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Abstract

In this paper we study a fundamental open problem in the area of probabilistic checkable
proofs:

What is the smallest s such that NP ⊆ naPCP1,s[O(log n), 3]?

In the language of hardness of approximation, this problem is equivalent to determining the
smallest s such that getting an s-approximation for satisfiable 3-bit constraint satisfaction prob-
lems (“3-CSPs”) is NP-hard.

The previous best upper bound and lower bound for s are 20/27 + ǫ by Khot and Saket [19]
and 5/8 by Zwick [29]. In this paper we close the gap assuming Khot’s d-to-1 Conjecture [15].
Formally, we prove that if Khot’s d-to-1 Conjecture holds for any finite constant integer d, then
NP ⊆ naPCP1,5/8+ǫ[O(log n), 3] for any constant ǫ > 0.

Our conditional result also solves H̊astad’s open question [12] on determining the inapprox-
imability of satisfiable Max-NTW (“Not Two”) instances and confirms Zwick’s conjecture [29]
that the 5/8-approximation algorithm for satisfiable 3-CSPs is optimal.



1 Introduction

1.1 The PCP Characterization of NP

The famous PCP (Probabilistic Checkable Proof) Theorem states that any language in NP has
a proof system where the proofs can be probabilistically checked in a query-efficient way. The
notation PCPc,s(r(n), q(n)) stands for the class of languages L verifiable by a proof system with
the following parameters: for an input x of length n, the verifier uses r(n) random bits and
queries q(n) bits in the proof to decide in polynomial time whether x is in L or not. The verifier
has the following performance guarantees: i) if x is in L, there exists a proof that passes with
probability c, and ii) if x is not in L, no proof passes with probability more than s. We call c
the completeness and s the soundness of the verifier.

If the verifier decides which proof bits to query based only on x and the r(n) random bits,
the verifier is called nonadpative. On the other hand, if the verifier uses the results of previous
queries to decide which proof bit to query next, the verifier is called adaptive. The notation aPCP
and naPCP is used to distinguish languages verifiable by adaptive and nonadaptive verifiers.
Adaptive verifiers can have better performance while nonadaptive verifiers have more natural
implications for hardness of approximation for CSPs (see Theorem 1.3 for more discussion). We
focus on nonadaptive proof systems in this paper.

Formally, the PCP Theorem [1, 2] states:

Theorem 1.1. NP ⊆ naPCP1,1/2[O(log n), O(1)].

In the PCP Theorem, the completeness c is 1; i.e., when the input x is in the language, there
exists a proof that passes with probability 1. Such a verifier is said to have perfect completeness,
which is a natural and desirable property of the proof system. As for the soundness, much effort
is devoted to optimizing the tradeoff between q(n) and s (as well as other parameters such as
proof length, adaptivity, “free bit complexity”, “alphabet size”. . . ) [4, 11, 12, 27, 13, 19]. It is
known that to achieve c = 1 and s < 1, the verifier must make at least 3 queries. This motivates
the subject of study in this paper: optimizing the soundness s for 3-query nonadaptive PCP
systems with perfect completeness. Formally, we examine the following question:

Question 1.2. What is the smallest s such that NP ⊆ naPCP1,s[O(log n), 3]?

This problem was first studied by Bellare, Goldreich and Sudan [4] who achieved s = 0.8999.
H̊astad [12] further improved this result by achieving s = 3/4 + ǫ for every ǫ > 0. Around
the same time, Zwick [29] showed that naPCP1,5/8[O(log n), 3] ⊆ BPP by giving a randomized
polynomial-time 5/8-approximation algorithm for satisfiable 3-CSPs. This implies that unless
NP ⊆ BPP, the best s for Question 1.2 must be bigger than 5/8. Zwick further conjectured
that his algorithm is optimal:

Zwick’s Conjecture: NP ⊆ naPCP1,5/8+ǫ[O(log n), 3] for all ǫ > 0.

See Section 1.2 for more discussion. No further progress was made for almost a decade, when
Khot and Saket [19] showed that soundness s = 20/27 + ǫ ≈ .741 is achievable.

We note that certain relaxations of the problem are better understood. If we allow the
verifier to be adaptive, Guruswami et al. [11] proved that NP ⊆ aPCP1,1/2+ǫ[O(log n), 3]. If
we allow an arbitrarily small loss of completeness for nonadaptive verifiers, H̊astad [12] showed
that NP ⊆ naPCP1−ǫ,1/2+ǫ[O(log n), 3]. By another result of Zwick [29], both of these results
achieve optimal soundness assuming NP 6⊆ BPP.

