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Abstract

We prove strong lower bounds on integrality gaps of Sherali–Adams relaxations for
MAX CUT, Vertex Cover, Sparsest Cut and other problems. Our constructions show
gaps for Sherali–Adams relaxations that survive nδ rounds of lift and project. For
MAX CUT and Vertex Cover, these show that even nδ rounds of Sherali–Adams do
not yield a better than 2− ε approximation.

The main combinatorial challenge in constructing these gap examples is the con-
struction of a fractional solution that is far from an integer solution, but yet admits
consistent distributions of local solutions for all small subsets of variables. Satisfying
this consistency requirement is one of the major hurdles to constructing Sherali–Adams
gap examples. We present a modular recipe for achieving this, building on previous
work on metrics with a local–global structure. We develop a conceptually simple ge-
ometric approach to constructing Sherali–Adams gap examples via constructions of
consistent local SDP solutions.

This geometric approach is surprisingly versatile. We construct Sherali–Adams gap
examples for Unique Games based on our construction for MAX CUT together with a
parallel repetition like procedure. This in turn allows us to obtain Sherali–Adams gap
examples for any problem that has a Unique Games based hardness result (with some
additional conditions on the reduction from Unique Games). Using this, we construct
2− ε gap examples for Maximum Acyclic Subgraph that rules out any family of linear
constraints with support at most nδ.

1 Introduction

Lift-and-project methods are systematic procedures to construct a sequence of increasing
tighter mathematical programming relaxations for 0-1 optimization problems. Such proce-
dures have been proposed by Lovász–Schrijver (LS and LS+) [15], Sherali–Adams (SA) [16]
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and Lasserre [13]. These procedures operate in a sequence of rounds starting from an LP
relaxation of an integer program; the strengthened relaxation obtained in r rounds can typi-
cally be solved in nO(r) time. Roughly speaking, a feasible solution to the relaxation obtained
after r rounds of lift-and-project satisfies the property that for any r variables in the original
relaxation, their values can be expressed as a projection of a convex combination of integer
solutions.

Recently, there has been significant interest in understanding the strength of lift-and-
project procedures for designing better approximation algorithms. The hope that improved
approximation algorithms could result from a better understanding of lift-and-project proce-
dures comes from the fact that several families of constraints that have been used to obtain
better approximations can in fact be derived from a few rounds of lift-and-project.

Thus far, most results in this realm have been negative, showing integrality gaps for the
relaxations obtained by a certain number of rounds by specific families of lift-and-project. A
few recent positive results [4, 5] have raised hopes that lift-and-project procedures may indeed
yield better approximations for particular problems. We view this study of the strengths and
limitations of lift-and-project as an important goal in understanding a potentially powerful
algorithmic paradigm; negative examples in this respect can be thought of as lower bounds
in a certain restricted model of computation.

In this paper, we consider the Sherali–Adams hierarchy of linear relaxations and show
strong lower bounds for several natural problems. This hierarchy is much less understood
than the weaker Lovász–Schrijver hierarchy. In fact, we are aware of only two integrality gap
results (by de la Vega and Kenyon-Mathieu [6] and Schoenebeck [17] for Lasserre) that hold
for more than one round of the Sherali–Adams lift-and-project. Constructing new integrality
gap examples for Sherali–Adams is thus an important open question [20, Section 7.3].

In this paper, we prove that the integrality gap for the Sparsest Cut problem is at least

Ω
(√

logn
log r+log logn

)
after r rounds of the Sherali–Adams lift-and-project. The integrality gap

for the MAX CUT and Vertex Cover problems remains 2− ε even after nγ rounds (for every
positive ε and some γ that depends on ε). Our result for MAX CUT improves a result by
de la Vega and Kenyon-Mathieu [6] who proved that the integrality gap remains 2− ε after
logc n rounds (where c < 1 is some fixed constant). Recently several very strong negative
results were proved for other hierarchies: Schoenebeck, Trevisan, and Tulsiani [18] proved
that the integrality gap for Vertex Cover and MAX CUT is 2 − ε after Ω(n) rounds of LS
(Lovász–Schrijver relaxation of the LP program); Georgiou, Magen, Pitassi, and Tourlakis [7]
proved that the integrality gap for Vertex Cover is 2 − ε after Ω(

√
log n/ log log n) rounds

of LS+ (Lovász–Schrijver relaxation of the SDP program). Our results are not directly
comparable with these results.

Previous results constructing gap examples for lift-and-project procedures use problem
specific constructions. One of our main contributions is a systematic approach to construct-
ing gap examples for the Sherali–Adams hierarchy of relaxations. Roughly speaking, a gap
example for Sherali–Adams requires constructing a fractional solution whose objective func-
tion value is far from the objective function of any integer solution, yet all small subsets of
variables are exactly convex combinations (distributions) of integer solutions. In addition to
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this, subsets of variables ought to satisfy a strong local consistency property which requires
that the distributions of local solutions for subsets S1 and S2 should agree on their inter-
section, i.e. the distribution of integer solutions corresponding to S1 when projected onto
S1 ∩S2 should be identical to the distribution of integer solutions corresponding to S2 when
projected onto S1∩S2. It is this consistency property that makes it challenging to construct
gap examples for Sherali–Adams. Indeed the construction of such gap examples with this
local consistency is a challenging combinatorial question.

We build on our previous work on constructing metrics with a local–global structure [3] to
present a modular approach to constructing gap examples for Sherali–Adams. These metrics
satisfy the property that small subsets embed isometrically into `2, yet the entire metric is far
from `1 embeddable. We present a conceptually simple geometric approach to constructing
locally consistent distributions on integer solutions as follows (see Section 3): Starting with
the local–global metric constructions, we obtain a construction of locally consistent SDP
solutions for every small subset of variables. (Note that our construction only applies to
linear relaxations, yet we find it convenient to produce these gap examples by appealing to
the geometry of SDP solutions). We now obtain local distributions on integer solutions by
applying SDP rounding algorithms to these local SDP solutions. Our main observation is
that the distribution of integer solutions (e.g. cuts) on a subset of points depends only on
pairwise distances between these points. This happens because the embedding into `2 is
uniquely defined by the pairwise distances (an analogous statement does not hold for `1).
Note, that the connection between SDPs and integrality gaps for Sherali–Adams hierarchy
was not known before. We are hopeful that our techniques can be extended to apply to the
stronger Lasserre hierarchy in the future.

