS for anonymous games with two strategies and three player types must have 1

ǫα in the
exponent of the running time for some α ≥ 1

3 , rendering the algorithm in [7] (which works
with any bounded number of player types) essentially optimal within oblivious algorithms. In

contrast, we devise a poly(n) · (1/ǫ)O(log2(1/ǫ))
non-oblivious PTAS for anonymous games with

two strategies and any bounded number of player types. The key idea of our algorithm is to
search not over unordered sets of mixed strategies, but over a carefully crafted set of collections
of the first O(log 1

ǫ ) moments of the distribution of the number of players playing strategy 1
at equilibrium. The algorithm works because of a probabilistic result of more general interest
that we prove: the total variation distance between two sums of independent indicator random
variables decreases exponentially with the number of moments of the two sums that are equal,
independent of the number of indicators.

A byproduct of our algorithm is establishing the existence of a sparse (and efficiently com-
putable) ǫ-cover of the set of all possible sums of n independent indicators, under the total

variation distance. The size of the cover is poly(n) · (1/ǫ)O(log2(1/ǫ)).

∗Extended version of the paper of the same title that appeared in STOC, 2009.
†This work was done while the author was a postdoctoral researcher at Microsoft Research, New England.
‡Supported by NSF grant CCF - 0635319, a gift from Yahoo! Research, and a MICRO grant.
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1 Introduction

Is there a polynomial time approximation scheme (PTAS) for computing approximate Nash equilib-
ria? This has emerged, in the wake of the intractability results for Nash equilibria [9, 5], as the most
central question in equilibrium computation. Over the past three years there has been relatively
slow progress towards smaller ǫ’s [10, 11, 4, 21] — so slow that it is hard to believe that a PTAS is
around the corner. On the other hand, [13, 14] provide a PTAS for the important special case of
anonymous games with a bounded number of strategies (those for which the utilities of the players,
although different, depend on the number of players playing each strategy, not on the identities of
the players that do). This PTAS proceeds by discretizing the probabilities in the mixed strategies
of the players to multiples of 1

k , for appropriate integer k, and works even in the generalization in
which the players are divided into a bounded number of types, and utilities depend on how many
players of each type choose each strategy.

In this paper we report significant progress on this important algorithmic problem; we present
several new algorithms, but also the first nontrivial lower bounds. We start by pointing out two
new interesting classes of bimatrix games1 that have PTAS’s:

• It was shown in [6] that computing a Nash equilibrium for the special case of sparse games,
that is, games whose payoff matrices have a bounded number of non-zero entries in each
row and column [6], is PPAD-complete. We point out that there is a trivial PTAS — in
particular, the pair of uniform mixed strategies works. This is interesting in that this is the
first PPAD-complete case of a problem that is so approximable.

• We also give a randomized PTAS for small probability games, that is, games that are guaran-
teed to have Nash equilibria with small O( 1n) nonzero probability values, and thus with linear
support (Theorem 3).

It is quite surprising that games with small probability values (our second special case above)
are easy, since games with large (bounded from below by a constant) probability values are also easy.
What probability values are difficult then? Our next result, a lower bound, seems to suggest inverse
logarithmic probability values are hard (compare with the quasi-PTAS of [18], whose equilibria have
roughly logarithmic support).

To explain our negative result, we first note that both PTAS’s outlined above (as well as those
for anonymous games discussed later) are oblivious. This means that they have access to a fixed
set of pairs of mixed strategies, in the generic case by sampling, and they look at the game only
to determine whether a sampled pair of strategies constitutes an approximate Nash equilibrium. Is
there an oblivious PTAS for the general Nash equilibrium? The answer here is a definite “no” —
in fact, we proved our negative result after we had been working for some time on developing such
an algorithm. . . We show that any oblivious algorithm must sample at least Ω

(

n(.8−34ǫ) log2 n
)

pairs

in expectation (Theorem 4). For comparison, [18]’s algorithm takes time nO(logn/ǫ
2).

Another important class of games for which a PTAS was recently discovered is that of anony-
mous games with two strategies [13, 7]. These are multi-player games, in which the utility of each
player depends on the strategy (0 or 1) played, and the number of other players playing strategy
1 (not their identities). In fact, the PTAS works even in the more sophisticated case in which the
players are partitioned into types, and the utilities depend on the number of players of each type
playing strategy 1. The PTAS in [13], and the relatively more efficient one in [7], both have run-
ning times that are exponential in 1

ǫ . They are also oblivious in a sense appropriate for anonymous

1These results can be extended to any bounded number of players, but in what follows we only discuss the
two-player, or bimatrix, case.
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games, in that they work by sampling an unordered set of n mixed strategies, where n is the number
of players, and they only look at the game in order to determine if there is an assignment of these
strategies to the players that results in an approximate equilibrium. We prove that any oblivious
approximation algorithm, for anonymous games with two strategies and three player types, must
sample an exponential—in 1

ǫ—sized collection of unordered sets of mixed strategies — and so our
PTAS’s are near-optimal.

Finally, we circumvent this negative result to develop a non-oblivious PTAS which finds an ǫ-
approximate Nash equilibrium in anonymous games with two strategies and any bounded number

of player types in time poly(n)
(

1
ǫ

)O(log2 1
ǫ
)
. This algorithm is based (in addition to many other

insights and techniques for anonymous games) on a new result in applied probability which is, we
believe, interesting in its own right: Suppose that you have two sums of n independent Bernoulli
random variables, which have the same first moment, the same second moment, and so on up
to moment d. Then the distributions of the two sums have variational distance that vanishes
exponentially fast with d, regardless of n. To turn this theorem into an algorithm, we discretize
the mixed strategies of the players using techniques from [7] and, in the range of parameters where
the algorithm of [7] breaks down, we iterate over all possible values of the first log(1/ǫ) moments
of the players’ aggregate behavior; we then try to identify, via an involved dynamic programming
scheme, mixed strategies, implementing the given moments, which correspond to approximate Nash
equilibria of the game. Our approximation guarantee for sums of independent indicators is rather
strong, especially when the number of indicators is small, a regime where Berry-Esséen type bounds
provide weaker guarantees and result in slower algorithms [13, 7]. It is quite intriguing that a quasi-
polynomial time bound, such as the one we provide in this paper, shows up again in the analysis
of algorithms for approximate Nash equilibria (cf. [18]).

As a byproduct of our results we establish the existence of a sparse (and efficiently computable)
ǫ-cover of the set of all possible sums of n independent indicators, under the total variation distance.
The size of our cover is poly(n) · (1/ǫ)O(log2(1/ǫ)). We discuss this result in Section 6.

1.1 Preliminaries

A two-player, or bimatrix, game G is played by two players, the row player and the column player.
Each player has a set of n pure strategies, which without loss of generality we assume to be the
set [n] := {1, . . . , n} for both players. The game is described then by two payoff matrices R, C
corresponding to the row and column player respectively, so that, if the row player chooses strategy
i and the column player strategy j, the row player gets payoff Rij and the column player Cij. As
it is customary in the literature of approximate Nash equilibria, we assume that the matrices are
normalized, in that their entries are in [−1, 1].

The players can play mixed strategies, that is, probability distributions over their pure strategies
which are represented by probability vectors x ∈ R

n
+, |x|1 = 1. If the row player chooses mixed

strategy x and the column player mixed strategy y, then the row player gets expected payoff xTRy
and the column player expected payoff xTCy. A pair of mixed strategies (x, y) is a Nash equilibrium
of the game G = (R,C) iff x maximizes x′TRy among all probability vectors x′ and, simultaneously,
y maximizes xTCy′ among all y′. It is an ǫ-approximate Nash equilibrium iff xTRy ≥ x′TRy − ǫ,
for all x′, and, simultaneously, xTCy ≥ xTCy′− ǫ, for all y′. In this paper, we will use the stronger
notion of ǫ-approximately well-supported Nash equilibrium, or simply ǫ-Nash equilibrium. This is
any pair of strategies (x, y) such that, for all i with xi > 0, eTi Ry ≥ eTi′Ry−ǫ, for all i′, and similarly
for y. That is, every strategy i in the support of x guarantees expected payoff eTi Ry which is within
ǫ from the optimal response to y, and similarly every strategy in the support of y is within ǫ from
the optimal response to x.
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An anonymous game is in a sense the dimensional dual of a bimatrix game: There are n players,
each of which has two strategies, 0 and 1. For each player i there is a utility function ui mapping
{0, 1} × [n − 1] to [−1, 1]. Intuitively, ui(s, k) is the utility of player i when s/he plays strategy
s ∈ {0, 1}, and k ≤ n− 1 of the remaining players play strategy 1, while n− k − 1 play strategy 0.
In other words, the utility of each player depends, in a player-specific way, on the strategy played
by the player and the number of other players who play strategy 1 — but not their identities.
The notions of Nash equilibrium and ǫ-Nash equilibrium are extended in the natural way to this
setting. Briefly, a mixed strategy for the i-th player is a function xi : {0, 1} → [0, 1] such that
xi(0) + xi(1) = 1. A set of mixed strategies x1, . . . , xn is then an ǫ-Nash equilibrium if, for every
player i and every s ∈ {0, 1} with xi(s) > 0: Ex1,...,xnui(s, k) ≥ Ex1,...,xnui(1 − s, k) − ǫ, where for
the purposes of the expectation k is drawn from {0, . . . , n− 1} by flipping n− 1 coins according to
the distributions xj , j 6= i, and counting the number of 1’s.

A more sophisticated kind of anonymous games divides the players into t types, so that the
utility of player i depends on the strategy played by him/her, and the number of players of each
type who play strategy 1.

2 PTAS for Two Special Cases

2.1 Small Games

We say that a class of bimatrix games is small if the sum of all entries of the R and C matrices is
o(n2). One such class of games are the k-sparse games [6], in which every row and column of both
R and C have at most k non-zero entries. The following result by Chen, Deng and Teng shows
that finding an exact Nash equilibrium remains hard for k-sparse games:

Theorem 1 ([6]). Finding a O(n−6)-Nash equilibrium in 10-sparse normalized bimatrix games with
n strategies per player is a PPAD-complete problem.

In contrast, it is easy to see that there is a PTAS for this class:

Theorem 2. For any k, there is a PTAS for the Nash equilibrium problem in k-sparse bimatrix
games.

Our original proof of this theorem consisted in showing that there always exists an ǫ-Nash
equilibrium in which both players of the game use in their mixed strategies probabilities that are
integer multiples of ǫ/2k. Hence, we can efficiently enumerate over all possible pairs of mixed
strategies of this form, as long as k is fixed. Shang-Hua Teng pointed out to us a much simpler
algorithm: The pair of uniform mixed strategies is always an ǫ-Nash equilibrium in a sparse game!
The difference with our algorithm is this: the uniform equilibrium gives to both players payoff of at
most k/n; our algorithm can be used instead to approximate the payoffs of the players in the Nash
equilibrium with the optimal social welfare (or more generally the Nash equilibrium that optimizes
some other smooth function of the players’ payoffs).

2.2 Small Probability Games

If all games in a class are guaranteed to have a Nash equilibrium (x, y), where the nonzero prob-
ability values in both x and y are larger than some constant δ > 0, then it is trivial to find this
equilibrium in time nO( 1

δ
) by exhaustive search over all possible supports and linear programming.

But, what if a class of games is known to have small, say O( 1n), probability values? Clearly, exhaus-
tive search over supports is not efficient anymore, since those have now linear size. Surprisingly, we
show that any such class of games has a (randomized) PTAS, by exploiting the technique of [18].
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Definition 1 (Small Probability Games). A bimatrix game G = (R,C) is of δ-small probabilities,
for some constant δ ∈ (0, 1], if it has a Nash equilibrium (x, y) such that all the entries of x and y
are at most 1

δn .