We think that Question 1.2 addresses an important missing part of our understanding of
3-query PCP systems. In addition, this question is equivalent to understanding the approxima-
bility of satisfiable 3-CSPs, as we now describe.
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1.2 Max-kCSPs and Approximability

A k-bit Constraint Satisfaction Problem (“k-CSP”) consists of a set of boolean variables, along
with boolean constraints each of which involves at most k of these variables. Each boolean
constraint in a k-CSP is some predicate of arity of at most k. Max-kCSP is the algorithmic
problem of finding an assignment to the variables that maximizes the number of satisfied con-
straints. For a k-CSP instance, we use Opt to denote the maximum fraction of the constraints
that can be satisfied. A k-CSP is called satisfiable if there exists an assignment that satisfies all
the constraints; i.e., if Opt = 1. We can further specialize Max-kCSP by restricting the type of
constraints to some predicate set Φ. For example, assuming the variables are called x1, . . . , xn:

• Max-E3Lin: only the two predicates xi ⊕ xj ⊕ xk, ¬(xi ⊕ xj ⊕ xk);

• Max-Cut: only the predicate xi 6= xj ;

• Max-3Sat: only the 2 + 4 + 8 predicates of the form ℓi, ℓi ∨ ℓj , ℓi ∨ ℓj ∨ ℓk, where ℓi

denotes a “literal”, either xi or xi.

One additional, less familiar, example will be important for this paper:

• Max-NTW: only the 8 predicates of the form NTW(ℓi, ℓj , ℓk). Here NTW is the 3-ary predicate
satisfied if and only the number of True inputs is zero, one, or three — i.e., “Not Two”.

Algorithmically determining Opt for Max-kCSPs (k ≥ 2) and for most “Max-Φ” problems is
NP-hard [7, 6]. Much research therefore turns to the question of whether we can or cannot
efficiently satisfy at least an α · Opt fraction of the constraints. Most of the NP-hardness-of-
approximation results are based on the following well-known connection between PCPs and
hardness of approximation:

Theorem 1.3. Let Φ be a set of predicates with arity no more than k. The following two
statements are equivalent: i) It is NP-hard to distinguish whether a given Max-Φ instance has
Opt ≥ c or has Opt ≤ s. ii) NP ⊆ naPCPc,s(k,O(log n)), where furthermore the verifier decides
whether or not to accept based on applying a predicate from Φ to the proof bits it reads.

Note that the nonadaptiveness is crucial in Theorem 1.3. If the verifier is adaptive in the
above theorem, the equivalent hardness result would be for the more unnatural class of predicates
Φ definable by decision trees of depth k.

As a direct application of the theorem, we have that Question 1.2 is equivalent to the
following:

Question 1.4. What is the smallest s such that it is NP-hard to distinguish whether a given
Max-3CSP instance is satisfiable or has no assignment that satisfies more than an s fraction of
constraints?

We thus see why (unless NP ⊆ BPP) Zwick’s 5/8-approximation randomized algorithm for
satisfiable Max-3CSP [29] mentioned earlier implies that the smallest s in Questions 1.2 and 1.4
must be bigger than 5/8. Further, Zwick’s Conjecture is that s = 5/8 + ǫ is optimal for both
Questions 1.2 and 1.4.

1.3 Optimal inapproximability, and Khot’s Conjectures

For some important CSPs we have optimal (i.e., matching) approximation algorithms and NP-
hardness-of-approximation results: Max-kLin(mod q) for k ≥ 3 [12], Max-3Sat [12, 14, 30], and
a few other Max-kCSP subproblems with k ≥ 3 [12, 29, 28, 10]. All of the optimal hardness
results are based on building a PCP system for a problem called Label-Cover (see Section 3
for a definition). For many other canonical problems such as Max-Cut and Max-2Sat, there is
still a gap between the best known approximation algorithm and hardness result. To address
this, Khot [15] proposed the Unique Games Conjecture (UGC) and d-to-1 Conjectures (see
Section 3 for definitions). Assuming the UGC, we know optimal hardness-of-approximation
results for several more problems, including Vertex-Cover [18], Max-Cut [16, 17, 23], and Max-
2Sat [3]. A powerful recent result of Raghavendra [25] shows that for any Max-Φ CSP, the
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optimal hardness factor — excluding the case when Opt = 1 — is equal to the integrality gap
of a certain semidefinite program. Raghavendra’s result uses the UGC.