This geometric approach turns out to be surprisingly versatile. We first obtain a gap
instance for Sparsest Cut using this approach (see Section 4). Then we present gap examples
for MAX CUT and Vertex Cover (see Section 5). We use the MAX CUT result together
with a parallel-repetition like procedure to obtain gap examples for Unique Games (see
Section 6). Using these, we are able to produce gap examples for any optimization problem
where there is a reduction from Unique Games to the problem with a certain structure (see
Section 7). This allows us to obtain an integrality gap for the Sherali–Adams relaxation
of Maximum Acyclic Subgraph. For Maximum Acyclic Subgraph (also known as Linear
Ordering), several specific families of constraints with finite support have been studied in
the mathematical programming literature (see e.g. [9, 10, 11]). In the past, gap examples
have been constructed which are specific to some such family of strengthened constraints.
Our result gives a unified construction which shows that no such family of constraints has
integrality gap better than 2 − ε. In Section 8, we present a gap instance for Multicut.
Additionally, in Section 9, we show an integrality gap for Sparsest Cut, which is stronger
then the gap we obtain in Section 4 when the number of rounds is small (r ≤

√
log n log log n).
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2 Preliminaries

In this section, we define the Sherali–Adams hierarchy. Then we review some results from
earlier work [3] where we constructed metric spaces locally embeddable into `2 that do
not (globally) embed into `1 with small distortion. In the next section, we will present
a new method of transforming such metric spaces into integrality gap instances for the
Sherali–Adams hierarchy. Later, we show how to apply this method to many combinatorial
optimization problems.

Let us first recall the definition of the Sherali–Adams relaxation of the cut polytope (with
r rounds of lift-and-project)1. For every pair of points i and j, we introduce a variable xij,
which denotes the distance between i and j. We start with the base linear inequalities that
define the metric polytope.

xij + xjk − xik ≥ 0

2− xij − xjk − xik ≥ 0

xij − xji = 0

1− xij ≥ 0

xij ≥ 0

Now we define the lifted polytope. We introduce a variable yI for every set I = {(i1, j1), . . . , (it, jt)}
of size at most r + 1. For every two sets I and J such that |I ∪ J | ≤ r, and every base
inequality of the form R(x) ≥ 0, we write ∏

(i,j)∈I

xij
∏

(i,j)∈J

(1− xij)

R(x) ≥ 0.

We expand the expression as the sum of products of xij. Then we replace each product
xi1j1 · · · · · xitjt with the variable y{(i1,j1),...,(it,jt)}. In other words, we replace each variable xij
in R with the expression ∑

B⊂J

(−1)|B|y{(i,j)}∪I∪B. (1)

We obtain a linear inequality on variables y. The set of all such inequalities defines the lifted
Sherali–Adams cut polytope. Finally, the Sherali–Adams polytope is the projection of the
lifted polytope: a solution xij lies in the Sherali–Adams polytope if there exists a vector of
yI in the lifted polytope such that xij = y{(i,j)}.

We need the following statement, which was implicitly used by de la Vega and Kenyon-
Mathieu [6] in their integrality gap construction. For completeness, we give its proof in the
appendix.

Lemma 2.1 (de la Vega and Kenyon-Mathieu [6]). Consider a set X. Suppose that for
every subset T of size at most k = 2r + 3, we are given a distribution of cuts DT on T (i.e.

1See [16] and [14] for more background on the Sherali–Adams lift-and-project method.

4



distribution of subsets of T ). Moreover, suppose that for two sets Q ⊂ T , the distributions
DQ and DT agree in the following sense, for every A ⊂ Q

DQ({A}) = DT ({B : B ∩Q = A}).

Then the vector (xij)
∣∣
i,j∈X defined by

xij = Pr
(
D{i,j} separates i and j

)
= D{i,j}({{i} , {j}}).

lies in the Sherali–Adams relaxation of the cut polytope (with r rounds of lift-and-project) .

In this paper, we use several results from our paper [3]. We list these results below.

Notation 2.1. Given a graph G, denote the shortest path metric by d(·, ·).

Theorem 2.2 (Theorem 3.14 part III from [3, ECCC]). For every n and k < n, there exists
a bounded degree expander graph G = (X,E) on n vertices such that the metric space X
equipped with the distance

ρ(u, v) =
√

1− (1− µ)d(u,v) + µ,

where µ = Θ
(

log k+log logn
logn

)
satisfies the following properties.

1. Every embedding of (X, ρ) into `1 requires distortion

Ω
(

logn
log k+log logn

)1/2

.

2. Every subset of X of size k embeds isometrically into `2.

Definition 2.3. (Implicitly introduced in Arora, Bollobás, Lovász, and Tourlakis [1].)
We say that a graph G is l-path decomposable if every 2-connected subgraph H of G contains
a path of length l such that every vertex of the path has degree 2 in H.

Theorem 2.4 (Theorem 3.3 from [3]). Suppose G = (V,E) is an l-path decomposable graph.
Let L = bl/9c; µ ∈ [1/L, 1]. Then there exists a probabilistic distribution of multicuts of G
(or in other words random partition of G in pieces) such that the following properties hold.
For every two vertices u and v,

1. If d(u, v) ≤ L, then the probability that u and v are separated by the multicut (i.e. lie
in different parts) equals 1 − (1 − µ)d(u,v); moreover, if u and v lie in the same part,
then the unique shortest path between u and v also lies in that part.

2. If d(u, v) > L, then the probability that u and v are separated by the multicut is at least
1− (1− µ)L.

3. Every piece of the multicut partition is a tree.

Lemma 2.5 (Lemma 3.11 from [3]). Consider a metric space (Y, ρ) on k points. If for every
two distinct points u and v: |ρ(u, v) − 1| ≤ 1

2k
, then (Y, ρ) is isometrically embeddable into

`2.
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3 Sherali–Adams Relaxations and Embedding into `2

We now show how to transform a metric space locally embeddable into `2 into a feasible
solution of the Sherali–Adams relaxation of the cut polytope via local SDP solutions to
the MAX CUT problem. If every subset of 2r + 3 points is isometrically embeddable in
the Euclidean sphere, then the solution constructed satisfies the relaxation obtained from r
rounds of Sherali–Adams.

Theorem 3.1. Let (X, ρ) be a metric space. Assume that every k = 2r+ 3 points isometri-
cally embed in the Euclidean sphere of radius R. Then the following solution belongs to the
Sherali–Adams relaxation of the cut polytope (with r rounds of lift-and-project)

xij =
1

π
arccos

(
1− ρ(i, j)2

2R2

)
.

Proof. We want to construct a distribution of cuts DT on every set T of size at most k and
then use Lemma 2.1. Embed T in the sphere of radius R centered at the origin. Apply
the MAX CUT algorithm of Goemans and Williamson [8]: Choose a random hyperplane
passing through the origin. Let one piece of the cut consist of vertices lying on one side of
the hyperplane; the other part consist of vertices lying on the other side of the hyperplane.

Note that the distribution of cuts DT is completely defined by all pairwise distances
(ρ(u, v))u,v∈T since the pairwise distances uniquely determine the set of points on the sphere
(up to an isometry of the whole sphere2). Moreover, if Q ⊂ T , then the distribution of cuts
DT restricted to Q depends only on the distances between points in Q. Therefore, Lemma 2.1
applies to the distribution DT . We conclude that the solution

xij = Pr
(
D{i,j} separates i and j

)
belongs to the Sherali–Adams relaxation of the cut polytope.