Remark 1. Observe that a game of δ-small probabilities has an equilibrium (x, y), in which both
x and y have support of size at least δn. Moreover, there exists a subset of size at least δn

2 from
the support of x, all the strategies of which have probability at least 1

2n , and similarly for y; that is
the probability mass of the distributions x and y spreads non-trivially over a subset of size Ω(n) of
the strategies. Hence, small probability games comprise a subclass of linear support games, games
with an equilibrium (x, y) in which both x and y assign to a constant fraction αn of the strategies
probability at least 1/βn, for some constants α and β. However, this broader class of games is
essentially as hard as the general: take any Nash equilibrium (x, y) of a normalized game and
define the pair (x′, y′), where x′ := (1− ǫ

5 ) · x+ ǫ
5 ·
(

1
n ,

1
n , . . . ,

1
n

)

and similarly for y′. It is not hard
to see that the new pair is an ǫ-Nash equilibrium; still, regardless of what (x, y) is, both x′ and y′

assign to αn strategies probability at least 1/βn, for an appropriate selection of α and β.

Theorem 3. For any δ ∈ (0, 1], there is a randomized PTAS for normalized bimatrix games of
δ-small probabilities.

Proof. We show first the following (stronger in terms of the type of approximation) variant of the
theorem of Lipton, Markakis and Mehta [18]. The proof is provided in Appendix A.1.

Lemma 1. Let G = (R,C) be a normalized bimatrix game and (x, y) a Nash equilibrium of G. Let
X be the distribution formed by taking t = ⌈16 log n/ǫ2⌉ independent random samples from x and
defining the uniform distribution on the samples, and similarly define Y by taking samples from y.
Then with probability at least 1− 4

n the following are satisfied

1. the pair (X ,Y) is an ǫ-Nash equilibrium of G;

2. |eTi RY − eTi Ry| ≤ ǫ/2, for all i ∈ [n];

3. |X TCej − xTCej| ≤ ǫ/2, for all j ∈ [n];

Suppose now that we are given a normalized bimatrix game G = (R,C) of δ-small probabilities,
and let (x, y) be an equilibrium of G in which xi ≤ 1

δn , for all i ∈ [n], and similarly for y. Lemma 1
asserts that, if a multiset2 A of size t = ⌈16 log n/ǫ2⌉ is formed by taking t independent samples
from x and, similarly, a multiset B is formed by taking samples from y, then (X ,Y), where X is
the uniform distribution over A and Y the uniform distribution over B, is an ǫ-Nash equilibrium
with probability at least 1 − 4/n. Of course, we do not know (x, y) so we cannot do the sampling
procedure described above. Instead we are going to take a uniformly random multiset A′ and a
uniformly random multiset B′ and form the uniform distributions X ′,Y ′ over A′ and B′; we will
argue that there is an inverse polynomial chance that (X ′,Y ′) is actually an ǫ-Nash equilibrium.

For this we define the set A of good multisets for the row player as

A :=

{

A
A is a multiset, A ⊆ [n], |A| = t, the
uniform distribution X over A satisfies
Assertion 3 of Lemma 1

}

,

2For our discussion, a multiset of size t is an ordered collection 〈i1, i2, . . . , it〉 of t elements from some universe
(repetitions are allowed).
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and, similarly, the set B of good multisets of the column player as

B :=

{

B
B is a multiset, B ⊆ [n], |B| = t, the
uniform distribution Y over B satisfies
Assertion 2 of Lemma 1

}

.

The reason for defining A and B in this way is that, given two multisets A ∈ A, B ∈ B, the uniform
distributions X over A and Y over B comprise an ǫ-Nash equilibrium (see the proof of Lemma 1
for a justification).

What remains to show is that, with inverse polynomial probability, a randommultiset A′ belongs
to A and a random multiset B′ belongs to B. To show this we lower bound the cardinalities of
the sets A and B via the following claim, proven in Appendix A.1. We argue that the subset of
A containing elements that could arise by sampling x is large: indeed, with probability at least
1 − 4

n , a multiset sampled from x belongs to A and, moreover, each individual multiset has small
probability of being sampled, since x spreads the probability mass approximately evenly on its
support.

Claim 1. The sets A and B satisfy

|A| ≥
(

1− 4

n

)

(δn)t and |B| ≥
(

1− 4

n

)

(δn)t .

Given Claim 1, we can show Claim 2; the proof is given in Appendix A.1. Equation (1) implies
that the algorithm that samples two uniformly random multisets A′, B′ and forms the uniform
probability distributions X ′ and Y ′ over A′ and B′ respectively, succeeds in finding an ǫ-Nash
equilibrium with probability inverse polynomial in n. This completes the proof of Theorem 3.

Claim 2. If X ′,Y ′ are the uniform distributions over random multisets A′ and B′ then

Pr
[

(X ′,Y ′) is an ǫ-Nash equilibrium
]

= Ω
(

δ2 · n−32 log(1/δ)/ǫ2
)

. (1)

3 A Lower Bound for Bimatrix Games

The two PTAS’s presented in the previous section are oblivious. An oblivious algorithm looks at
the game only to check if the various pairs of mixed strategies it has come up with (by enumeration
or, more generally, by random sampling) are ǫ-approximate, and is guaranteed to come up with
one that is with probability at least inverse polynomial in the game description. More formally, an
oblivious algorithm for the Nash equilibrium problem is a distribution over pairs of mixed strategies,
indexed by the game size n and the desired approximation ǫ. It is a PTAS if for any game the
probability that a pair drawn from the distribution is an ǫ-Nash equilibrium is inversely polynomial
in n. Notice that, since we are about to prove lower bounds, we are opting for the generality of
randomized oblivious algorithms—a deterministic algorithm that enumerates over a fixed set of
pairs of mixed strategies can be seen as a (randomized) oblivious algorithm by considering the
uniform distribution over the set it enumerates over.

The rather surprising simplicity and success of these algorithms (as well as their cousins for
anonymous games, see the next section) raises the question: Is there an oblivious PTAS for the
general Nash equilibrium problem? We show that the answer is negative.

6



Theorem 4. There is no oblivious PTAS for the Nash equilibrium in bimatrix games.

Proof. We construct a super-polynomially large family of n×n games with the property that every
two games in the family do not share an ǫ-Nash equilibrium. This quickly leads to the proof of the
theorem.

Our construction is based on a construction by Althöfer [1], except that we need to pay more
attention to ensure that the ǫ-Nash equilibria of the games we construct are “close” to the exact
Nash equilibria. For ℓ even and n =

( ℓ
ℓ/2

)

, we define a family of n × n two-player games GS =

(RS , CS), indexed by all subsets S ⊆ [n] with |S| = ℓ. Letting {S1, S2, . . . , Sn} be the set of all
subsets of S with cardinality ℓ/2, we imagine that column j of the game GS corresponds to subset
Sj. Then, for every j, we fill column j of the payoff matrices RS and CS as follows:

• for all i /∈ S, RS,ij = −1 and CS,ij = 1;

• for all i ∈ Sj, RS,ij = 1 and CS,ij = 0; and

• for all i ∈ S \ Sj, RS,ij = 0 and CS,ij = 1.

In other words, our construction has two components: In the first component (defined by the rows
labeled with the elements of S), the game is 1-sum, whereas in the second (corresponding to the
complement of S) the game is 0-sum with the row player always getting payoff of −1 and the
column player always getting payoff of 1. The payoffs of the first component are more balanced in
the following way: as we said, every column corresponds to a subset S1 . . . , Sn of S of cardinality ℓ/2;
if the column player chooses column j, then the row player gets 1 for choosing a row corresponding
to an element of Sj and 0 for a row corresponding to an element in S \Sj. See Figure 1 of Appendix
A.2 for an illustration of RS for the case n = 6, ℓ = 4, S = {1, 2, 3, 4}.

Lemma 2 provides the following characterization of the approximate equilibria of the game GS :
in any ǫ-Nash equilibrium (x, y), the strategy x of the row player must have ℓ1 distance at most
8ǫ from uS —the uniform distribution over the set S. That is, in all approximate equilibria of the
game the strategy of the row player must be close to the uniform distribution over S. Formally,

Lemma 2. Let ǫ < 1. If (x, y) is an ǫ-Nash equilibrium of the game GS, where x is the mixed
strategy of the row player and y that of the column player, then the following properties are satisfied
by x:

1. xi = 0, for all i /∈ S;

2. ℓ1(x, uS) ≤ 8ǫ, where uS is the uniform distribution over S, and ℓ1(x, uS) represents the ℓ1
distance between distributions x, uS.

The proof of the first assertion is straightforward: the row player will not assign any probability
mass to the rows which give her −1, since any row in S will guarantee her at least 0. Since all the
activity happens then in the first component of the game, which is 1-sum, an averaging argument
implies that both players’ payoff is about 1/2 at equilibrium. Observe further that, for a given
mixed strategy of the row player, the strategy of the column player that guarantees her the highest
payoff is the subset containing the ℓ/2 elements of S to which the row player assigns the smallest
probability mass. Hence, if the probability distribution of the row player were far from uniform,
then, contrary to what we argued, the corresponding payoff for the column player would be larger
than 1/2—this is established via a delicate geometric argument for ℓ1 distances of probability
measures. See Lemma 3 in Appendix A.2.

Suppose now that there is an oblivious PTAS for the Nash equilibrium, that is, a distribution
D over pairs of mixed strategies such that, for any game GS , the probability that an ǫ-approximate
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Nash equilibrium is sampled is inverse polynomial in n. Let us consider the probability distribution
DR induced by D on the mixed strategies of the row player and denote by BS the ℓ1 ball of radius
8ǫ around uS . Lemma 2 implies that DR should be assigning probability mass at least inverse
polynomial in n to each ball BS, S ⊆ [n], |S| = ℓ. This is impossible, since by the following claim
there is a super-polynomial number of disjoint such balls. The proof of the claim is via a counting
argument. See Appendix A.2.

Claim 3. There is a family of Ω
(

n(.8−34ǫ) log2 n
)

disjoint such balls.

The proof of Theorem 4 implies in particular that any oblivious PTAS for general two-player
games requires expected running time of at least Ω

(

n(.8−34ǫ) log2 n
)

. Compare this bound to the

nO(logn/ǫ2) upper bound obtained by Lipton, Markakis and Mehta [18].

4 A Lower Bound for Anonymous Games

Recall the definition of anonymous games from Section 1.1. In [13] we give a PTAS for anonymous
games with two strategies, running in time nO((1/ǫ)2), and in [7] a more efficient one, with running
time nO(1) · (1/ǫ)O((1/ǫ)2). (In [14] we also give a much more sophisticated PTAS for anonymous
games with more than two strategies). All these PTAS’s have 1

ǫ in the exponent of the running
time, and they work even if there is a fixed number t of types (in which case t multiplies the
exponent). Furthermore, it turns out that all of these algorithms are oblivious, in a specialized
sense appropriate for anonymous games defined next.

An oblivious ǫ-approximation algorithm for anonymous games with n players is defined in terms
of a distribution, indexed by n, on unordered n-tuples of mixed strategies.3 The algorithm sam-
ples from this distribution, and for each {p1, . . . , pn} sampled, it determines whether there is an
assignment of these probabilities to the n players such that the resulting strategy profile (with each
player playing strategy 1 with the assigned probability) is an ǫ-approximate Nash equilibrium; this
latter test can be carried out by max-flow techniques, see, e.g., [13]. The expected running time of
this approximation algorithm is then the inverse of its probability of success.

We show the following result, implying that any oblivious ǫ-approximation algorithm for anony-
mous games whose expected running time is polynomial in the number of players must have ex-
pected running time exponential in (1ǫ )

1/3. Hence, our PTAS from [7] is essentially optimal among
oblivious PTAS’s.

Theorem 5. For any constant c ≥ 0, ǫ < 1, no oblivious ǫ-approximation algorithm for anonymous
games with 2 strategies and 3 player types has probability of success larger than n−c · 2−Ω(1/ǫ1/3).

We only sketch the proof next and postpone the details for Appendix B. We first show the
following (see Theorem 10 in Appendix B.1): given any ordered n-tuple (p1, . . . , pn) of probabilities,
we can construct a normalized anonymous game with n players of type A, and two more players
of their own type, such that in any ǫ-Nash equilibrium of the game the i-th player of type A plays
strategy 1 with probability very close (depending on ǫ and n) to pi. To obtain this game, we need to
understand how to exploit the difference in the payoff functions of the players of type A to enforce
different behaviors at equilibrium, despite the fact that in all other aspects of the game the players
of group A are indistinguishable.