Unfortunately, no hardness result based on the UGC can be applied to satisfiable Max-kCSPs
and Max-Φ problems; i.e., problems with Opt = 1. The Unique Games Conjecture states that
it is NP-hard to distinguish whether a “Unique Label-Cover” instance is near satisfiable or far
from satisfiable; here “near satisfiable” cannot be replaced by “satisfiable”, and this prevents
us from getting any hardness result about satisfiable CSPs out of the UGC. We comment that
the approximability of satisfiable Max-kCSP and Max-Φ can be very different from that of
the near-satisfiable version. For example, satisfiable Max-3Lin instances can be solved exactly
by a polynomial algorithm (Gaussian Elimination) whereas for near-satisfiable instances, i.e.
Opt = 1 − ǫ, it is NP-hard to do better than the trivial 2-approximation algorithm [12]. As
another example, satisfiable Max-3CSPs instances have a 5/8-approximation algorithm [29]
while near-satisfiable Max-3CSP instances are NP-hard to approximate beyond 1/2 [12].

To address the UGC’s lack of perfect completeness, Khot additionally proposed the “d-to-1
Conjectures” [15]. The d-to-1 Conjecture states that it is NP-hard to distinguish whether a “d-to-
1 Label-Cover instance” is satisfiable or far from satisfiable. The conjectures are parameterized
by an integer constant d ≥ 2. The bigger d is, the less restrictive are d-to-1 Label-Cover
instances; hence for each d, the d-to-1 Conjecture implies the (d + 1)-to-1 Conjecture. Prior to
this work, the only application of the d-to-1 Conjectures was by Dinur et al. [8], who showed
that the 2-to-1 Conjecture implies hardness of coloring 4-colorable graphs by O(1) colors (and
a few related results). In this paper we use a much weaker assumption: we only assume the
d-to-1 Conjecture holds for some arbitrarily big (but constant) d.

1.4 Satisfiable Max-NTW

In Zwick’s algorithm for satisfiable Max-3CSP, he observed that the bottleneck for improving
the 5/8-approximation factor seemed to come from just one type of constraint: the NTW predicate
described in Section 1.2. In the conclusion of H̊astad’s seminal paper on inapproximability [12]
he posed only one concrete open question, a refinement of Zwick’s Conjecture:

Question 1.5. For each ǫ > 0, given a satisfiable Max-NTW instance, is it NP-hard to find an
assignment that satisfies more than an 5/8 + ǫ fraction of the constraints?

In other words, is satisfiable Max-NTW inapproximable beyond the the random assignment
threshold of 5/8? (Note that H̊astad proved this inapproximability for near-satisfiable Max-NTW
instances in his paper.) A “yes” answer to this question is of course stronger than Zwick’s
Conjecture, since Max-NTW is a special Max-3CSP. As a result of Theorem 1.3, Question 1.5
is equivalent to deciding whether there is such a nonadaptive PCP system for an NP-complete
language in which the verifier has perfect completeness, soundness 5/8+ǫ, and decides to accept
or reject based on the NTW predicate (more precisely, the 8 NTW predicates gotten by allowing
negated inputs). Constructing such a PCP system for d-to-1 Label-Cover is the main focus of
the remaining paper.

2 Our Contribution and Methods

The main theorem in our paper is a “yes” answer to H̊astad’s open problem, Question 1.5,
assuming that there exists a constant d for which Khot’s d-to-1 Conjecture holds. Formally:

Theorem 2.1. Suppose that Khot’s d-to-1 Conjecture holds for some finite constant d. Then
for any ǫ > 0, there is a nonadaptive 3-query PCP system for NP that has perfect completeness
and soundness 5/8 + ǫ; in addition, the verifier makes its decision based on an NTW predicate.
Equivalently, given a satisfiable Max-NTW instance, it is NP-hard to satisfy more than a 5/8 + ǫ
fraction of the constraints.

As discussed, this conclusion implies that the answer to Questions 1.2 and 1.4 is s = 5/8+ ǫ,
confirming Zwick’s Conjecture:
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Corollary 2.2. Suppose that Khot’s d-to-1 Conjecture holds for some finite constant d. Then
NP ⊆ naPCP1,5/8+ǫ[O(log n), 3] for every ǫ > 0.