Let us now compute xij. Since the angle θij between embeddings of i and j in the sphere
equals (by the law of cosines)

θij = arccos

(
1− ρ(i, j)2

2R2

)
.

the probability that a random hyperplane separates i and j equals

xij = y{(i,j)} =
1

π
arccos

(
1− ρ(i, j)2

2R2

)
.

2Here it is important that we embedded points into `2 rather than `1.
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4 Relaxations for Sparsest Cut

In this section, we prove that the integrality gap for the relaxation of Sparsest Cut (with
uniform demands) remains high even after no(1) rounds of the Sherali–Adams lift-and-project.
We consider the following LP relaxation for the Sparsest Cut problem.

min

∑
(i,j)∈E xij∑
i,j∈V xij

subject to: vector of xij lies in the Sherali–Adams relaxation

of the cut polytope.

Theorem 4.1. The integrality gap for the Sparsest Cut relaxation is at least

Ω

(√
log n

log r + log log n

)
after r rounds of the Sherali–Adams lift-and-project.

Proof. Consider the metric space (X, ρ) and the underlying expander graph G = (X,E)
from Theorem 2.2. We prove that the integrality gap of the Sparsest Cut relaxation for the

graph G is Ω
(√

log n/(log r + log log n)
)

.

Every k = 2r+3 points of X embed into `2 isometrically. Moreover, we may assume that
every subset of k points is isometrically embeddable in the sphere of radius R =

√
1 + µ.

Indeed, we can add a special isolated vertex O to the graph G (G will be still sparse,
and the theorem will be still true). Recall that the metric ρ is defined as (for u 6= v),
ρ(u, v) =

√
1− (1− µ)d(u,v) + µ. Since the shortest path distance from O to every other

vertex equals infinity, ρ(u,O) =
√

1 + µ, that is, all points u ∈ X lie on the sphere of radius
R =

√
1 + µ centered at O.

Therefore, by Theorem 3.1, the vector

xij = y{(i,j)} =
1

π
arccos

(
1− ρ(i, j)2

2R2

)
is a feasible solution of the Sherali–Adams relaxation.

Finally, we compute the integrality gap of this solution. Let us estimate the value of
xij. If i and j are adjacent in G, we have ρ(i, j) =

√
2µ and xij = Θ(

√
µ). For two typical

points i and j, ρ(i, j) = Θ(1) (since the graph G is an expander with diameter Θ(log n)) and
xij = Θ(1). Hence the value of the solution xij is

Θ (
√
µ) = Θ

(√
log r + log log n

log n

)
.

However, since the graph G is an expander the value of the optimal combinatorial solution
is Θ(1).
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5 Relaxations for MAX CUT and Vertex Cover

In this section, we prove that for every ε > 0 there exists γ > 0 such that the integrality gap
for the MAX CUT and Vertex Cover relaxations is at least 2− ε after O(nγ) rounds of the
Sherali–Adams lift-and-project. Below, we say that the value of MAX CUT is α ∈ [0, 1], if
an α fraction of all edges crosses the cut. Similarly, the value of Vertex Cover is α ∈ [0, 1],
if the vertex cover contains an α fraction of all vertices.

Our integrality gap constructions are similar to that for the Sparsest Cut problem. Essen-
tially, the only difference is that we define a different metric such that the distance between
adjacent vertices is very close to 1. Later for the Unique Games problem, we will need
this distance to be either close to 0, or 1, depending on the edge. Thus, we introduce
weights πuv ∈ {−1,+1} for all edges (u, v); the length of the edge (u, v) will be equal to
(1 − (1 − µ)πuv)/2. In the case of MAX CUT and Vertex Cover, all πuv = −1. Extend
the function πuv to all pairs of vertices as follows: if d(u, v) ≤ 2L, let πuv be the prod-
uct of the weights of all edges along the unique shortest path between u and v; otherwise
(if d(u, v) > 2L), let πuv = 0. Particularly, if all weight on edges are equal to −1, then
πuv = (−1)d(u,v) (when d(u, v) ≤ 2L). We define a new distance on G:

ρπµ(u, v) =
1− (1− µ)d(u,v)πuv

2
.

Corollary 5.1 implies that ρπµ is a metric (that is, satisfies the triangle inequality). However,

we will not use this fact in the paper. The metric ρπµ with πuv = (−1)d(u,v) was previously used
in the integrality gap constructions by de la Vega and Kenyon-Mathieu [6] and Schoenebeck,
Trevisan, and Tulsiani [18]. We denote this metric by ρaltµ . We now prove a corollary of
Theorem 2.4.

Corollary 5.1. Suppose G = (V,E) is an l-path decomposable graph. Let L = bl/9c;
µ ∈ [1/L, 1]; and fuv be a set of weights (as above). There exists a random mapping ϕ : V →
{−1, 1} such that

1. if d(u, v) ≤ L then Pr (ϕ(u) 6= ϕ(v)) = ρπµ(u, v);

2. if d(u, v) ≥ L then 1−(1−µ)L

2
≤ Pr (ϕ(u) 6= ϕ(v)) ≤ 1+(1−µ)L

2
.

Proof. Consider the distribution of multicuts from Theorem 2.4. For each piece of the
multicut partition (recall that each piece is a tree) pick an arbitrary vertex u and set φ(u)
to be +1 or −1 with probability a half. Then propagate values along the edges of the tree
so that φ(u′′) = πu′u′′φ(u′) for adjacent (u′, u′′). If d(u, v) ≤ L, then the probability that
ϕ(u) 6= ϕ(v) equals

Pr (u and v are separated by the multicut)× 1

2

+ Pr (u and v are not separated by the multicut)× 1− πuv
2

.
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If d(u, v) > L, then the probability that ϕ(u) 6= ϕ(v) is bounded from below by

Pr (u and v are separated by the multicut)× 1

2

and from above by

Pr (u and v are separated by the multicut)× 1

2
+ Pr (u and v are not separated by the multicut) .

Plugging in bounds on the probability that u and v are separated from Theorem 2.4 concludes
the proof.

Now we prove an analog of Theorem 2.2 for the metric ρπµ.

Theorem 5.2. Let G = (V,E) be a graph on n vertices with maximum degree ∆; let k ≤
√
n.

Suppose that for every t, every subgraph on t vertices is Ω(log(n/t))-path decomposable (here
the constant in Ω-notation may depend on ∆). Then for every subset Y of at most k vertices
there exists a mapping ψY from Y to the unit sphere in `2 such that (for u 6= v)

‖ψ(u)− ψ(v)‖2 =

√
4ρπµ(u, v) + µ

1 + µ
,

where µ = c∆(log k + log log n)/ log n and c∆ is a sufficiently large constant. In particular,
the map ψY sends adjacent vertices u and v to “almost antipodal” points if πuv = −1:

‖ψ(u)− ψ(v)‖2 =
√

4−µ
1+µ

= 2− O(µ); and “very close” points if πuv = 1: ‖ψ(u)− ψ(v)‖2 =√
3µ

1+µ
= O(

√
µ).