3For ordered sets of mixed strategies, the lower bound we are about to show becomes trivial and uninteresting.
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The construction is based on the following idea: For all i, let us denote by µ−i :=
∑

j 6=i pj the
target expected number of type-A players different than i who play strategy 1; and let us give this
payoff to player i if she plays strategy 0, regardless of what the other players are doing. If i chooses
1, we give her payoff t where t is the number of players different than i who play 1. By setting the
payoffs in this way we ensure that (p1, . . . , pn) is in fact an equilibrium, since for every player the
payoff she gets from strategy 0 matches the expected payoff she gets from strategy 1. However,
enforcing that (p1, . . . , pn) is also the unique equilibrium is a more challenging task; and to do this
we need to include two other players of their own type: we use these players to ensure that the
sum of the mixed stategies of the players of type A matches

∑

pi at equilibrium, so that a player
i deviating from her prescribed strategy pi is pushed back towards pi. We show how this can be
done in Appendix B.1. We also provide guarantees for the ǫ-Nash equilibria of the resulting game.

The construction outlined above enables us to define a family of 2Ω(1/ǫ1/3) anonymous games
with the property that no two games in the family share an ǫ-Nash equilibrium, even as an unordered
set of mixed strategies (Claims 7 and 8). Then, by an averaging argument, we can deduce that
for any oblivious algorithm there is a game in the ensemble for which the probability of success
is at most 2−Ω(1/ǫ1/3). It is important for our construction to work that the anonymous game
defined for a given collection of probability values (p1, p2, . . . , pn) does not deviate too much from
the prescribed set of mixed strategies p1, p2, . . . , pn even in an ǫ-Nash equilibrium. The bound of
2Ω(1/ǫ1/3) emerges from a quantification of this deviation as a function of ǫ. The proof of Theorem 5
is given in Appendix B.2.

Remark 2. We can show an equivalent of Theorem 5 for oblivious ǫ-approximation algorithms for
anonymous games with 2-player types and 3 strategies per player. The details are omitted.

5 A Quasi-polynomial PTAS

We circumvent the lower bound of the previous section by providing a PTAS for anonymous games
with running time polynomial in the number of players n times a factor of (1ǫ )

O(log2 1
ǫ
). The PTAS

is, of course, non-oblivious, and in fact in the following interesting way: Instead of enumerating a
fixed set of unordered collections of probability values, we enumerate a fixed set of log(1/ǫ)-tuples,
representing the first log(1/ǫ) moments of these probability values. We can think of the these
moments as more succinct aggregates of mixed strategy profiles than the unordered collections of
strategies considered in [7, 13], since several of these collections may share the same moments. To
put the idea into context, let us recall the following theorem.

Theorem 6 ([7, 8]). For every ǫ > 0, there exists some integer k = O(1/ǫ) such that for any
n-player 2-strategy anonymous game with payoffs in [−1, 1] there is an ǫ-Nash equilibrium such
that

1. either at most k3 players randomize, and their mixed strategies are integer multiples of 1/k2;

2. or all players who randomize use the same mixed strategy, and this strategy is an integer
multiple of 1

kn .

This structural result can be turned into an oblivious PTAS using max-flow arguments (see
Appendix D.1 for details). At its heart the proof of the theorem relies on the following intuitive
fact about sums of indicator random variables: If two sums of independent indicators have close
means and variances, then their total variation distance should be small. The way this fact becomes
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relevant to anonymous games is that, if there are 2 strategies per player, then the mixed strategy
of a player can be described by an indicator random variable; and as it turns out, if we replace
one set of indicators by another, the change in payoff that every player will experience is bounded
by the total variation distance between the sum of the indicators before and after the change.
Nevertheless, the bound obtained by approximating the first two moments of the sum of the Nash
equilibrium strategies is weak, and the space of unordered sets of probability values that we need
to search over becomes exponential in 1/ǫ.

To obtain an exponential pruning of the search space, we turn to higher moments of the Nash
equilibrium. We show the following theorem, which provides a rather strong quantification of how
the total variation distance between two sums of indicators depends on the number of their first
moments that are equal.

Theorem 7. Let P := (pi)
n
i=1 ∈ (0, 1/2]n and Q := (qi)

n
i=1 ∈ (0, 1/2]n be two collections of proba-

bility values in (0, 1/2]. Let also X := (Xi)
n
i=1 and Y := (Yi)

n
i=1 be two collections of independent

indicators with E [Xi] = pi and E [Yi] = qi, for all i ∈ [n]. If for some d ∈ [n] the following condition
is satisfied:

(Cd) :

n
∑

i=1

pℓi =

n
∑

i=1

qℓi , for all ℓ = 1, . . . , d,

then

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

Xi ;
∑

i

Yi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 20(d + 1)1/42−(d+1)/2. (2)

Condition (Cd) considers the power sums of the expectations of the indicator random variables.
Using the theory of symmetric polynomials we can show that (Cd) is equivalent to the follow-
ing condition on the moments of the sums of the indicators (for the proof see Proposition 1 in
Appendix C):

(Vd) : E





(

n
∑

i=1

Xi

)ℓ


 = E





(

n
∑

i=1

Yi

)ℓ


 , for all ℓ ∈ [d].

Theorem 7 provides then the following strong approximation guarantee for sums of indicator random
variables, that we think should be important in other settings. Our result is related to the classical
moment method in probability theory [15], but to our knowledge it is novel and significantly stronger
than known results:

If two sums of independent indicators with expectations bounded by 1/2 have equal first d
moments, then their total variation distance is 2−Ω(d).

It is important to note that our bound in (2) does not rely on summing up a large number of
indicators n. This is quite critical since the previous techniques break down for small n’s—for large
n’s Berry-Esséen type bounds are sufficient to obtain strong guarantees (this is the heart of the
probabilistic results used in [13, 7]).

The proof of Theorem 7 (and its complement for probability values in [1/2, 1)) is given in
Appendix C. It proceeds by expressing the distribution of the sum of n indicators, with expectations
p1, . . . , pn, as a weighted sum of the binomial distribution B(n, p) (with p = p̄ =

∑

pi/n) and its
n derivatives with respect to p, at the value p = p̄ (these derivatives correspond to finite signed
measures). It turns out that the coefficients of the first d terms of this expansion are symmetric
polynomials with respect to the probability values p1, . . . , pn, of degree at most d; hence, from
the theory of symmetric polynomials, each of these coefficients can be written as a function of the
power-sum symmetric polynomials

∑

i p
ℓ
i , ℓ = 1, . . . , d (see, e.g., [22]). So, if two sums of indicators
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satisfy Condition (Cd), the first terms cancel, and the total variation distance of the two sums
depends only on the other terms of the expansion (those corresponding to higher derivatives of
the binomial distribution). The proof is concluded by showing that the joint contribution of these
terms is inverse polynomial in 2Ω(d). (The details are given in Appendix C).

Our algorithm, shown below, exploits the strong approximation guarantee of Theorem 7 to
improve upon the algorithm of [7] in the case where only O(1/ǫ3) players mix at the ǫ-Nash equi-
librium (this corresponds to case 1 in Theorem 6). The complementary case (case 2 in Theorem 6)
can be treated easily in time polynomial in n and 1/ǫ by exhaustive search and max-flow arguments
(see Appendix D.1).

Algorithm Moment Search

Input:An anonymous game G, the desired approximation ǫ.
Output: An ǫ-Nash equilibrium of G in which all probabilities are integer multiples of 1

k2
, where

k = ⌈ cǫ⌉ and c is universal (independent of n) constant, determined by Theorem 6. For technical
reasons that will be clear shortly, we choose a value for k that is by a factor of 2 larger than
the value required by Theorem 6; this is the value k that guarantees an ǫ/2-Nash equilibrium in
multiples of 1/k2. Finally, we assume that we have already performed the search corresponding to
Case 2 of Theorem 6 for this value of k and we have not found an ǫ/2-Nash equilibrium. So there
must exist an ǫ/2-Nash equilibrium in which at most k3 players randomize in integer multiples of
1/k2.

1. Guess integers t0, t1, ts, tb ≤ n, ts + tb ≤ k3, where t0 players will play pure strategy 0,
t1 will play pure strategy 1, ts will mix with probability ≤ 1

2 , and tb = n − t0 − t1 − ts
will mix with probability > 1

2 . (Note that we have to handle low and high probabilities
separately, because Theorem 7 only applies to indicators with expectations in (0, 1/2]; we
handle indicators with expectations in (1/2, 1) by taking their complement and employing
Theorem 7—see Corollary 1.)

2. For d = ⌈3 log2(320/ǫ)⌉, guess µ1, µ2, . . ., µd, µ′1, µ′2, . . ., µ′d, where, for all ℓ ∈ [d]:

µℓ ∈
{

j

(

1

k2

)ℓ

: ts ≤ j ≤ ts
(

k2

2

)ℓ
}

,

and

µ′ℓ ∈
{

j

(

1

k2

)ℓ

: tb

(

k2

2
+ 1

)ℓ

≤ j ≤ tb(k2 − 1)ℓ

}

.

For all ℓ, µℓ represents the ℓ-power sum of the mixed strategies of the players who mix
and choose strategies from the set {1/k2, . . . , 1/2}. Similarly, µ′ℓ represents the ℓ-power sum
of the mixed strategies of the players who mix and choose strategies from the set {1/2 +
1/k2, . . . , (k2−1)/k2}. Remark: Whether there actually exist probability values π1, . . . , πts ∈
{1/k2, . . . , 1/2} and θ1, . . . , θtb ∈ {1/2 + 1/k2, . . . , (k2 − 1)/k2} such that µℓ =

∑ts
i=1 π

ℓ
i and

µ′ℓ =
∑tb

i=1 θ
ℓ
i , for all ℓ = 1, 2, . . . , d, will be determined later.

3. For each player i = 1, . . . , n, find a subset

Si ⊆
{

0,
1

k2
, . . . ,

k2 − 1

k2
, 1

}

of permitted strategies for that player in an ǫ
2 -Nash equilibrium, conditioned on the guesses

in the previous steps. By this, we mean determining the answer to the following: “Given our
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guesses for the aggregates t0, t1, ts, tb, µℓ, µ
′
ℓ, for all ℓ ∈ [d], what multiples of 1/k2 could

player i be playing in an ǫ/2-Nash equilibrium?” Our test exploits the anonymity of the game
and uses Theorem 7 to achieve the following:

• if a multiple of 1/k2 can be assigned to player i and complemented by choices of multiples
for the other players, so that the aggregate conditions are satisfied and player i is at 3ǫ/4-
best response (that is, she experiences at most 3ǫ/4 regret), then this multiple of 1/k2

is included in the set Si;
• if, given a multiple of 1/k2 to player i, there exists no assignment of multiples to the

other players so that the aggregate conditions are satisfied and player i is at 3ǫ/4-best
response, the multiple is rejected from set Si.

Observe that the value of 3ǫ/4 for the regret used in the classifier is intentionally chosen
midway between ǫ/2 and ǫ. The reason for this value is that, if we only match the first d
moments of a mixed strategy profile, our estimation of the real regret in that strategy profile
is distorted by an additive error of ǫ/4 (coming from (2) and the choice of d). Hence, with a
threshold at 3ǫ/4 we make sure that: a. we are not going to “miss” the ǫ/2-Nash equilibrium
(that we know exists in multiples of 1/k2 by virtue of our choice of a larger k), and b. any
strategy profile that is consistent with the aggregate conditions and the sets Si found in this
step is going to have regret at most 3ǫ/4 + ǫ/4 = ǫ. The fairly involved details of our test
are given in Appendix D.2, and the way its analysis ties in with the search for an ǫ-Nash
equilibrium is given in the proofs of Claims 9 and 10 of Appendix D.3.