2.1 Methods

Our proof is, in a way, similar to H̊astad’s inapproximability proof for Max-3Lin [12]. It uses
the same overall framework: an “outer verifier” based on Label-Cover (in our case, d-to-1
Label-Cover) and an “inner verifier” based on a “Consistent-Dictators Test”. There are two
main challenges in the paper: i) designing an appropriate NTW-based Dictator Test, suitable for
verifying an O(1)-to-1 Label-Cover instance; ii) analyzing the soundness of the proof system.

In [24], the authors proposed and analyzed a 3-query Dictator Test using the NTW predicate,
with perfect completeness and soundness 5/8+ ǫ. Unfortunately, it was a “single-function” test,
generating queries from the space {−1, 1}R × {−1, 1}R × {−1, 1}R; as such, it was applicable
only for use with Unique Label-Cover instances. But since the Unique Games Conjecture has
imperfect completeness, the authors could not derive any new hardness-of-approximation result.

In this paper, we generalize the 3-query Dictator Test from [24]. Our new test, applicable for
use with d-to-1 Label-Cover, generates queries according to a certain probability distribution
T on the space {−1, 1}R × {−1, 1}dR × {−1, 1}dR. It is used to test that two functions f :
{−1, 1}R → {−1, 1} and g : {−1, 1}dR → {−1, 1} are “consistent” Dictator functions.

In the resulting Fourier analysis of the PCP system, the main challenge is (as usual) to
bound the expectation of a certain quadratic and cubic term. The analysis is more complicated
compared with [24] and some very different techniques are used in this paper. We analyze the
quadratic term using a novel argument about the positivity of certain linear operators.

As for the cubic term, we use Invariance Principle-style arguments as in [21, 20]. However,
none of the results in [21, 20] can be applied as a black box in our proof. The reason is
that our distribution T is not pairwise independent, and furthermore the correlation it has
between {−1, 1}R and {−1, 1}dR × {−1, 1}dR is actually 1. These facts introduce additional
complications.

Our use of the Invariance Principle is notable in another way. Most other Invariance Principle
proofs use it to pass from a given distribution to the Gaussian distribution. However, passing
to the Gaussian distribution is not particularly useful for us. Instead we take full advantage of
the fact that the Invariance Principle lets us pass to any distribution with the same pairwise
correlations. Specifically, we find a different distribution on the boolean cube to work with, having
the same (nonzero) pairwise correlations but without the difficult-to-analyze 3-wise correlations
of the original distribution T .

We hope the techniques in this paper will be useful in analyzing other satisfiable CSPs where
the Unique Games Conjecture does not apply.

3 Khot’s d-to-1 Conjectures, and PCP reductions

3.1 The d-to-1 Conjecture

To define d-to-1 Label-Cover and Khot’s d-to-1 Conjecture, we first recall the basics of the
Label-Cover problem.

Definition 3.1. A Label-Cover instance L is defined by a tuple (U, V,E, P,R1, R2,Π). Here U
and V are the two vertex sets of a bipartite graph and E is the set of edges between U and V . P
is an explicitly given probability distribution on E. R1 and R2 are integers with 1 ≤ R1 ≤ R2.
Π is a collection of “projections”, one for each edge: Π = {πe : [R2] → [R1] | e ∈ E}. A labeling
L is a mapping L : U → [R1], V → [R2]. We say that an edge e = (u, v) is “satisfied” by labeling
L if πe(L(v)) = L(u). We define:

Opt(L) = max
labelings L

Pr
e=(u,v)∼P

[πe(L(v)) = L(u)].
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The fundamental inapproximability theorem of Raz [26] is the following:

Theorem 3.2. For every constant η > 0 there is some constant k(η) < ∞ such that for Label-
Cover instances L with R2 ≥ k(η), it is NP-hard to distinguish the case Opt(L) = 1 from the
case Opt(L) ≤ η.

We now define the d-to-1 property:

Definition 3.3. A projection π : [R2] → [R1] is said to be “d-to-1” if for each element i ∈ [R1]
we have |π−1(i)| ≤ d. We say the projection is “exactly d-to-1” if R2 = dR1, and |π−1(i)| = d
for each i.

We define (exact) d-to-1 Label-Cover to be the special case of Label-Cover in which each
projection in Π is (exactly) d-to-1.