Proof. The proof goes along the lines of proofs of Theorems 3.7 and 3.13 in [3]. Choose
l = Θ(log n) so that every subgraph of G on 3 · (∆ − 1)lk vertices is l-path decomposable.
Now consider the ball Bd(Y, l) = {x : d(x, Y ) ≤ l}. Since it contains at most 3(∆ − 1)lk
vertices, the graph induced by Bd(Y, l) on G is l-path decomposable. Therefore, there exists
a random mapping ϕ : Bd(Y, l) → {−1, 1} satisfying the conditions of Corollary 5.1. Note
that for every u and v in Y at distance at most l, the set Bd(Y, l) contains the shortest
path between them. Hence all distances appearing in the conditions of Corollary 5.1 do not
depend on whether we define them with respect to the shortest path metric in G or with
respect to the shortest path metric in Bd(Y, l).

Extend the mapping ϕ to a new point O by ϕ(O) = 0. By Corollary 5.1, for u, v ∈
Bd(Y, l): ∣∣‖ϕ(u)− ϕ(v)‖2

2 − 4ρπµ(u, v)
∣∣ = 4

∣∣Pr (φ(u) 6= φ(v))− ρπµ(u, v)
∣∣

≤ 4(1− µ)L ≤ 4e−
c∆L

log n
(log k+log logn)

≤ 1

k log n
≤ µ

2(k + 1)
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(when c∆ is sufficiently large). Define the metric σ on Y ∪ {O} as follows:

σ(u, v) =
√
µ+ 4ρπµ(u, v)− ‖ϕ(u)− ϕ(v)‖2

2︸ ︷︷ ︸
≤µ/(2(k+1))

,

σ(u,O) =
√
µ.

By Lemma 2.5 (c.f. Theorem 3.13 in [3]), the metric σ is Euclidean. Let ν be the direct
sum of the isometric embedding of (Y ∪ {O} , σ) into `2 and the embedding u 7→ ϕ(u) (the
random variable ϕ(u) belongs to an L2 space, which is isometric to `2). Then we have

‖ν(u)− ν(v)‖2 =
√

4ρπµ(u, v) + µ.

We may assume that ν(O) = 0. Then ‖ν(u)‖2 =
√

1 + µ for u ∈ Y . By scaling ν we get the
desired embedding ψ(u) = ν(u)/

√
1 + µ.

We consider the following LP relaxations. The LP relaxation for MAX CUT is

max
∑

(i,j)∈E

xij

subject to: vector of xij lies in the Sherali–Adams relaxation

of the cut polytope

The base LP relaxation for Vertex Cover is

min
∑
i∈V

xi

subject to: (i) xi + xj ≥ 1 for every edge (i, j); (ii) 1− xi ≥ 0; (iii) xi ≥ 0.
For every set of vertices I of size at most r + 1, we introduce a variable yI . We require

that

1. y{i} = xi.

2. For every set of vertices T of size at most r + 3 there exists a distribution of vertex
covers on T such that yI equals the probability that all vertices from I lie in the vertex
cover.

Our second condition implies that the vector of yI lies in the lifted Sherali–Adams polytope
(the proof is similar to the proof of Lemma 2.1).

We will use random ∆-regular graphs in our integrality gap constructions. These graphs
were previously used in several integrality gap constructions (e.g. [1], [6], [18]). It is known
(see [1], [6], [18]) that for every ε > 0 there exists ∆ such that with high probability every
cut in a random ∆-regular graph cuts at most 1/2 + ε fraction of all edges and every vertex
cover contains at least 1−ε fraction of all vertices. Arora, Bollobás, Lovász, and Tourlakis [1]
proved that with high probability we can remove o(n) edges from a random ∆-regular graph
so that every subgraph on k vertices is Ω(log(n/k))-path decomposable (here, the constant
in the Ω-notation depends on ∆).
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Theorem 5.3. I. For every ε > 0 there exists γ > 0 such that the integrality gap of the
relaxation for MAX CUT is 2− ε after r = nγ rounds of the Sherali–Adams lift-and-project.

II. There exist at most 1/2 + ε′ satisfiable instances of MAX CUT (for every positive
constant ε′), such that the LP value after r rounds of Sherali–Adams is at least 1− ε, where

ε = O

(√
log k + log log n

log n

)
.

Proof. I. Consider a graph G = (V,E) with maximum degree ∆ such that

1. every cut cuts at most 1/2 + ε/6 fraction of all edges;

2. every subgraph on k vertices is Ω(log(n/k))-path decomposable.

Let γ = cε2/c∆, r = nγ, k = 2(r + 3), and

µ = c∆
log k + log log n

log n
= (1 + o(1)) c · ε2.

Applying Theorem 5.2 (with metric ρaltµ ) and Theorem 3.1, we get that the vector

xij =
1

π
arccos

(
1−

4ρaltµ (i, j) + µ

2(1 + µ)

)

is a feasible solution of the Sherali–Adams relaxation.
We now compute the integrality gap of this solution. The distance between every two

adjacent vertices i and j is ρaltµ (i, j) = 1− µ/2, hence

xij =
arccos(−1 +O(µ))

π
= 1−O(

√
µ) > 1− ε/6,

if c is small enough. Therefore, the value of this solution is at least (1 − ε/6)|E|; the value
of the optimal combinatorial solution is at most (1/2 + ε/6)|E|. The integrality gap is

1− ε/6
1/2 + ε/6

> 2− ε.

II. The same proof works for part (II) with ε = Θ(
√
µ); note that ∆ depends only on ε′.

Theorem 5.4. For every ε > 0 there exists γ > 0 such that the integrality gap of the
relaxation for Vertex Cover is 2 − ε after r = nγ rounds of the Sherali–Adams lift-and-
project.

Proof. Consider a graph G = (V,E) with maximum degree ∆ such that (i) every vertex
cover contains at least 1 − ε/6 fraction of all vertices; (2) every subgraph on k vertices

11



is Ω(log(n/k))-path decomposable. Let γ = cε2/(∆2c∆) (where c is a sufficiently small
constant) and r = nγ, k = (∆ + 1)(r + 2), and

µ = c∆
log k + log log n

log n
= (1 + o(1)) c · ε2/∆2.

For every set T of at most r + 2 vertices, let us define a distribution of vertex covers
DT on T as follows. Denote the set of vertices in T and their neighbors by N(T ). Note
that N(T ) contains at most k = (∆ + 1)(r + 2) vertices. By Theorem 5.2, there exists an
embedding ψ of N(T ) in the unit sphere satisfying the following properties.