4. Find an assignment of mixed strategies v1 ∈ S1, . . ., vn ∈ Sn to players, such that:

• t0 players are assigned value 0 and t1 players are assigned value 1;

• ts players are assigned a value in (0, 1/2] and
∑

i:vi∈(0,1/2] v
ℓ
i = µℓ, for all ℓ ∈ [d];

• tb players are assigned a value in (1/2, 1) and
∑

i:vi∈(1/2,1) v
ℓ
i = µ′ℓ, for all ℓ ∈ [d].

Solving this assignment problem is non-trivial, but it can be done by dynamic programming
in time

O(n3) ·
(

1

ǫ

)O(log2(1/ǫ))

,

because the sets Si are subsets of {0, 1/k2, . . . , 1}. The algorithm is given in the proof of
Claim 11 in Appendix D.3.

5. If an assignment is found, then the vector (v1, . . . , vn) constitutes an ǫ-Nash equilibrium.

Theorem 8. Moment Search is a PTAS for n-player 2-strategy anonymous games with running
time U ·poly(n) · (1/ǫ)O(log2(1/ǫ)), where U is the number of bits required to represent a payoff value
of the game. The algorithm generalizes to a constant number of player types with the number of
types multiplying the exponent of the running time.

Sketch: Correctness follows from this observation: The results in [7] and the choice of k guarantee
that an ǫ

2 -approximate Nash equilibrium in discretized probability values exists; therefore, Step 3
will find non-empty Si’s for all players (for some guesses in Steps 1 and 2, since in particular the
ǫ/2-Nash equilibrium will survive the tests of Step 3—by Theorem 7 and the choice of d, at most
ǫ/4 accuracy is lost if the correct values for the moments are guessed); and thus Step 4 will find an
ǫ-approximate Nash equilibrium (another ǫ/4 might be lost in this step). The full proof and the
running time analysis are provided in Appendix D.3.
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6 A Sparse ǫ-cover for Sums of Indicators

A byproduct of our proof is showing the existence of a sparse (and efficiently computable) ǫ-cover
of the set of sums of independent indicators, under the total variation distance. To state our cover
theorem, let S := {{Xi}i | X1, . . . ,Xn are independent indicators}. We show the following.

Theorem 9 (Cover for sums of indicators). For all ǫ > 0, there exists a set Sǫ ⊆ S such that (i)

|Sǫ| ≤ n3 ·O(1/ǫ)+n ·
(

1
ǫ

)O(log2 1/ǫ)
; (ii) For every {Xi}i ∈ S there exists some {Yi}i ∈ Sǫ such that

dTV(
∑

iXi,
∑

i Yi) ≤ ǫ; and (iii) the set Sǫ can be constructed in time O
(

n3 ·O(1/ǫ) + n ·
(

1
ǫ

)O(log2 1/ǫ)
)

.

Moreover, if {Yi}i ∈ Sǫ, then the collection {Yi}i has one of the following forms, where k = k(ǫ) =
O(1/ǫ) is a positive integer:

• (Sparse Form) There is a value ℓ ≤ k3 = O(1/ǫ3) such that for all i ≤ ℓ we have E [Yi] ∈
{

1
k2 ,

2
k2 , . . . ,

k2−1
k2

}

, and for all i > ℓ we have E [Yi] ∈ {0, 1}.

• (k-heavy Binomial Form) There is a value ℓ ∈ {0, 1, . . . , n} and a value q ∈
{

1
kn ,

2
kn , . . . ,

kn−1
kn

}

such that for all i ≤ ℓ we have E [Yi] = q; for all i > ℓ we have E [Yi] ∈ {0, 1}; and ℓ, q satisfy
the bounds ℓq ≥ k2 − 1

k and ℓq(1− q) ≥ k2 − k − 1− 3
k .

Proof of Theorem 9: Daskalakis [8] establishes the same theorem, except that the size of the

cover he produces, as well as the time needed to produce it, are n3 ·O(1/ǫ)+n ·
(

1
ǫ

)O(1/ǫ2)
. Indeed,

this bound is obtained by enumerating over all possible collections {Yi}i in sparse form and all
possible collections in k-heavy Binomial Form, for k = O(1/ǫ) specified by the theorem. Indeed,
the total number of collections in k-heavy Binomial form is at most (n+1)2nk = n3 ·O(1/ǫ), since
there are at most n + 1 choices for the value of ℓ, at most kn choices for the value of q, and at
most n + 1 choices for the number of variables indexed by i > ℓ that have expectation equal to
1 (the precise subset of these that have expectation 1 is not important, since this does not affect
the distribution of

∑

i Yi). On the other hand, the number of collections {Yi}i in sparse form is at

most (k3 +1) · k3k2 · (n+1) = n ·
(

1
ǫ

)O(1/ǫ2)
, since there are k3 +1 choices for ℓ, k3k

2
choices for the

expectations of variables Y1, . . . , Yℓ up to permutations of the indices of these variables (namely we
need to choose how many of these ℓ variables have expectation 1/k2, how many have expectation
2/k2, etc.), and at most n + 1 choices for the number of variables indexed by i > ℓ that have
expectation equal to 1.

To improve on the size of the cover we show that we can remove from the aforementioned cover

a large fraction of collections in sparse form. In particular, we shall only keep n ·
(

1
ǫ

)O(log2 1/ǫ)

collections in sparse form, making use of Theorem 7. Indeed, consider a collection Y = {Yi}i in
sparse form and let LY = {i | E [Yi] ∈ (0, 1/2]} ⊆ [n], RY = {i | E [Yi] ∈ (1/2, 1)} ⊆ [n]. Theorem 7
implies that, if we compare {Yi}i with another collection {Zi}i satisfying the following:

∑

i∈L
E [Yi]t =

∑

i∈L
E [Zi]

t, for all t = 1, . . . , d; (3)

∑

i∈R
E [Yi]t =

∑

i∈R
E [Zi]

t, for all t = 1, . . . , d; (4)

E [Yi] = E [Zi], for all i ∈ [n] \ (L ∪R), (5)

then dTV(
∑

i Yi,
∑

i Zi) ≤ 2 · 20(d + 1)1/42−(d+1)/2. In particular, for some d(ǫ) = O(log 1/ǫ), this
bound becomes at most ǫ.
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For a collection Y = {Yi}i, we define the moment profile mY of the collection to be a (2d(ǫ)+1)-
dimensional vector

mY =





∑

i∈LY

E [Yi],
∑

i∈LY

E [Yi]2, . . . ,
∑

i∈LY

E [Yi]d(ǫ);
∑

i∈RY

E [Yi], . . . ,
∑

i∈RY

E [Yi]d(ǫ); |{i | E [Yi] = 1}|



 .

By the previous discussion, for two collections Y = {Yi}i and Z = {Zi}i, if mY = mZ then
dTV(

∑

i Yi,
∑

i Zi) ≤ ǫ.
Now given the ǫ-cover produced in [8] we perform the following sparsification operation: for

every possible moment vector that can arise from a collection {Yi}i in sparse form, we only keep
in our cover one collection with such moment vector. The cover resulting from the sparsification
operation is a 2ǫ-cover, since the sparsification loses us an additive ǫ in total variation distance, as
argued above. We now compute the size of the new cover. The total number of moment vectors
arising from sparse-form collections of indicators is at most kO(d(ǫ)2) · (n + 1). Indeed, consider a
collection Y in sparse form. There are at most k3 + 1 choices for |LY |, at most k3 + 1 choices for
|RY |, and at most (n + 1) choices for |{i | E [Yi] = 1}|. We claim next that the total number of
possible vectors





∑

i∈LY

E [Yi],
∑

i∈LY

E [Yi]2, . . . ,
∑

i∈LY

E [Yi]d(ǫ)




is at most kO(d(ǫ)2). Indeed, for all t = 1, . . . , d(ǫ),
∑

i∈LY
E [Yi]t ≤ |LY | and it must be a multiple of

1/k2t. So the total number of possible values for
∑

i∈LY
E [Yi]t is at most (k2t|LY |+1) ≤ (k2tk3+1).

It’s easy to see then that the number of possible moment vectors





∑

i∈LY

E [Yi],
∑

i∈LY

E [Yi]2, . . . ,
∑

i∈LY

E [Yi]d(ǫ)




is at most
d(ǫ)
∏

t=1

(k2tk3 + 1) ≤ kO(d(ǫ)2).

The same upper bound applies to the total number of possible moment vectors





∑

i∈RY

E [Yi],
∑

i∈RY

E [Yi]2, . . . ,
∑

i∈RY

E [Yi]d(ǫ)


 .

It follows then that the total number of sparse-form collections of indicators that we have kept in our

cover after the sparsification operation is at most kO(d(ǫ)2) · (n+1) = n ·
(

1
ǫ

)O(log2 1/ǫ)
. The number

of collections in heavy Binomial form that we have in our cover is the same as before and hence it

is at most n3 · O(1/ǫ). So the size of the sparsified cover is at most n3 ·O(1/ǫ) + n ·
(

1
ǫ

)O(log2 1/ǫ)
.

To finish the proof it remains to argue that we don’t actually need to produce the cover of [8]
and subsequently sparsify it to obtain our cover, but we can produce it directly in time n3 ·O(1/ǫ)+

n ·
(

1
ǫ

)O(log2 1/ǫ)
. We claim that given a moment vector m we can compute a collection Y = {Yi}i

such that mY = m, if such a collection exists, in time
(

1
ǫ

)O(log2 1/ǫ)
. This follows from Claim 11 in
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Appendix D.3. 4 Hence, our algorithm producing the cover enumerates over all possible moment
vectors and for each moment vector invokes Claim 11 to find a consistent sparse collection of
indicators, if such collection exists, adding that collection into the cover. Then it enumerates over
collections of indicators in heavy Binomial form and adds them to the cover. The overall running
time is as promised. �

7 Discussion and Open Problems

The mystery of PTAS for Nash equilibria deepens. There are simple algorithms for interesting
special cases well within reach, and in fact we have seen that the existence of a PTAS is not
incompatible with PPAD-completeness. But oblivious algorithms cannot take us all the way to
the coveted PTAS for the general case. In the important special case of anonymous games, the
approach of [13, 14, 7] — by design involving oblivious algorithms — hits a brick wall of (1ǫ )

1
ǫα , but

then a more elaborate probabilistic result about moments and Bernoulli sums breaks that barrier.
Pseudopolynomial bounds, familiar from [18], show up in approximation algorithms for anonymous
games as well.

Many open problems remain, of course:

• Is there a PTAS for Nash equilibria in general games? A PTAS for bimatrix games that
exploits the linear programming-like nature of the problem would not be unthinkable.

• Find a truly practical, and hopefully evocative of strategically interacting crowds, PTAS for
anonymous games with two strategies.

• Prove that finding an exact Nash equilibrium in an anonymous game with a finite number of
strategies is PPAD-complete.

• Find a PTAS for 2-strategy graphical games — the other important class of multi-player
games.

• Alternatively, it is not unthinkable that the graphical games special case above is PPAD-
complete to approximate sufficiently close.
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A Bimatrix Games

A.1 PTAS for Small Probability Games

Proof of Lemma 1: Let X and Y be independent random variables such that

X = ei,with probability xi, for all i ∈ [n],

Y = ej ,with probability yj, for all j ∈ [n].

Let then X1,X2, . . . ,Xt be t copies of variable X and Y1,Y2, . . ., Yt be t copies of variable Y ,
where the variables X1,. . ., Xt, Y1, . . ., Yt are mutually independent. Setting X = 1

t

∑t
k=1Xk and

Y = 1
t

∑t
k=1 Yk, as in the statement of the theorem, we will argue that, with high probability,

(X ,Y) is an ǫ-Nash equilibrium of G.
Let Ui = eTi RY and Vi = X TCei be the payoff of the row and column player respectively for

playing strategy i ∈ [n]. Fixing i ∈ [n], we have that

Ui =
1

t

t
∑

k=1

eTi RYk,

E[Ui] =
1

t

t
∑

k=1

E[eTi RYk] =
1

t

t
∑

k=1

E[eTi RY ]

= E[eTi RY ] =
∑

j∈[n]
yje

T
i Rej = eTi Ry.