In fact, it is known that in Raz’s Theorem one can take the Label-Cover instances to be
exactly d-to-1; however, the d needs to be at least poly(1/η). Khot’s d-to-1 Conjecture is that
one can take d to be a constant independent of η. Formally, for each integer d ≥ 2 we have:

Khot’s d-to-1 Conjecture: For every constant η > 0 there is some constant k(η) < ∞
such that for d-to-1 Label-Cover instances L with R2 ≥ k(η), it is NP-hard to distinguish the
case Opt(L) = 1 from the case Opt(L) ≤ η.

One could also make the “Exact d-to-1 Conjecture”, which would be formally stronger than
the d-to-1 Conjecture. Such a conjecture is easier to work with, and indeed the paper of Dinur
et al. [8] on coloring hardness uses this conjecture instead. These conjectures have a downside,
though, which is that it is not clear that the Exact d-to-1 Conjectures actually get weaker as d
increases. By contrast, since a d-to-1 projection is by definition also (d + 1)-to-1, we have that
the d-to-1 Conjecture is stronger than the (d + 1)-to-1 Conjecture for each d. Our results work
with the original, weaker d-to-1 Conjecture, for any constant d. However, the difficulty added
by working with d-to-1 rather than Exact d-to-1 is entirely notational and not conceptual; hence
we strongly encourage the reader to imagine that R2 = dR1 and that all projections are exactly
d-to-1 in the remainder of the work.

Finally, although we don’t need it, we mention the Unique Games Conjecture for comparison
purposes.

Khot’s Unique Games Conjecture: For every constant η > 0 there is some constant
k(η) < ∞ such that for Exact 1-to-1 Label-Cover instances L with R1 = R2 ≥ k(η), it is NP-
hard to distinguish the case Opt(L) ≥ 1 − η from the case Opt(L) ≤ η.

It is unknown whether the Unique Games Conjecture implies any of the d-to-1 Conjectures,
or vice versa.

3.2 PCP System Framework

The high-level framework of our PCP system is similar to H̊astad’s for Max-3Lin [12]. Given is
a d-to-1 Label-Cover instance L = (U, V,E, P,R1, R2,Π). A“proof” for L consists of a collection
of truth tables of boolean functions, one for each vertex. More specifically, for each vertex u ∈ U ,
there is an associated boolean function fu : {−1, 1}R1 → {−1, 1} and for each vertex v ∈ V ,
there is an associated boolean function gv : {−1, 1}R2 → {−1, 1}. (As is customary for Fourier
analysis, from now on we represent “True” by −1 and “False” by 1.) The proof contains all the
truth tables of these boolean functions and the length of it is |U |2R1 + |V |2R2 .

Our verifier checks the proof by following polynomial-time procedure:

• Pick an edge e = (u, v) from distribution P .

• Generate a triple (x, y, z) from the distribution Te on {−1, 1}R1 × {−1, 1}R2 × {−1, 1}R2

(this distribution Te will be specified later).

• Accept if NTW(fu(x), gv(y), gv(z)).

5



Folding. Actually, the above description is not completely accurate. Such a PCP will never
work, since the “prover” can write the constantly 1 function for every fu, gv and such a proof
always passes. To address this, our PCP uses the standard “folding trick” [4]. Note that this
means our verifier actually uses all 8 possible NTW predicates, NTW(±a,±b,±c). The advantage
of this trick is that we can assume all the functions h are odd, meaning that h(−z) = −h(z) for
all inputs z.

For the above PCP system (with Te appropriately defined in terms of ǫ > 0), we will show
the following:

Completeness: If Opt(L) = 1, there is a proof which the verifier accepts with probability 1.

Soundness: If there exists a proof passing the verifier’s test with probability exceeding
5/8 + ǫ, then Opt(L) > η, where η > 0 is a constant depending only on ǫ and d.

Together, this completeness and soundness gives our main result, Theorem 2.1.

4 The test distribution Te

Recall that the verifier first picks an edge e = (u, v) in the d-to-1 Label-Cover instance. Then
it generates (x, y, z) ∈ {−1, 1}R1 × {−1, 1}R2 × {−1, 1}R2 according to a distribution Te, and
accepts if NTW(fu(x), gv(y), gv(z)), where fu : {−1, 1}R1 → {−1, 1} and gv : {−1, 1}R2 → {−1, 1}
are the odd functions whose truth tables the prover writes for vertices u ∈ U and v ∈ V . In this
section we will define the distribution Te.