1. The Euclidean distance between images of adjacent vertices is 2−O(µ).

2. For every set A of at most k points, its image is completely determined by the shortest
path distances between points in A.

Choose a random hyperplane passing through the origin. Choose randomly one of the
two half-spaces. Denote it by H. Now we define the vertex cover V C. Let a vertex u be in
the vertex cover V C if either ψ(u) ∈ H or there exists a neighbor v of u such that ψ(v) /∈ H.
Note that V C is a vertex cover of T : for every two adjacent vertices u and v, if u /∈ V C
then ψ(v) ∈ H and, hence, v ∈ V C.

Now consider two distributions DT1 and DT2 . We claim that they agree on T1 ∩ T2.
Denote the corresponding embeddings of sets N(T1) and N(T2) in the unit sphere by ψ1 and
ψ2. Observe that the sets ψ1(N(T1 ∩ T2)) and ψ2(N(T1 ∩ T2)) are isometric (by property
2). Therefore, we may assume without loss of generality that ψ1(u) = ψ2(u) for every u ∈
N(T1∩T2). Then u ∈ T1∩T2 belongs to the vertex cover chosen according to DT1 if and only
if it belongs to the vertex cover chosen according to DT2 (we choose the same half-space H
when we construct both vertex covers).

For every set I of at most r + 1 vertices, let yI be the probability that all vertices in I
belong to the vertex cover chosen according to DI . Let xi = y{i}. Since for every set T on at
most r + 2 vertices, there exists a distribution of vertex covers (namely, DT ) such that yI is
the probability that all vertices in I belong to the vertex cover, the vector of xi is a feasible
solution of our relaxation.

Let us estimate the value of xi. Vertex i belongs to the vertex cover if either ψ(i) ∈ H,
or one of the edges incident to i is not cut by the random hyperplane. The former event
happens with probability 1/2. The latter event happens with probability at most ∆ times
the probability that one edge is not cut by the random hyperplane. We obtain the following
bound:

1

2
+ ∆

(
1− 1

π
arccos

(
1−

4ρaltµ (i, j) + µ

2(1 + µ)

))
=

1

2
+ ∆ ·O(

√
µ) ≤ 1

2
+
ε

6
.

Therefore, the value of the solution x is at most (1/2 + ε/6)|V |. The value of the optimal
combinatorial solution is at least (1−ε/6)|V |. Hence the integrality gap is at least 2−ε.

12



6 Relaxations for Unique Games

We now present an integrality gap construction for the Unique Games (UG) problem. The
problem is as follows: given a graph G, a set of q labels S and permutations πuv : S → S
for every edge (u, v), assign a label Λ(u) ∈ S to every vertex u so as maximize the number
of satisfied constraints πuv(Λ(u)) = Λ(v).

In the LP relaxation, we introduce variables xu(i) and xuv(ij) for every pair of vertices u,v
and labels i,j. In the integral solution, xu(i) = 1, if u has label i; and xu(i) = 0, otherwise.
Similarly, xuv(ij) = 1, if u has label i, and v has label j; and xuv(ij) = 0, otherwise. The
objective is to maximize the number of satisfied constraints:

∑
(u,v)∈E

∑
i∈S xuv(iπuv(i)). The

LP constraints are: for all vertices u,
∑

i∈S xu(i) = 1; for all edges (u, v),
∑

j∈S xuv(ij) =
xu(i). As before, in order to show that the vector of xu, xuv(ij) belongs to the Sherali–Adams
LP relaxation it is enough to prove that for every set of vertices S of size at most O(r) there
exists a distribution of integral solutions DS such that (i) xu(i) is the probability that u has
label i; and xuv(ij) is the probability that u has label i, and v has label j; (ii) for every two
sets S ⊂ T the distributions DS and DT coincide on S.

Theorem 6.1. Fix a number of labels q = 2t, a real δ ∈ (0, 1) and let ∆ = dC(q/δ)2e (for a
sufficiently large constant C). Then for every positive ε there exists γ depending on ε such
that for every sufficiently large n there exists an instance of Unique Games on ∆-regular
graph G on n vertices so that (i) The cost of the optimal solution is at most 1/q · (1+ δ). (ii)
There exists a solution to the LP relaxation obtained after r = nγ rounds of Sherali–Adams
of cost (1− ε).

Proof sketch. The underlying graph G is as before a random ∆-regular expander (see Theo-
rem 5.2). The labels are elements of the multiplicative group {−1, 1}t. For every edge (u, v)
of the graph we pick independently (and uniformly) a random element πuv in {−1, 1}t. The
constraint between u and v is Λ(u) = Λ(v) · πuv.

By the standard probabilistic argument, for sufficiently large C the optimal solution of
the Unique Games problem has value at most (1 + δ)/q with probability close to 1. Indeed,
for a fixed assignment of labels, the expected fraction of satisfied constraints (where the
expectation is taken only over random choices of πuv) is 1/q. By the Central Limit Theorem,
the probability that the fraction of satisfied constraints deviates from the expectation by
more than δ/q is o(q−n). Since the total number of fixed assignments is qn, by the union
bound, the Unique Game is at most (1 + δ)/q satisfiable with probability approaching to 1.

We now need to show that the LP cost of the Unique Game is at least (1 − ε). Fix s
from 0 to t − 1 and consider s-th coordinate of every label, and s-th coordinate of every
πuv. We get an instance of MAX 2LIN mod 2 — linear equations modulo 2. It is easy to
see, that Theorem 5.3 works not only for MAX CUT, but also for MAX 2LIN, we just need
to substitute the metric ρaltµ by the metric ρπ

s

µ (here πsuv is the s-th coordinate of πuv). The
theorem guarantees that for every set S of size at most Ω(r) there exists a distribution of
cuts such that if πsuv = 1, then u and v lie on the same side of the cut; and if πsuv = −1,
then u and v lie on the opposite sides of the cut with probability 1− ε. Define, Λs(u) to be
−1 or 1 depending on whether u belongs to the cut or not. Then Λs(u) = πsuv · Λs(v) with
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probability at least 1− ε/k (for some µ and γ). Thus by the union bound, Λ(u) = πuv ·Λ(v)
with probability (1− ε). This concludes the proof.

7 Sherali–Adams Lower Bounds from UG Hardness

In this section, we will show how to convert UGC-hardness results to Sherali–Adams lower
bounds. Inapproximability proofs based on the Unique Games Conjecture usually proceed as
follows. First they show how to transform every instance U of the Unique Games Problem
(UG) to an instance PU of the given problem P so that (completeness) if U is (1 − ε)-
satisfiable then PU has a “good” solution; (soundness) if U is not δ-satisfiable then PU has
no “good” solution. To prove the completeness, they show how to convert every solution
of U to a solution of PU . Usually, this conversion is local: the value assigned to every
variable/vertex/edge in PU depends only on labels of a constant number of vertices of U ;
every “constraint” in PU is satisfied if a constant number of constraints is satisfied in U .