An application of McDiarmid’s inequality on the function f(Λ1, . . . ,Λt) =
1
t

∑t
k=1Λk, where Λk :=

eTi RYk, k ∈ [t], are independent random variables, gives

Pr[|Ui − E[Ui]| ≥ ǫ/2] ≤ 2e−
tǫ2

8 ≤ 2

n2
.

Applying a union bound, it follows that with probability at least 1− 4
n the following properties are

satisfied by the pair of strategies (X ,Y):

|eTi RY − eTi Ry| ≤ ǫ/2, for all i ∈ [n]; (6)

|X TCej − xTCej| ≤ ǫ/2, for all j ∈ [n]. (7)

The above imply that (X ,Y) is an ǫ-Nash equilibrium. Indeed, for all i, i′ ∈ [n], we have that

eTi RY > eTi′RY + ǫ

⇒ eTi Ry ≥ eTi RY − ǫ/2 > eTi′RY + ǫ/2 > eTi′Ry

⇒ xi′ = 0⇒ Xi′ = 0,

where the last implication follows from the fact that X is formed by taking a distribution over
samples from x. Similarly, it can be argued that, for all j, j′ ∈ [n],

X TCej > X TCej′ + ǫ⇒ Yj′ = 0.

�
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Proof of Claim 1: We are only going to lower bound the cardinality of the set A. A similar
argument applies for B. Recall that (x, y) is a Nash equilibrium in which xi ≤ 1

δn , for all i ∈ [n],
and similarly for y.

Let us now define the set A′ as follows

A′ := {A A ∈ A and xi > 0,∀i ∈ A} ⊆ A,

that is, A′ is the subset of A containing those multisets that could arise by taking t samples from x.
We are going to use the structure of the probability distribution x and Lemma 1 to argue that A′ is
large. For this, let us consider the random experiment of taking t independent samples from x and
forming the corresponding multiset A. Let also X be the uniform distribution over A. Lemma 1
asserts that with probability at least 1− 4

n the distribution X will satisfy assertion 3 of Lemma 1.
However, this does not directly imply a lower bound on the cardinality of A′—it could be that all
the probability mass is concentrated on a single element of A′. However, the probability that a
multiset arises by sampling x is at most

(

1

δn

)t

,

since the probability mass that x assigns to every i ∈ [n] is at most 1
δn . Therefore, the total number

of distinct good multisets in A′ is at least

1− 4
n

(

1
δn

)t .

Therefore, |A′| ≥ (1− 4
n)(δn)

t and |A| ≥ |A′| ≥ (1− 4
n)(δn)

t. �

Proof of Claim 2: From Claim 1, it follows that, if a random multiset A′ is sampled, the
probability that it is good is

Pr
[

A′ ∈ A
]

≥
(

1− 4
n

)

(δn)t

nt
=

(

1− 4

n

)

δt

= Ω
(

δ · n−16 log(1/δ)/ǫ2
)

,

Similarly, if a random multiset B′ is sampled, the probability that it is good is

Pr
[

B′ ∈ B
]

= Ω
(

δ · n−16 log(1/δ)/ǫ2
)

.

By independence, it follows that

Pr
[

A′ ∈ A and B′ ∈ B
]

= Ω
(

δ2 · n−32 log(1/δ)/ǫ2
)

.

But, if A′ ∈ A, B′ ∈ B, then the uniform distribution X ′ over A′ and the uniform distribution Y ′

over B′ comprise an ǫ-Nash equilibrium (see Proof of Lemma 1 for a justification). Hence,

Pr
[

(X ′,Y ′) is an ǫ-Nash equilibrium
]

= Ω
(

δ2 · n−32 log(1/δ)/ǫ2
)

.

�
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Figure 1: RS for the case n = 6, ℓ = 4, S = {1, 2, 3, 4}.

A.2 The Lower Bound for Bimatrix Games

In Figure 1, we illustrate the game matrix RS in our construction in the Proof of Theorem 4
(Section 3), for the case n = 6, ℓ = 4, S = {1, 2, 3, 4}. Each column corresponds to a subset of S
of size 2. We add then two extra rows to make the matrix square.
Proof of Lemma 2: The first assertion is easy to justify. Indeed, no matter what y is, the payoff
ui of the row player for playing strategy i, i ∈ [n], satisfies:

• ui = −1, for all i /∈ S;

• ui ≥ 0, for all i ∈ S;

Hence, fixing any i′ ∈ S, we have, for all i /∈ S, that ui′ > ui + ǫ, which by the definition of an
ǫ-Nash equilibrium implies that xi = 0.

Towards justifying the second assertion, let u be the utility of the row player at the ǫ-Nash
equilibrium (x, y). Since, by the first assertion, xi = 0 for all i /∈ S, it follows that the payoff of
the column player is 1− u, since the game restricted to the rows of the set S is 1-sum. Since every
column of RS restricted to the rows of the set S has exactly half of the entries equal to 1 and the
other half equal to 0, it follows that

∑

i∈S
ui =

∑

j∈[n]

ℓ

2
yj =

ℓ

2
.

It follows that there exists some i∗ ∈ S such that ui∗ ≥ 1/2. By the definition of ǫ-Nash equilibrium,
it follows then that

u ≥ ui∗ − ǫ ≥ 1/2− ǫ, (8)

otherwise the row player would be including in his support strategies which are more than ǫ worse
than i∗.

Let us now consider the payoff of the column player for choosing various strategies j ∈ [n].
Without loss of generality let us assume that S = {1, 2, . . . , ℓ} and that x1 ≥ x2 ≥ . . . ≥ xℓ. Let j∗
be such that Sj∗ = {ℓ/2+1, ℓ/2+2, . . . , ℓ}. Then, by the definition of CS, the payoff of the column
player for choosing strategy j∗ is

vj∗ =

ℓ/2
∑

i=1

xi.

Since (x, y) is an ǫ-Nash equilibrium, it follows that vj∗ should be within ǫ from the payoff of the
column player. Hence,

vj∗ ≤ 1− u+ ǫ.
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Combining the above with (8), it follows that

vj∗ −
1

2
≤ 2ǫ ⇒

ℓ/2
∑

i=1

(

xi −
1

ℓ

)

≤ 2ǫ.

The right hand side of the above, implies ℓ1(x, uS) ≤ 8ǫ, by an application of Lemma 3 below, with
ai = xi − 1

ℓ , for all i ∈ [ℓ], k = 2ǫ.

Lemma 3. Let {ai}ℓi=1 be real numbers satisfying the following properties for some k ∈ R+:

1. a1 ≥ a2 ≥ . . . ≥ aℓ;

2.
∑ℓ

i=1 ai = 0;

3.
∑ℓ/2

i=1 ai ≤ k.
Then

ℓ
∑

i=1

|ai| ≤ 4k. (9)

Proof of Lemma 3: We distinguish two cases: (i) aℓ/2 ≥ 0 and (ii) aℓ/2 < 0. In the first case, we
have from Conditions 1 and 3 that

ℓ/2
∑

i=1

|ai| ≤ k.

Using Condition 1 some more we get

∑

i> ℓ
2
: ai≥0

|ai| ≤
∑

i> ℓ
2
: ai≥0

aℓ/2 ≤
ℓ

2
aℓ/2 ≤

ℓ/2
∑

i=1

|ai| ≤ k.

Combining the above we get
∑

i: ai≥0

|ai| ≤ 2k. (10)

Now we employ Condition 2, to get
∑

i: ai<0

|ai| =
∑

i: ai<0

(−ai) =
∑

i: ai≥0

ai =
∑

i: ai≥0

|ai| ≤ 2k. (11)

We combine (10), (11) to deduce (9). Case (ii) is treated by repeating the above argument with

ai ← (−aℓ−i+1), for all i ∈ [ℓ].

�

�

Proof of Claim 3: Consider the set V := {uS |S ⊆ [n], |S| = ℓ}; note that |V | = Ω(n.8 log2 n). For
every uS ∈ V consider the set N(uS) of all other uS′ ’s that are within ℓ1 distance 17ǫ from uS ; it
is easy to see that |N(uS)| = O(n34ǫ log2 n). Therefore, we can select a subset V ′ ⊆ V of at least

|V |
maxS |N(uS)| = Ω

(

n(.8−34ǫ) log2 n
)

elements of V so that every pair of elements is at ℓ1 distance at

least 17ǫ apart; it follows that for every pair of elements in V ′ their ℓ1 balls of radius 8ǫ are disjoint.
The proof is complete. �
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B The Lower Bound for Oblivious PTAS’s for Anonymous Games

B.1 Constructing Anonymous Games with Prescribed Equilibria

Theorem 10. For any collection P := (pi)i∈[k], where pi ∈ [3δk, 1], for some δ > 0 and k ∈ N,
there exists an anonymous game GP with k+2 players, 2 strategies, 0 and 1, payoffs in [−1, 1], and
three player types A,B,C, in which k players, 1, . . . , k, belong to type A, 1 player belongs to type
B, and 1 player belongs to type C, and such that in every δ′-Nash equilibrium, where δ′ < δ, the
following is satisfied: For every i, player i’s mixed strategy belongs to the set [pi − 7k2δ, pi + 7k2δ];
moreover, at least one of the players belonging to types B and C play strategy 1 with probability 0.

Proof. Let us call B the single player of type B and C the single player of type C. Let us also
use the notation: µ =

∑

i∈[k] pi, and µ−i =
∑

j∈[k]\{i} pj, for all i. Now, let us assign the following
payoffs to the players B and C:

• uB1 = 1
k · (tA − µ), where tA is the number of players of type A who play strategy 1;

• uB0 = 2δ;

• uC1 = 1
k · (µ− tA), where tA is the number of players of type A who play strategy 1;

• uC0 = 2δ;

The payoff functions of the players of type A are defined as follows. For all i ∈ [k]:

• ui0 = 1
k (µ−i · XB plays 0 · XC plays 0 − δk · XC plays 1), where XB plays 0, XC plays 0 and XC plays 1

are the indicators of the events ‘B plays 0’, ‘C plays 0’ and ‘C plays 1’ respectively.

• ui1 = 1
k (tA,−i · XB plays 0 · XC plays 0 − δk · XB plays 1), where tA,−i is the number of players of

type A who are different than i and play 1, and XB plays 0, XC plays 0 and XB plays 1 are the
indicators of the events ‘B plays 0’, ‘C plays 0’ and ‘B plays 1’ respectively.

Note that the range of all payoff functions of the game thus defined is [−1, 1]. We now claim the
following:

Claim 4. In every δ′-Nash equilibrium, where δ′ < δ, it must be that

∑

i∈[k]
qi = µ± 3δk,

where q1, . . . , qk are the mixed strategies of the players 1, . . . , k.

Proof of Claim 4: Let µ′ =
∑

i∈[k] qi. Suppose for a contradiction that in a δ′-Nash equilibrium

µ′ > µ+ 3δk; then
1

k
(µ′ − µ) > 3δ.

Note however that E [uB1 ] = 1
k (µ

′ − µ) and E [uC1 ] = − 1
k (µ

′ − µ). Hence, the above implies

E [uB1 ] > E [uB0 ] + δ, (12)

E [uC1 ] < E [uC0 ]− δ. (13)
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Since δ′ < δ, it must be then that Pr[B plays 1] = 1 and Pr[C plays 1] = 0. It follows then that for
all i ∈ [k]:

E [ui0] = 0,

E [ui1] = −δ.

Hence, in a δ′-Nash equilibrium with δ′ < δ, it must be that Pr[i plays 1] = qi = 0, for all i ∈ [k].
This is a contradiction since we assumed that µ′ =

∑

i∈[k] qi > µ+3δk, and µ is non-negative. Via

similar arguments we show that the assumption µ′ < µ− 3δk also leads to a contradiction. Hence,
in every δ′-Nash equilibrium with δ′ < δ, it must be that

µ′ = µ± 3δk.

�

We next show that in every δ′-Nash equilibrium with δ′ < δ, at least one of the players B and
C will not include strategy 1 in her support.

Claim 5. In every δ′-Nash equilibrium with δ′ < δ,

Pr[B plays 1] = 0 or Pr[C plays 1] = 0.