For the picked edge e, we write di = |π−1
e (i)| for i ∈ [R1]. By the d-to-1 projection property

we know that di ≤ d for each i. The verifier now views fu : {−1, 1}R1 → {−1, 1} as a function
over an R1-fold product set,

fu : X 1 ×X 2 × · · · × XR1 → {−1, 1},
where each X i = {−1, 1}{i} (a slightly complicated way to write {−1, 1}). More importantly,
the verifier also views gv : {−1, 1}R2 → {−1, 1} as a function over an R1-fold product set,

gv : Y1 × Y2 × · · · × YR1 → {−1, 1},

where each Yi = {−1, 1}π−1
e

(i). We will also write Zi = {−1, 1}π−1
e

(i).
We construct Te as a product probability distribution over the R1-fold product set

R1
∏

i=1

(X i × Yi ×Zi) ∼=
(

R1
∏

i=1

X i

)

×
(

R1
∏

i=1

Yi

)

×
(

R1
∏

i=1

Zi

)

, (1)

thought of as the product of fu’s domain with two copies of gv’s domain. More specifically, for
each i we have a distribution T i

e on X i × Yi × Zi and we think of this as a “correlated space”
in the sense of Mossel [20], written (X i × Yi × Zi; T i

e ). (If we use the Exact d-to-1 Conjecture
so that all di’s are equal, the reader may note that all T i

e ’s are the same.) We let Te be the

product distribution
⊗R1

i=1 T i
e over the domain (1), again thought of as a “correlated space”

(
∏R1

i=1 X i × Yi ×Zi; Te).
The distribution T i

e on X i×Yi×Zi will only depend on di, and further it will be symmetric
under (simultaneous) permutations of the coordinates of Yi, Zi. We will think of it simply
as a distribution on {−1, 1} × {−1, 1}di × {−1, 1}di . Furthermore, the different distributions
for various di will be very related. To define them, we will actually need to define several
distributions on {−1, 1} × {−1, 1}D × {−1, 1}D, which we will also write as X × Y × Z. (Here
0 ≤ D ≤ d.)

The first such distribution is the “Linearity Test” distribution on which H̊astad’s based his
3Lin Dictator Test:
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Definition 4.1. Define distribution H(D) generating (x,y1, . . . ,yD,z1, . . . ,zD) ∈ X × Y × Z
as follows: The bit x and the bits y1, . . . ,yD are independent and uniformly random; then for
each i ∈ [D], zi is set to be −xyi.

(We use boldface to denote random variables.) Note that under H(D), the marginal distri-
bution on (z1, . . . ,zD) is also uniformly random.

As mentioned, H̊astad’s 3Lin verifier, which checks XOR(fu(x), gv(x), gv(z)), used a “tweaked”
version of the distribution H(D). In standard completeness proofs we have that fu and gv are
“matching” Dictator (or Long Code) functions, fu(x) = xi and gv(y) = yj with πe(j) = i. In
this case, a verifier has perfect completeness if the marginal distribution on each triple (x,yi,zi)
is in the support of the verifier’s predicate, in H̊astad’s case XOR. In order to prevent large par-
ities from also passing the test with probability 1, H̊astad added some noise to the distribution
H(D): specifically, he rerandomized each coordinate zi with some small probability δ. This
meant that the marginal distribution on (x,yi,zi) was no longer completely supported on the
domain of XOR, leading to a PCP with only near-perfect completeness, 1 − δ/2 (albeit with
excellent soundness, close to 1/2).

We do not want to give up perfect completeness so we can’t rerandomize the zi’s as H̊astad
does. We do have some slack that H̊astad doesn’t, though: the predicate NTW is also satisfied
by the triple (1, 1, 1), in addition to the four triples (1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1,−1)
which satisfy XOR. We thus make the following tweak on H(D) by including (1, 1, 1) as a possible
value for (x,yi,zi).

Definition 4.2. Define distribution N (D) generating (x,y1, . . . ,yD,z1, . . . ,zD) ∈ X × Y × Z
as follows: First, draw from H(D). Then pick a random integer k ∈ [D] and set yk = zk = x.
Additionally, for 0 < δ < 1, define distribution Hδ(D) to be the mixture distribution Hδ(D) =
(1 − δ)H(D) + δN (D); i.e., one draws from H(D) with probability 1 − δ and from N (D) with
probability δ.