We can apply such reduction to the Unique Games instance U presented in the previous
section. Since U is only δ-satisfiable, PU has no “good” solution. However, PU has “good”
local solutions corresponding to (1− ε)-satisfiable local solutions for U . Using this approach
we can convert most known (if not all) UGC-hardness results to Sherali–Adams integrality
gaps.

Now we apply the approach outlined above to a recent result of Guruswami, Manokaran,
and Raghavendra [12] that states that it is NP-hard to approximate the Maximum Acyclic
Subgraph Problem within a factor of 2 − ε (for every ε) assuming the Unique Games Con-
jecture.

Theorem 7.1. For every ε > 0 there exists γ > 0 s.t. for infinitely many n there exists a
weighted directed graph G = (VG, EG) on n vertices (the total weight of all edges is 1) with
the following properties.

1. For every ordering φ : VE → [n] of VE, the weight of edges going forward is at most
1/2 + ε.

2. There exists a Sherali–Adams solution of value 1−ε. I.e. there exist local distributions
of orderings φS : S → [n] on sets S ⊂ VE of size at most k = nγ that are locally
consistent s.t.

E(i,j)∈EG

[
Pr(φ{i,j}(i) < φ{i,j}(j))

]
≥ 1− ε,

where edges are sampled with probabilities equal to their weight (i.e. almost all edges
go forward).

First, we briefly describe the reduction of Guruswami, Manokaran, and Raghavendra [12].
They start with a Unique Games instance U on a bipartite graph (A ∪ B,E) with label
set S. They present a procedure that given U and ε > 0 outputs a directed graph GU,ε

with set of vertices B × [m]S (where m is a number, which depends on ε). Two vertices
(b1, z1), (b2, z2) ∈ B × [m]S are connected with an edge if b1 and b2 have a common neighbor
a in A; the weight of the edge depends on z1 and z2.
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Theorem 7.2 ([12], Theorem 7.1). For every ε > 0 there exists δ > 0 s.t. (soundness) if U
is not δ-satisfiable then no ordering of GU has value more than 1

2
+ ε. (completeness) Given

a Unique Game labeling Λ : A∪B → S, let the rank of a vertex (b, z) be O(b, z) = z(Λ(b)) ∈
[m]. The rank defines an ordering: sort vertices w.r.t. their rank, order vertices of the same
rank uniformly at random. Let pe be the probability that the edge e = ((b1, z1), (b2, z2)) goes
forward given that the constraints between a and b1, and a and b2 are satisfied in U (where
a is the common neighbor of b1 and b2). Then Ee [pe] ≥ 1− ε.

Proof of Theorem 7.1. Let U be a Unique Games instance from Theorem 6.1 that is at most
δ/2-satisfiable with a Sherali–Adams solution of value 1 − ε/4. Partition vertices into two
sets A and B so that at least half edges go from A to B. We remove edges within A and B
and get a bipartite instance of Unique Games.

Now we apply the reduction from Theorem 7.2 to U and get a graph GU,ε/2. The number
of vertices in GU,ε/2 is linear in the number of vertices of U ; denote it by n. Since U is
at most δ-satisfiable, no ordering of GU has value more than 1

2
+ ε. Now for every set of

vertices S of GU , consider the set T of corresponding vertices in B and their neighbors:
T = {b : (b, z) ∈ S} ∪ {a : (a, b) ∈ E, (b, z) ∈ S}. Sample a local labeling ΛT of vertices in
T . The labeling ΛT defines a rank for every vertex in S. We randomly map vertices in S
of rank r ∈ [m] to distinct positions in {(r − 1)n/m+ 1, . . . , rn/m} and obtain an ordering
φS. Since local labelings ΛT are consistent, local orderings φS are also consistent. Since
ΛT satisfies each Unique Games constraint with probability at least 1− ε/4, for every edge
e = ((b1, z1), (b2, z2)) within S both constraints between a and b1, and a and b2 are satisfied
with probability at least 1 − ε/2 (here a is the common neighbor of b1 and b2). Therefore,
the edge e goes forward with probability at least (1− ε/2)pe. Thus

Ee=(i,j)

[
Pr(φ{i,j}(i) < φ{i,j}(j))

]
≥ (1− ε/2)Ee [pe]

≥ (1− ε/2)(1− ε/2) ≥ 1− ε.

8 Relaxations for Multicut

We now present a Sherali–Adams integrality gap for the Min Multicut problem. In this
problem, we are given a graph and a set of source terminal pairs (si, ti). Our goal is to
find a multicut separating all source terminal pairs that minimizes the number of cut edges.
As before for every two vertices u and v we introduce a variable xuv. The objective is to
minimize

∑
(u,v)∈E xuv, given that the vector xuv lies in the Sherali–Adams relaxation (with

r rounds) of the cut polytope and subject to an extra constraint xsiti = 1 for every i (i.e. si
and ti are always separated).

Theorem 8.1. The integrality gap for the Min Multicut problem is

Ω

(√
log n

log r + log log n

)
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after r rounds of Sherali–Adams relaxation.

The proof is based on a black box reduction from MAX CUT. Consider a MAX CUT
instance G. Construct a new graph G′: For every original vertex v introduce two new vertices
v−1 and v1. If (u, v) are connected by an edge in G, we connect u1 with v−1 and u−1 with
v1 in G′. The source terminal pairs are (u−1, u1) i.e. the multicut should separate every u−1

from u1. Notice, that if the cost of a multicut is δ, then there exists a cut in G of cost 1−2δ:
indeed, if we remove all edges cut by the multicut from G, then the remaining graph does
not contain odd cycles and thus is bipartite (formally, we remove an edge (u, v) if (u1, v−1)
or (u−1, v1) is cut by the multicut). Thus if the cost of MAX CUT in G is less than 2/3,
then the cost of Multicut is at least 1/6. On the other hand, any feasible LP solution xij for
MAX CUT corresponds to a feasible LP solution x̃uavb

for Multicut:

x̃u−1v1 = x̃u1v−1 = 1− xuv; x̃u1v1 = x̃u−1v−1 = xuv.

Note that in the standard MAX CUT relaxation we can introduce variables xuu and add a
constraint xuu = 0, since u always lies in the same part where u, itself, lies. This implies

x̃u−1u1 = xuu = 1.

If the cost of the optimal LP solution for MAX CUT is 1−ε, then the cost of the optimal
LP solution for Multicut is at most ε. Hence, the integrality gap is Ω(1/ε). By Theorem 5.3,

after r rounds of Sherali–Adams, ε = O
(√

log r+log logn
logn

)
.

Thus the integrality gap is Ω
(√

logn
log r+log logn

)
(the hidden constant in Ω notation depends

on ∆ which we fix to be a small constant).

9 Integrality Gap for Sparsest Cut for Small Number

of Rounds

In this section, we will prove the following theorem. We borrow many ideas from [6].