Proof of Claim 5: Let q1, . . . , qk be the mixed strategies of players 1, . . . , k at some δ′-Nash
equilibrium of the game with δ′ < δ. Let us consider the quantity M = 1

k (µ
′ − µ), where µ′ =

∑

i∈[k] qi. We distinguish the following cases:

• M ≤ δ: In this case, E [uB1 ] = 1
k (µ

′−µ) ≤ δ ≤ 2δ−δ = E [uB0 ]−δ. Since δ′ < δ, Pr[B plays 1] =
0.

• M ≥ δ: In this case, E [uC1 ] = − 1
k (µ

′ − µ) ≤ −δ ≤ 2δ − δ = E [uC0 ] − δ. Since δ′ < δ,
Pr[C plays 1] = 0.

�

Finally, we establish the following.

Claim 6. In every δ′-Nash equilibrium with δ′ < δ, it must be that for every player i ∈ [k]:

µ′−i :=
∑

j∈[k]\{i}
qj = µ−i ± 4δk2,

where q1, . . . , qk are the mixed strategies of the players 1, . . . , k.

Proof of Claim 6: Let us fix any δ′-Nash equilibrium. From Claim 5 it follows that either
player B or C plays strategy 1 with probability 0. Without loss of generality, we will assume that
Pr[C plays 1] = 0 (the argument for the case Pr[B plays 1] = 0 is identical to the one that follows).

Let us now fix a player i ∈ [k]. We show first that under the assumption Pr[C plays 1] = 0,
Pr[C plays 0] = 1, it must be that

µ−i ≤ µ′−i + δk. (14)
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Assume for a contradiction that µ−i > µ′−i + δk. It follows then that

µ−i(1− Pr[B plays 1]) ≥ µ′−i(1− Pr[B plays 1])

+ δk(1 − Pr[B plays 1])

⇒ µ−i Pr[B plays 0] ≥ µ′−i Pr[B plays 0]

+ δk(1 − Pr[B plays 1])

⇒ µ−i Pr[B plays 0] Pr[C plays 0] ≥
µ′−i Pr[B plays 0] Pr[C plays 0]

− δk Pr[B plays 1] + δk

⇒ E [ui0] ≥ E [ui1] + δ.

But we assumed that we fixed a δ′-Nash equilibrium with δ′ < δ; hence the last equation implies
that qi = 0. But this leads quickly to a contradiction since, if qi = 0, then using Claim 4 we have

µ′−i = µ′ ≥ µ− 3δk ≥ µ− pi = µ−i,

where we also used that pi ≥ 3δk. The above inequality contradicts our assumption that µ−i >
µ′−i + δk. Hence, (14) must be satisfied. Using that µ′ ≤ µ+ 3δk, which is implied by Claim 4) we
get

qi ≤ pi + 4δk.

From the above discussion it follows that

qj ≤ pj + 4δk, for all j. (15)

Now fix i ∈ [k] again. Summing (15) over all j 6= i, we get that

µ′−i ≤ µ−i + 4δk2. (16)

Combining (14) and (16) we get
µ′−i = µ−i ± 4δk2.

�

To conclude the proof of Theorem 10, we combine Claims 4 and 6, as follows. For every player
i ∈ [k], we have from Claims 4 and 6 that in every δ′-Nash equilibrium with δ′ < δ,

µ′−i = µ−i ± 4δk2 and µ′ = µ± 3δk.

By combining these equations we get
qi = pi ± 7δk2.

B.2 The Lower Bound

Given Theorem 10, we can establish our lower bound.
Proof of Theorem 5: Let us fix any oblivious ǫ-approximation algorithm for anonymous games
with 2-strategies and 3-player types. The algorithm comes together with a distribution over un-
ordered sets of mixed strategies—parametrized by the number of players n—which we denote by
Dn.
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We will consider the performance of the algorithm on the family of games specified in the
statement of Theorem 10 for the following setting of parameters:

k = ⌊(1/ǫ)1/3⌋, δ = 1.01ǫ, P ∈ T k
ǫ

where Tǫ :=
{

j · 15ǫ1/3 j = 1, . . . , tǫ

}

, tǫ =

⌊

1

15
ǫ−1/3

⌋

.

For technical reasons, let us define the following notion of distance between P,Q ∈ T k
ǫ .

d(P,Q) :=
tǫ
∑

j=1

∣

∣

∣
vPj − vQj

∣

∣

∣
.

where vP = (vP1 , v
P
2 , . . . , v

P
tǫ ) is a vector storing the frequencies of various elements of the set Tǫ in

the collection P, i.e. vPj := |{i i ∈ [k], pi = j ·15ǫ1/3}|. To find the distance between two collections
P,Q we compute the ℓ1 distance of their frequency vectors. Notice in particular that this distance
must be an even number. We also need the following definition.

Definition 2. We say that two anonymous games G and G′ share an ǫ-Nash equilibrium in un-
ordered form if there exists an ǫ-Nash equilibrium σG of game G and an ǫ-Nash equilibrium σG′ of
game G′ such that σG and σG′ are equal as unordered sets of mixed strategies.

We show first the following about the shareability of ǫ-Nash equilibria among the games GP ,
P ∈ T k

ǫ .

Claim 7. If, for P,Q ∈ T k
ǫ , d(P,Q) > 0, then there is no ǫ-Nash equilibrium that is shared between

the games GP and GQ in unordered form.

Proof of Claim 7: For all j, let us define the 7.07k2ǫ ball around probability j · 15ǫ1/3 in the
natural way:

Bj := [j · 15ǫ1/3 − 7.07k2ǫ, j · 15ǫ1/3 + 7.07k2ǫ].

Observe that for all j ≥ 2:

(j + 1) · 15ǫ1/3 − j · 15ǫ1/3 = 15ǫ1/3 > 2 · 7.07k2ǫ.

Hence, for all j, j′: Bj ∩B′
j = ∅.

Now, let us consider any pair of ǫ-Nash equilibria σGP
, σGQ

of the games GP and GQ and let us

consider the vectors vσGP = (v
σGP
1 , . . . , v

σGP
tǫ ) and vσGQ = (v

σGQ

1 , . . . , v
σGQ

tǫ ) whose j-th components
are defined as follows:

v
σGP

j =





number of players who are
assigned a mixed strategy from

the set Bj in σGP



 ,

v
σGQ

j =





number of players who are
assigned a mixed strategy from

the set Bj in σGQ



 .

It is not hard to see that Theorem 10 and our assumption d(P,Q) > 0 imply that ‖vσGP −vσGQ‖1 >
0, hence σGP

and σGQ
cannot be permutations of each other. This concludes the proof. �

Next, we show that there exists a large family of games such that no two members of the family
share an ǫ-Nash equilibrium.
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Claim 8. There exists a subset T ⊆ T k
ǫ such that:

1. for every P,Q ∈ T : d(P,Q) > 0;

2. |T | ≥ 2
Ω
(

( 1
ǫ )

1/3
)

;

Proof of claim 8: The total number of distinct multi-sets of cardinality k with elements from Tǫ
is

(

tǫ + k − 1

k

)

.

Hence, it is easy to create a subset T ⊆ T k
ǫ such that:

• for every P,Q ∈ T : d(P,Q) > 0;

• |T | =
(tǫ+k−1

k

)

.

Clearly, the set T satisfies Property 1 in the statement. For the cardinality bound we have:

|T | ≥
(

tǫ + k − 1

k

)

≥
(

tǫ + k − 1

k

)k

≥
(

1 +
1

15
− 2

k

)k

≥ 2
Ω
(

( 1
ǫ )

1/3
)

.

�

Now let us consider the performance of the distribution Dk on the family of anonymous games
{GP}P∈T , where T is the set defined in Claim 8. By Claims 7 and 8, no two games in the family
share an ǫ-Nash equilibrium in unordered form. Hence, no matter what Dk is, there will be some
game in our family for which the probability that Dk samples an ǫ-Nash equilibrium of that game
is at most

1/|T | ≤ 2
−Ω

(

( 1
ǫ )

1/3
)

.

This concludes the proof of Theorem 5. �

C The Binomial Approximation Theorem

Proposition 1. Condition (Cd) in the statement of Theorem 7 is equivalent to the following con-
dition:

(Vd) : E





(

n
∑

i=1

Xi

)ℓ


 = E





(

n
∑

i=1

Yi

)ℓ


 , for all ℓ ∈ [d].

Proof of Proposition 1:

(Vd) ⇒ (Cd): It is not hard to see that E
[

(
∑n

i=1Xi)
ℓ
]

can be written as a weighted sum of the

elementary symmetric polynomials ψ1(P), ψ2(P),...,ψℓ(P) with positive coefficients, where, for all
ℓ, ψℓ(P) is defined as

ψℓ(P) :=
∑

S ⊆ [n]
|S| = ℓ

∏

i∈S
pi.
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(Vd) then implies by induction

ψℓ(P) = ψℓ(Q), for all ℓ = 1, . . . , d. (17)

Now, for all ℓ, define πℓ(P) as the power sum symmetric polynomial of degree ℓ

πℓ(P) :=
n
∑

i=1

pℓi .

Now fix any ℓ ≤ d. Observe that πℓ(P) is a symmetric polynomial of degree ℓ on the variables
p1, . . . , pn. It follows (see, e.g., [22]) that πℓ(P) can be expressed as a function of the elementary
symmetric polynomials ψ1(P), . . . , ψℓ(P). Since, by (17), ψj(P) = ψj(Q), for all j ≤ ℓ, we get that
πℓ(P) = πℓ(Q). Since this holds for any ℓ ≤ d, (Cd) is satisfied.

The implication (Cd)⇒ (Vd) is established in a similar fashion. (Cd) implies

πℓ(P) = πℓ(Q), for all ℓ = 1, . . . , d.

For any ℓ ≤ d, E
[

(
∑n

i=1Xi)
ℓ
]

is a symmetric polynomial of degree ℓ on the variables p1, . . . , pn. It

follows (see, e.g., [22]) that E
[

(
∑n

i=1Xi)
ℓ
]

can be expressed as a function of the power-sum symmet-

ric polynomials π1(P), . . . , πℓ(P). And since πj(P) = πj(Q), for all j ≤ ℓ, we get E
[

(
∑n

i=1Xi)
ℓ
]

=

E
[

(
∑n

i=1 Yi)
ℓ
]

. Since this holds for any ℓ ≤ d, (Vd) is satisfied. �

Proof of Theorem 7: Let X =
∑

iXi. The following theorem due to Roos [20], specifies an
expansion of the distribution function of X as a sum of a finite number of signed measures: the
binomial distribution Bn,p(m) (for an arbitrary choice of p) and its first n derivatives with respect
to the parameter p, at the chosen value of p. More precisely,

Theorem 11 ([20]). Let P := (pi)
n
i=1 be an arbitrary set of probability values in [0, 1] and X :=

(Xi)
n
i=1 a collection of independent indicators with E [Xi] = pi, for all i ∈ [n]; also let X :=

∑

iXi.
Then, for all m ∈ {0, . . . , n} and any p ∈ (0, 1),

Pr[X = m] =
n
∑

ℓ=0

αℓ(P, p) · δℓBn,p(m), (18)

where in the above α0(P, p) := 1,

αℓ(P, p) :=
∑

1≤k(1)<...<k(ℓ)≤n

ℓ
∏

r=1

(pk(r) − p), for all ℓ ∈ [n], (19)

and

δℓBn,p(m) :=
(n− ℓ)!
n!

∂ℓ

∂pℓ
Bn,p(m),

and for the purposes of the last definition we interpret

Bn,p(m) := b(m,n, p)

as a function of the arguments m,n, p in the natural way:

b(m,n, p) :=

{

(

n
m

)

pm(1− p)n−m, for n,m ∈ Z+, m ≤ n;
0, otherwise.
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Assume now that we are given two collections X , Y of indicators as in the statement of Theo-
rem 7. We claim the following

Lemma 4. For sets P and Q satisfying property (Cd), and for all p:

αℓ(P, p) = αℓ(Q, p), for all ℓ = 0, . . . , d.