Theorem 9.1. The integrality gap for the Sparsest Cut relaxation is at least Ω
(

logn
r+log logn

)
after r rounds of the Sherali–Adams lift-and-project.

Definition 9.2. Denote the graph obtained from a graph H by randomly and independently
removing each of its edges with probability µ by Hµ. Denote the set of removed (“cut”) edges
by Cµ.

We will need the following lemma. The proof is similar to the proof of Theorem 3.3 from [3].

Lemma 9.3. Consider an l-path decomposable graph H. The probability that two vertices u
and v lie in the same connected component of Hµ is between (1− µ)d(u,v) and (1− µ)d(u,v) +
(1− µ)Lm/L, where m is the number of vertices in H and L = bl/3c.
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Proof. Denote the probability that two vertices x and y lie in the same component of Hµ by
pxy. Our goal is to prove

(1− µ)d(u,v) ≤ puv ≤ (1− µ)d(u,v) + (1− µ)Lm/L. (2)

The lower bound on puv in (2) is obvious, since with probability at least (1−µ)d no edge
is cut on the shortest path between u and v.

Now we prove the upper bound by induction. Without loss of generality we assume that
H is connected (otherwise it suffices to prove the lemma for each connected component).

Since H is l-path decomposable, one of the following cases should hold:

1. H is an edge.

2. H is a one vertex union of l-path decomposable subgraphs.

3. H is 2-connected. It is the union of an l-path decomposable subgraph and a path
of length l. The subgraph and the path do not have common vertices except for the
endpoints of the path.

Therefore, we can iteratively decompose H into small subgraphs. We stop when each remain-
ing subgraph is an edge. Denote by D(H) the number of times we decompose a subgraph
according to item (3). We will prove that

puv ≤ (1− µ)d(u,v) + (1− µ)LD(H).

Since D(H) ≤ m/(l − 2) ≤ m/L this bound implies the desired upper bound on puv.
Let us verify the base case: if H is an edge, then puv = 1− µ (for u 6= v). Now we prove

the induction step. Consider two possibilities.
1. H is a one vertex union of two subgraphs H1 and H2. If u and v lie in the same subgraph
then the bound holds by the induction hypothesis. Now suppose that u is in H1 and v is in
H2. Denote the cut point by c. We have,

puv = pucpvc ≤ min
(
(1− µ)d(u,c) + (1− µ)LD(H1), 1

)
×min

(
(1− µ)d(v,c) + (1− µ)LD(H2), 1

)
≤ (1− µ)d(u,c)+d(v,c) + (1− µ)LD(H1) + (1− µ)LD(H2)

= (1− µ)d(u,v) + (1− µ)LD(H).

2. H is the union of a subgraph H0 and a path P (H0 and P intersect only at the endpoints
of P ; the length of P is at least l). Divide P into 3 subpaths of length at least L each. Note
that one of these subpaths does not contain neither u nor v as an internal point. Denote
this subpath by P1. Denote the union of the other two subpaths and H0 by H1. Applying
the induction hypothesis to H1, we get

Pr (u and v are not separated by the cut in H1) ≤ (1− µ)d(u,v) + (1− µ)LD(H1).
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The probability that that P1 is not cut is at most (1− µ)L. By the union bound,

puv ≤ (1− µ)d(u,v) + (1− µ)LD(H1) + (1− µ)L = (1− µ)d(u,v) + (1− µ)LD(H).

Definition 9.4. Consider a graph H of girth at least 2L + 1. We say that two vertices u
and v are connected only by a non-canonical path if:

1. u and v are connected by a path in Hµ; and

2. no path of length less than or equal to L connects u and v in Hµ.

In other words, the second condition means that either the distance in H between u and
v is greater than L or the shortest path between them is cut by Cµ.

Corollary 9.5. Let H be an l-path decomposable graph of girth at least 2L + 1. Then the
probability that two given vertices are connected only by a non-canonical path is at most
(1− µ)L(m/L+ 1), where m is the number of vertices in H.

Proof. Denote these vertices by u and v. If d(u, v) ≥ L then the probability that u and v
are connected with any path in hµ is at most

(1− µ)d(u,v) + (1− µ)Lm/L ≤ (1− µ)L(m/L+ 1).

If d(u, v) ≤ L then the desired probability equals

Pr
(
u and v are connected with a path

)
− Pr

(
the shortest path between u and v is not cut

)
≤ (1− µ)d(u,v) + (1− µ)Lm/L− (1− µ)d(u,v) < (1− µ)L(m/L+ 1).

Definition 9.6. Consider a graph G of girth at least 2L+ 1 and a set of vertices T . Define
the subgraph clos(T ), the closure of T , as follows:

• clos(T ) contains all vertices of T ;

• for every two vertices u, v ∈ T at distance at most L, clos(T ) contains the shortest
path between them.

Note that | clos(T )| ≤ L|T |2.

Proof of Theorem 9.1. Let G = (V,E) be a bounded degree expander on n vertices of girth
at least l such that every its subgraph on k = 2r + 3 vertices is l-path decomposable, where
l = Θ(log n). The existence of such graph was proved by Arora, Bollobás, Lovász, and
Tourlakis [1] (the graph is a random 3-regular graph with o(n) edges removed).
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Let L = dl/3e. Choose µ = Θ(k+log logn
L

) = Θ(k+log logn
logn

) so that

22kk4(1− µ)L ≤ µ. (3)

For every subset T ⊂ V of vertices, we are going to define a random cut of T ; then we
will use Lemma 2.1. However, we will proceed in two steps: first we will define distributions
of random cuts that will only approximately satisfy conditions of Lemma 2.1, and then we
will slightly change these distributions.

We cut every edge of G independently with probability µ and obtain the graph Gµ.
Consider cut edges that lie in clos(T ). They partition the vertices of clos(T ) into connected
components. Let PT be the restriction of this partition to T . Choose every piece of PT with
probability 1/2. Let ST be the union of chosen pieces.

Lemma 9.7. Given a set of vertices T of size at most k and Q ⊂ T , consider the probabilistic

partitions PT and PQ. Denote the restriction of PT to Q by PT
∣∣
Q

. Then
∣∣∣Pr
(
PT
∣∣
Q
6= PQ

)∣∣∣ ≤
k4(1− µ)L.

Proof. If PT
∣∣
Q
6= PQ then there exist vertices u, v ∈ Q that belong to one piece in one

partition and to different pieces in the other partition. Now if u and v belong to the same
piece in PQ then they must belong to the same piece in PT

∣∣
Q

since clos(T ) is a subgraph of

clos(Q). On the other hand, if u and v belong to the same piece of PT
∣∣
Q

but they belong to

different pieces in PQ then they are connected only by a non-canonical path in clos(T ). The
probability of this event is at most

(1− µ)L
(
| clos(T )|

L
+ 1

)
≤ (1− µ)L

(
k2L

L
+ 1

)
= (k2 + 1)(1− µ)L.