Proof of lemma 4: Clearly, α0(P, p) = α0(Q, p). Let us fix ℓ ∈ {1, . . . , d}. Observe that αℓ(P, p)
is a symmetric polynomial of degree ℓ on the variables p1, . . . , pn. It follows (see, e.g., [22]) that
αℓ(P, p) can be expressed as a function of the power-sum symmetric polynomials π1(P), . . . , πℓ(P)
defined as

πj(P) :=
n
∑

i=1

pji , for all j ∈ [ℓ].

It follows from (Cd) that πj(P) = πj(Q), for all j ≤ ℓ; from the previous discussion, this implies
that αℓ(P, p) = αℓ(Q, p). �

For any p ∈ (0, 1), by combining Lemma 4 and Theorem 11 we get that

Pr[X = m]− Pr[Y = m]

=

n
∑

ℓ=d+1

(αℓ(P, p) − αℓ(Q, p)) · δℓBn,p(m), for all m.

Therefore, for all p:

||X;Y || ≤ 1

2

n
∑

m=0

|Pr[X = m]− Pr[Y = m]| (20)

≤ 1

2

n
∑

ℓ=d+1

|αℓ(P, p)− αℓ(Q, p)| · ‖δℓBn,p(·)‖1 (21)

≤ 1

2

n
∑

ℓ=d+1

(|αℓ(P, p)| + |αℓ(Q, p)|) · ‖δℓBn,p(·)‖1. (22)

From Theorem 2 in [20], it follows that

1

2

n
∑

ℓ=d+1

|αℓ(P, p)| · ‖δℓBn,p(·)‖1

≤
√
e(d+ 1)1/4

2
θ(P, p)(d+1)/2

1− d
d+1

√

θ(P, p)
(1−

√

θ(P, p))2
,

where

θ(P, p) := 2
∑n

i=1(pi − p)2 + (
∑n

i=1(pi − p))2
2np(1− p)

Choosing p = p̄ := 1
n

∑

i pi, we get (see [20])

θ(P, p̄) =
∑n

i=1(pi − p̄)2
np̄(1− p̄) ≤ |pmax − pmin| ≤

1

2
,
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where pmax = maxi {pi} and pmin = mini {pi}. From the above we get

1

2

n
∑

ℓ=d+1

|αℓ(P, p̄)| · ‖δℓBn,p̄(·)‖1

≤ √e(d+ 1)1/42−(d+1)/2
1− 1√

2
d

d+1

(
√
2− 1)2

≤ 10(d + 1)1/42−(d+1)/2.

Since from (Cd) we have that p̄ =
∑

i pi =
∑

i qi, we get in a similar fashion

1

2

n
∑

ℓ=d+1

|αℓ(Q, p̄)| · ‖δℓBn,p̄(·)‖1 ≤ 10(d+ 1)1/42−(d+1)/2.

Plugging these bounds into (22) we get

||X;Y || ≤ 20(d + 1)1/42−(d+1)/2.

�

Corollary 1. Let P := (pi)
n
i=1 ∈ [1/2, 1)n and Q := (qi)

n
i=1 ∈ [1/2, 1)n be two collections of proba-

bility values in [1/2, 1). Let also X := (Xi)
n
i=1 and Y := (Yi)

n
i=1 be two collections of independent

indicators with E [Xi] = pi and E [Yi] = qi, for all i ∈ [n]. If for some d ∈ [n] Condition (Cd) is
satisfied, then

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

Xi ;
∑

i

Yi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 20(d+ 1)1/42−(d+1)/2.

Proof of Corollary 1: Define X ′
i = 1−Xi, and Y

′
i = 1−Yi, for all i. Apply Theorem 7 to deduce

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

X ′
i ;

∑

i

Y ′
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 20(d + 1)1/42−(d+1)/2.

The proof is completed by noting

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

Xi ;
∑

i

Yi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

X ′
i ;

∑

i

Y ′
i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

�

D The non-oblivious PTAS for Anonymous Games

D.1 The Oblivious PTAS of [Daskalakis, 2008]

In [7], Theorem 6 was used to design an oblivious PTAS for n-player 2-strategy anonymous games
running in time

poly(n) · (1/ǫ)O(1/ǫ2) · U,
where U is the number of bits required to represent a payoff value of the game. The algorithm has
the following structure
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1. choose k = O(1/ǫ), according to Theorem 6;

2. guess the number t of players who randomize, the number t0 of players who
play 0, and the number t1 = n− t− t0 of players who play 1;

3. depending on the number t of players who mix try one of the following:

(a) if t ≤ k3, guess the number of players ψi playing each of the integer
multiples i/k2 of 1

k2
, and, solving a max-flow instance (see details in [7]),

check if there is a ǫ-Nash equilibrium in which ψi players play i/k2, for
all i, t0 players play 0, and t1 players play 1;

(b) if t > k3, guess an integer multiple i/kn of 1/kn and, solving a max-flow
instance, check if there is an ǫ-Nash equilibrium in which t players play
i/kn, t0 players play 0, and t1 players play 1.

Figure 2: The oblivious PTAS of [Daskalakis, 2008]

Clearly, there are O(n2) possible choices for Step 2 of the algorithm. Moreover, the search of
Step 3b can be completed in time (see [7])

U · poly(n) · (1/ǫ) log2(1/ǫ),
which is polynomial in 1/ǫ. On the other hand, Step 3a involves searching over all partitions of t
balls into k2 − 2 bins. The resulting running time for this step (see details in [7]) is

U · poly(n) · (1/ǫ)O(1/ǫ2),

which is exponential in 1/ǫ.

D.2 Moment Search : Missing Details

We describe in detail the third step of Moment Search.

3. For each player i = 1, . . . , n, find a subset

Si ⊆
{

0,
1

k2
, . . . ,

k2 − 1

k2
, 1

}

of permitted mixed strategies for that player in an ǫ-Nash equilibrium, “conditioning” on
the total number of players playing 0 being t0, the total number of players playing 1 being
t1, and the probabilities of the players who mix resulting in the power-sums µ1, . . . , µd and
µ′1, . . . , µ

′
d. The way we compute the set Si is as follows:

(a) To determine whether 0 ∈ Si:
i. Find any set of mixed strategies q1, . . . , qts ⊆ { 1

k2 ,
2
k2 , . . . ,

1
2} such that

∑ts
i=1 q

ℓ
i = µℓ,

for all ℓ = 1, . . . , d. Find any set of mixed strategies r1, . . . , rtb ⊆ {12 + 1
k2 ,

1
2 +

2
k2
, . . . , 1 − 1

k2
} such that

∑tb
i=1 r

ℓ
i = µ′ℓ, for all ℓ = 1, . . . , d. If such values do not

exist Fail.

Remark: An efficient algorithm to solve this optimization problem is described in
the proof of Claim 11.
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ii. Define the random variable

Y = (t0 − 1) · 0 +
ts
∑

i=1

Si +

tb
∑

i=1

Bi + t1 · 1,

where the variables S1, . . . , Sts , B1, . . . , Btb are mutually independent with expecta-
tions E [Si] = qi, for all i = 1, . . . , ts, and E [Li] = ri, for all i = 1, . . . , tb.

iii. Compute the expected payoff U i
0 = E [ui0(Y )] and U i

1 = E [ui1(Y )] of player i for play-
ing 0 and 1 respectively, if the number of the other players playing 1 is distributed
identically to Y .

iv. if U i
0 ≥ U i

1 − 3ǫ/4, then include 0 to the set Si, otherwise do not.

(b) To determine whether 1 ∈ Si, follow the same strategy except now Y is defined as follows

Y = t0 · 0 +
ts
∑

i=1

Si +

tb
∑

i=1

Bi + (t1 − 1) · 1,

to account for the fact that we are testing for the candidate strategy 1 for player i. Also,
the test that determines whether 1 ∈ Si is now U i

1 ≥ U i
0 − 3ǫ/4.

(c) For all j ∈ {1, . . . , k2/2}, to determine whether j/k2 ∈ Si do the following slightly
updated test:

i. Find any set of mixed strategies q1, . . . , qts−1 ⊆ { 1
k2
, 2
k2
, . . . , 1/2} such that

∑ts−1
i=1 qℓi =

µℓ − (j/k2)ℓ, for all ℓ = 1, . . . , d. Find any set of mixed strategies

r1, . . . , rtb ⊆ {
1

2
+

1

k2
,
1

2
+

2

k2
, . . . , 1− 1

k2
}

such that
∑tb

i=1 r
ℓ
i = µ′ℓ, for all ℓ = 1, . . . , d. If such values do not exist Fail.

ii. Define the random variable

Y = t0 · 0 +
ts−1
∑

i=1

Si +

tb
∑

i=1

Bi + t1 · 1,

where the variables S1, . . . , Sts−1, B1, . . . , Btb are mutually independent with E [Si] =
qi, for all i = 1, . . . , ts − 1, and E [Li] = ri, for all i = 1, . . . , tb.

iii. Compute the expected payoff U i
0 = E [ui0(Y )] and U i

1 = E [ui1(Y )] of player i for play-
ing 0 and 1 respectively, if the number of the other players playing 1 is distributed
identically to Y .

iv. if U i
0 ∈ [U i

1 − 3ǫ/4,U i
1 + 3ǫ/4], then include j/k2 to the set Si, otherwise do not.

(d) For all j ∈ {(k2 + 2)/2, . . . , k2 − 1}, to determine whether j/k2 ∈ Si do the appropriate
modifications to the method described in Step 3c.

D.3 The Analysis of Moment Search

Correctness The correctness of Moment Search follows from the following two claims.

Claim 9. If there exists an ǫ/2-Nash equilibrium in which t ≤ k3 players mix, and their mixed
strategies are integer multiples of 1/k2, then Moment Search will not fail, i.e. it will output a
set of mixed strategies (v1, . . . , vn).
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Claim 10. If Moment Search outputs a set of mixed strategies (v1, . . . , vn), then these strategies
constitute an ǫ-Nash equilibrium.

Proof of Claim 9: Let (p1, . . . , pn) be an ǫ/2-Nash equilibrium in which t0 players play 0, t1
players play 1, and t ≤ k3 players mix, and their mixed strategies are integer multiples of 1/k2. It
suffices to show that there exist guesses for t0, t1, ts, tb, µ1, . . . , µd, µ

′
1, . . . , µ

′
d, such that p1 ∈ S1,

p2 ∈ S2,. . ., pn ∈ Sn. Indeed, let

I0 := {i|pi = 0}, Is := {i|pi ∈ (0, 1/2]},

Ib := {i|pi ∈ (1/2, 1)}, I1 := {i|pi = 1},
and let us choose the following values for our guesses

t0 := |I0|, ts = |Is|, tb = |Ib|, t1 := |I1|

and, for all ℓ ∈ [d],

µℓ =
∑

i∈Is
pℓi , µ′ℓ =

∑

i∈Ib
pℓi .

We will show that for the guesses that we defined above pi ∈ Si, for all i. We distinguish the
following cases: i ∈ I0, i ∈ Is, i ∈ Ib, i ∈ I1. The proof for all the cases proceeds in the same
fashion. We will only argue about the case i ∈ Is; in particular, we will show that in Step 3c of
Moment Search the test succeeds for j/k2 = pi.