The total number of pairs (u, v) is at most
(
k
2

)
, so by the union bound (for k ≥ 2)

Pr
(
PT
∣∣
Q
6= PQ

)
≤ k(k + 1)(k2 + 1)

2
(1− µ)L ≤ k4(1− µ)L.

Corollary 9.8. Let T be a set of size at most k and Q ⊂ T . Then TV (ST ∩ Q,SQ) ≤
k4(1− µ)L, where TV is the total variation distance.

Our goal now is to construct random cuts ŜT (which are perturbations of cuts ST ) so that
ŜT ∩Q and ŜQ have exactly the same distribution. Note that by the inclusion–exclusion for-
mula, for every set T and A ⊂ T , we have Pr (ST = A) =

∑
B⊂T\A(−1)|B| Pr (A ∪B ⊂ ST ).

We use this identity to define a signed measure ET on subsets (cuts) of T . Let qT = Pr(ST =
T ) and ET ({A}) =

∑
B⊂T\A(−1)|B|qA∪B. The measure of sets that contain a fixed set M ⊂ T
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is

ET ({A : M ⊂ A ⊂ T}) =
∑

A:M⊂A⊂T

∑
B⊂T\A

(−1)|B|qA∪B

=
∑

C⊂T\M

(∑
B⊂C

(−1)|B|

)
qC∪M = q∅∪M = qM .

where C = (A ∪B) \M . In particular,

ET (2T ) = ET ({A : ∅ ⊂ A ⊂ T}) = q∅ = 1,

where 2T is the set of all subsets of T . By Corollary 9.8,

|qA∪B−Pr (A ∪B ⊂ ST ) | = |Pr (A ∪B = SA∪B)−Pr (A ∪B = ST ∩ (A ∪B)) | ≤ k4(1−µ)L.

Therefore, we have (we use bound (3))

|ET ({A})− Pr (ST = A) | ≤
∑

B⊂T\A

k4(1− µ)L ≤ µ

2k
.

Define the random set (cut) ŜT as follows. For A ⊂ T , let

Pr
(
ŜT = A

)
=

µ

2|T |
+ (1− µ)ET ({A}).

We need to verify that this definition is valid. Indeed, all the probabilities are non-negative

Pr
(
ŜT = A

)
≥ µ

2|T |
+ (1− µ)

(
Pr (ST = A)− µ

2k

)
≥ µ

2|T |
− (1− µ)

µ

2k
≥ 0.

For a given set M ⊂ T the probability that ŜT contains M equals∑
A:M⊂A⊂T

( µ

2|T |
+ (1− µ)ET ({A})

)
=

µ

2|M |
+ (1− µ)qM .

In particular, the total probability of all elementary events {ŜT = A} equals µ
2|∅|

+(1−µ)q∅ =
1. Finally,

Pr
(
ŜT ∩Q = A

)
=

∑
B⊂Q\A

(−1)|B| Pr
(
A ∪B ⊂ ŜT ∩Q

)
=

∑
B⊂Q\A

(−1)|B| Pr
(
A ∪B ⊂ ŜT

)
=

∑
B⊂Q\A

(−1)|B|
( µ

2|A∪B|
+ (1− µ)qA∪B

)
= Pr

(
ŜQ = A

)
.
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Therefore, by Lemma 2.1, the solution defined by

xij = Pr
(
Ŝ{i,j} = {i} or Ŝ{i,j} = {j}

)
belongs to the Sherali–Adams relaxation of the cut polytope. Let us compute the value of
this solution. Note that

Pr
(
S{i,j} = {i}

)
=
µ

4
+ (1− µ)E{i,j}({i})

=
µ

4
+ (1− µ)(q{i} − q{i,j}) =

µ

4
+ (1− µ)

(
1

2
− q{i,j}

)
.

Now, if d(i, j) ≤ L then clos({i, j}) is the path between i and j. Therefore, q{i,j} equals

Pr
(
P{i,j} sep. i, j

)
4

+
Pr
(
P{i,j} doesn’t sep. i, j

)
2

=
1− (1− µ)d(i,j)

4
+

(1− µ)d(i,j)

2

=
1 + (1− µ)d(i,j)

4
.

If d(i, j) ≥ L then i and j are disconnected in clos({i, j}). Therefore, q{i,j} = 1/4. We have

Pr
(
S{i,j}={i}

)
=

{
µ
4

+ (1− µ)1−(1−µ)d(i,j)

4
, if d(i, j) ≤ L;

1
4
, if d(i, j) > L.

Finally,

xij =

{
µ
2

+ (1− µ)1−(1−µ)d(i,j)

2
, if d(i, j) ≤ L;

1
2
, if d(i, j) > L.

The distance between adjacent vertices in G is µ(2 − µ)/2 < µ. The distance between
two vertices at distance Θ(log n) is Θ(1). Therefore, the cost of the solution xij is O(µ) =

O
(
k+log logn

logn

)
. Since the graph G is an expander, the cost of combinatorial solution is Θ(1).

We proved that the integrality gap is Ω
(

logn
k+log logn

)
.
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A Proof of Lemma 2.1

First we define the lifted solution. Consider a set I = {(i1, j1), . . . , (it, jt)} of size at most
r + 1. Denote

QI = {i1, j1, i2, j2, . . . , it, jt} .
Let yI be the probability that a cut chosen according to DQI

separates every is from js. Note
that xij is indeed the projection of y{(i,j)}: xij = y{(i,j)}.

We verify now that the vector of yI lies in the lifted Sherali–Adams polytope. Let I
and J be two sets of pairs of points such that |I ∪ J | ≤ r; let R(x) ≥ 0 be one of the base
inequalities. Consider the set of points T appearing in I, J and R. Let x̃ij be the conditional
probability w.r.t. DT that points i and j are separated given that every pair of points in the
set I is separated and every pair of points in the set J is not separated. According to (1) we
replace each variable xij in R with

xij  
∑
B⊂J

(−1)|B|y{(i,j)}∪I∪B =
∑
B⊂J

(−1)|B|×

Pr
(
DQ{(i,j)}∪I∪B

separates every pair in {(i, j)} ∪ I ∪B
)

=
∑
B⊂J

(−1)|B| Pr(DT separates every pair in {(i, j)} ∪ I ∪B)

= Pr
(
DT separates i and j, separates every pair in I,

does not separate any pair in J
)

= x̃ij × Pr
DT

(
every pair in I is separated;

every pair in J is not separated
)
.

Now it is easy to see that the constraint on the lifted polytope obtained from R is

R(x̃)× Pr
DT

(
every pair of points in I is separated and

every pair of points in J is not separated
)
≥ 0.
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Note that by the definition the vector (x̃ij)i,j∈T equals a convex combination of cut metrics
and, therefore, lies in the cut polytope. Hence the inequality above holds.
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