At the equilibrium point (p1, . . . , pn), the number of the other players who choose strategy 1,
from the perspective of player i, is distributed identically to the random variable:

Z :=
∑

j∈Is\{i}
Xj +

∑

j∈Ib
Xj + t1 · 1,

where E [Xj ] = pj for all j. Since (p1, . . . , pn) is an ǫ/2-Nash equilibrium it must be the case that

|E [ui0(Z)]− E [ui1(Z)]| ≤ ǫ/2. (23)

We will argue that, if in the above equation, we replace Z by Y , where Y is the random variable
defined in Step 3(c)ii of Moment Search, the inequality still holds with slightly updated upper
bound:

|E [ui0(Y )]− E [ui1(Y )]| ≤ 3ǫ/4. (24)

If (24) is established, the proof is completed since Step 3(c)iv will include j/k2 into the set Si.
Let S1, . . . , Sts−1, B1, . . . , Btb be the random variables with expectations q1, . . . , qts−1, r1, . . . , rtb

defined in Step 3(c)ii of Moment Search. Observe that, for all ℓ = 1, . . . , d,

ts−1
∑

j=1

qℓj = µℓ − (j/k2)ℓ =
∑

j∈Is\{i}
pℓj ,

since pi = j/k2. Hence, by Theorem 7,

∥

∥

∥

∥

∥

∥

ts−1
∑

j=1

Sj −
∑

j∈Is\{i}
Xj

∥

∥

∥

∥

∥

∥

≤ 20(d + 1)1/42−(d+1)/2 ≤ ǫ/16. (25)
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Via similar arguments and Corollary 1, we get

∥

∥

∥

∥

∥

∥

tb
∑

j=1

Bj −
∑

j∈Ib
Xj

∥

∥

∥

∥

∥

∥

≤ ǫ/16. (26)

(25) and (26) imply via the coupling lemma

‖Y ;Z‖ ≤ ǫ

8
. (27)

It is not hard to see that
|E [ui0(Y )]− E [ui0(Z)]| ≤ ‖Y ;Z‖ ≤ ǫ

8
,

where we used (27). Similarly,

|E [ui1(Y )]− E [ui1(Z)]| ≤ ‖Y ;Z‖ ≤ ǫ

8
.

Combining the above with (23) we get (24). This concludes the proof. �

Proof of Claim 10: Let

I0 := {i|vi = 0}, Is := {i|vi ∈ (0, 1/2]},

Ib := {i|vi ∈ (1/2, 1)}, I1 := {i|vi = 1},
ts = |Is|, tb = |Ib|,

Observe that the moment values that were guessed in Step 2 of Moment Search satisfy

µℓ =
∑

i∈Is
vℓi , µ′ℓ =

∑

i∈Ib
vℓi , for all ℓ = 1, . . . , d.

We will argue that (v1, . . . , vn) is an ǫ-Nash equilibrium. To do this we need to argue that,
for each player i, vi is an ǫ-well supported strategy against the strategies of her opponents. We
distinguish the following cases: i ∈ I0, i ∈ Is, i ∈ Ib, i ∈ I1. The proof for all the cases proceeds
in a similar fashion. We will only present the argument for the case i ∈ Is.

Let vi = j/k2 for some j ∈ {1, . . . , k22 }. From the perspective of player i, the number of other
players who play 1 in the mixed strategy profile (v1, . . . , vn) is distributed identically to the random
variable

Z :=
∑

j∈[n]\{i}
Xj ,

where E [Xj ] = vj for all j. To argue that vi is an ǫ-well supported strategy against the strategies
of i’s opponents, we need to show that

|E [ui0(Z)]− E [ui1(Z)]| ≤ ǫ. (28)

Let us now go back to the iteration of Step 3c in which the probability value j/k2 was inserted
into the set Si. Let q1, . . . , qts−1, r1, . . . , rtb be the values that were selected at Step 3(c)i of that
iteration, and let

Y =

ts−1
∑

j=1

Sj +

tb
∑

j=1

Bj + t1 · 1,
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be the random variable defined in Step 3(c)ii, where the variables S1, . . . , Sts−1, B1, . . . , Btb are
mutually independent with expectations E [Si] = qi, for all i = 1, . . . , ts − 1, and E [Bi] = ri, for all
i = 1, . . . , tb. Observe that the qj’s and rj’s where chosen by Step 3(c)i so that the following are
satisfied

ts−1
∑

j=1

qℓj = µℓ − (j/k2)ℓ = µℓ − vℓi =
∑

j∈Is\{i}
vℓj , for all ℓ ∈ [d], (29)

and

tb
∑

j=1

rℓj = µ′ℓ =
∑

j∈Ib
vℓj , for all ℓ = 1, . . . , d. (30)

Equation (29) implies via Theorem 7 that

∥

∥

∥

∥

∥

∥

ts−1
∑

j=1

Sj −
∑

j∈Is\{i}
Xj

∥

∥

∥

∥

∥

∥

≤ 20(d + 1)1/42−(d+1)/2 ≤ ǫ/16. (31)

Equation (30) and Corollary 1 imply

∥

∥

∥

∥

∥

∥

tb
∑

j=1

Bj −
∑

j∈Ib
Xj

∥

∥

∥

∥

∥

∥

≤ ǫ/16. (32)

(31) and (32) imply via the coupling lemma

‖Y ;Z‖ ≤ ǫ

8
. (33)

It is not hard to see that

|E [ui0(Y )]− E [ui0(Z)]| ≤ ‖Y ;Z‖ ≤ ǫ

8
, (34)

where we used (33). Similarly,

|E [ui1(Y )]− E [ui1(Z)]| ≤ ‖Y ;Z‖ ≤ ǫ

8
. (35)

Moreover, notice that the random variable Y satisfies the following condition

|E [ui0(Y )]− E [ui1(Y )]| ≤ 3ǫ/4, (36)

since, in order for vi to be included into Si, the test in Step 3(c)iv of Moment Search must have
succeeded. Combining (34), (35) and (36) we get (28). This concludes the proof. �

Computational Complexity We will argue that there exists an implementation of Moment

Search which on input k = O(1/ǫ) runs in time

U · poly(n) · (1/ǫ)O(log2(1/ǫ)),

where U is the number of bits required to represent a payoff value of the game.
Observe first that the number of possible guesses for Step 1 of Moment Search is at most

n2O((1/ǫ)6). Observe further that the number of possible guesses for µℓ in Step 2 is at most
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t
(

k2

2

)ℓ
(where t ≤ k3 is the number of players who mix), so jointly the number of possible guesses

for µ1, . . . , µd is at most

d
∏

ℓ=1

t

(

k2

2

)ℓ

= td
(

k2

2

)d(d+1)/2

=

(

1

ǫ

)O(log2 1
ǫ )
.

The same asymptotic upper bound applies to the total number of guesses for µ′1, . . . , µ
′
d. Given the

above the total number of guesses that Moment Search has to do is

n2
(

1

ǫ

)O(log2 1
ǫ )
.

We next argue that the running time required to complete Steps 3, 4, and 5 is at most

O(n3) · U ·
(

1

ǫ

)O(log2(1/ǫ))

.

For this we establish the following; we give the proof in the end of this section.

Claim 11. Given a set of values µ1, . . . , µd, µ
′
1, . . . , µ

′
d, where, for all ℓ = 1, . . . , d,

µℓ, µ
′
ℓ ∈

{

0,

(

1

k2

)ℓ

, 2

(

1

k2

)ℓ

, . . . , B

}

,

for some B ∈ N, discrete sets T1, . . . ,Tm ⊆
{

0, 1
k2
, 2
k2
, . . . , 1

}

, and four integers m0,m1 ≤ m,
ms,mb ≤ B, it is possible to solve the system of equations:

(Σ) :
∑

pi∈(0,1/2]
pℓi = µℓ, for all ℓ = 1, . . . , d,

∑

pi∈(1/2,1)
pℓi = µ′ℓ, for all ℓ = 1, . . . , d,

|{i|pi = 0}| = m0

|{i|pi = 1}| = m1

|{i|pi ∈ (0, 1/2]}| = ms

|{i|pi ∈ (1/2, 1)}| = mb

with respect to the variables p1 ∈ T1, . . . , pm ∈ Tm, or to determine that no solution exists, in time

O(m3)BO(d)kO(d2).

Applying Claim 11 with m ≤ t, B ≤ t (where t ≤ k3 is the number of players who mix), m0 = 0,
m1 = 0, shows that Steps 3(a)i, 3(c)i can be completed in time

O(t3)tO(d)kO(d2) =

(

1

ǫ

)O(log2(1/ǫ))

.
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Another application of Claim 11 with m = n, B ≤ t, m0 ≤ n, m1 ≤ n shows that Step 4 of
Moment Search can be completed in time

O(n3)tO(d)kO(d2) = O(n3) ·
(

1

ǫ

)O(log2(1/ǫ))

.

Finally, we argue that the computation of the expected utilities U i
0 and U i

1 required in Steps 3(a)iii,
3(c)iii of Moment Search can be done efficiently using dynamic programming with O(n2) opera-
tions on numbers with at most b(n, k) := ⌈1+n log2 (k

2)+U)⌉ bits, where U is the number of bits
required to specify a payoff value of the game.5

Therefore, the overall time required for the execution of Moment Search is

O(n3) · U ·
(

1

ǫ

)O(log2(1/ǫ))

.

Proof of Claim 11: We use dynamic programming. Let us consider the following tensor of
dimension 2d+ 5:

A(i, z0, z1, zs, zb; ν1, . . . , νd; ν
′
1, . . . , ν

′
d),

where i ∈ [m], z0, z1 ∈ {0, . . . ,m}, zs, zb ∈ {0, . . . , B} and

νℓ, ν
′
ℓ ∈

{

0,

(

1

k2

)ℓ

, 2

(

1

k2

)ℓ

, . . . , B

}

,

for ℓ = 1, . . . , d. The total number of cells in A is

m · (m+ 1)2 · (B + 1)2 ·
(

d
∏

ℓ=1

(Bk2ℓ + 1)

)2

≤ O(m3)BO(d)k2d(d+1).

Every cell of A is assigned value 0 or 1, as follows:

A(i, z0, z1, zs, zb; ν1, . . . , νd, ν
′
1, . . . , ν

′
d) = 1

⇔

























There exist p1 ∈ T1, . . ., pi ∈ Ti such
that |{j ≤ i|pj = 0}| = z0,
|{j ≤ i|pj = 1}| = z1,

|{j ≤ i|pj ∈ (0, 1/2]}| = zs,
|{j ≤ i|pj ∈ (1/2, 1)}| = zb,
∑

j≤i:pj∈(0,1/2] p
ℓ
j = νℓ, for all

ℓ = 1, . . . , d,
∑

j≤i:pj∈(1/2,1) p
ℓ
j = ν ′ℓ, for

all ℓ = 1, . . . , d.

























.

5To compute a bound on the number of bits required for the expected utility computations, note that every non-
zero probability value that is computed along the execution of the algorithm must be an integer multiple of ( 1

k2 )
n−1,

since the mixed strategies of all players are from the set {0, 1/k2, 2/k2, . . . , 1}. Further note that the expected utility
is a weighted sum of (n − 1) payoff values, with U bits required to represent each value, and all weights being
probabilities.
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It is easy to complete A working in layers of increasing i. We initialize all entries to value 0. Then,
the first layer A(1, ·, · ; ·, . . . , ·) can be completed easily as follows:

A(1, 1, 0, 0, 0; 0, 0, . . . , 0; 0, 0, . . . , 0) = 1⇔ 0 ∈ T1
A(1, 0, 1, 0, 0; 0, 0, . . . , 0; 0, 0 . . . , 0) = 1⇔ 1 ∈ T1
A(1, 0, 0, 1, 0; p, p2 , . . . , pd; 0, . . . , 0) = 1⇔ p ∈ T1 ∩ (0, 1/2]

A(1, 0, 0, 0, 1; 0, . . . , 0; p, p2, . . . , pd) = 1⇔ p ∈ T1 ∩ (1/2, 1)

Inductively, to complete layer i+1, we consider all the non-zero entries of layer i and for every such
non-zero entry and for every vi+1 ∈ Ti+1, we find which entry of layer i+ 1 we would transition to
if we chose pi+1 = vi+1. We set that entry equal to 1 and we also save a pointer to this entry from
the corresponding entry of layer i, labeling that pointer with the value vi+1. The time we need to
complete layer i+ 1 is bounded by

|Ti+1|.(m+ 1)2BO(d)k2d(d+1) ≤ O(m2)BO(d)kO(d2).

Therefore, the overall time needed to complete A is

O(m3)BO(d)kO(d2).

After completing tensor A, it is easy to check if there exists a solution to (Σ). A solution exists
if and only if

A(m,m0,m1,ms,mb;µ1, . . . , µd;µ
′
1, . . . , µ

′
d) = 1,

and can be found by tracing back the pointers from this cell of A. The overall running time is
dominated by the time needed to fill in A. �
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