The distribution Hδ(D) is the key distribution for our verifier (note that Hδ(1) is the distri-
bution used by the authors in [24]). Among others, it has the following two essential properties:
First, any triple (x,yi,zi) generated by Hδ(D) is in the support of NTW. Second, under Hδ(D)
(and also under N (D)), the marginal distribution on each of X , Y, and Z is uniform.

We are now ready to define the verifier’s distribution Te:

Definition 4.3. For each i ∈ [R1] we define T i
e to be Hδ(di), with

δ = (ǫ/2)2,

where the domain of Hδ(di) is appropriately identified with the domain X i ×Yi ×Zi of T i
e . As

mentioned, Te is the product of these distributions, Te =
⊗R1

i=1 T i
e .

The expectation of functions under the key distribution Hδ(D) is difficult to bound. The
major reason for this is that for D ≥ 2, there is perfect correlation between X and Y × Z:
given a draw (x,y1, . . . ,yD,z1, . . . ,zD) from Hδ(D), the bit x is uniquely determined by
y1, . . . ,yD,z1, . . . ,zD. (When D ≥ 3 the bit x is the majority of the bits −yizi; the reader
can check that x is still determinable even when D = 2.) We mention that when D = 1 this
correlation is imperfect, and this is what made the Invariance Principle-free analysis in [24]
easier.

Our goal is to use Invariance Principle techniques to not only break this perfect correlation
but drive it down to near 0. To do this we need to pass to a distribution I(D) with the same
“1-wise” and “2-wise” correlations as Hδ(D), but with almost no correlation between X and
Y × Z:

Definition 4.4. Define distribution I(D) generating (x,y1, . . . ,yD,z1, . . . ,zD) ∈ X × Y × Z
as follows: First draw from H(D); then uniformly rerandomize the bit x.

By definition, I(D) and H(D) have the same marginal distribution on Y × Z. Also, they
have the same marginal distribution on X ×Y and X ×Z; namely, uniform. In particular, I(D)
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has the uniform marginal distribution on X , Y and Z. We now give the distribution Iδ(D)
which is “Invariant” with Hδ(D), by adding the same tweak as before:

Definition 4.5. Define distribution Iδ(D) as the mixture distribution Iδ(D) = (1 − δ)I(D) +
δN (D).

It is easy to check that Hδ(D) and Iδ(D) have the same “1-wise” and “2-wise” correlations;
i.e., Hδ(D) and Iδ(D) have the same marginal distribution on X , Y, Z, X × Y, X × Z, and
Y × Z. In particular, their distributions on each of X , Y, and Z is uniform.

Crucially, though, the “3-wise correlations” of Hδ(D) and Iδ(D) are different; compare
Lemma 5.4 to Equation (2) below.

5 Correlations and Influences

5.1 Correlations

We now recall the definition of correlation for correlated probability spaces, as introduced by
Mossel [20].

Definition 5.1. Let (Ω × Ψ, µ) be a (finite) correlated probability space, meaning that µ is a
distribution on the finite product set Ω × Ψ and that the marginals of µ on Ω and Ψ have full
support. Define the “correlation” between Ω and Ψ to be

ρ(Ω,Ψ;µ) = max
{

Cov
(ω,ψ)∼µ

[f(ω), g(ψ)]
∣

∣

∣ f : Ω → R, g : Ψ → R, Var
(ω,ψ)∼µ

[f(ω)] = Var
(ω,ψ)∼µ

[g(ψ)] = 1
}

.

It is clear that in the definition of ρ(Ω,Ψ;µ), we can equivalently maximize |E[fg]| over f
restricted to have E[f ] = 0, E[f2] ≤ 1 under µ’s marginal on Ω; or, over similarly restricted g
(or both).

For the distributions defined, we have the following correlation bounds (assuming D 6= 0)
whose proofs are given in Section D.

Lemma 5.2. ρ(X ,Y;Hδ(D)) ≤ δ.

Lemma 5.3. ρ(X × Y,Z;Hδ(D)) ≤ 1 − δ2

D222D+1 .

Lemma 5.4. ρ(X ,Y × Z; Iδ(D)) ≤
√

δ.

Some comments: If we did not tweak by N the distribution H, we would have that ρ(X ×
Y,Z;H(D)) = 1; this would completely prevent us from using Invariance Principle arguments.
Even as it stands, for Hδ, we still have that

ρ(X ,Y × Z;Hδ(D)) = 1 (2)

and this causes some trickiness in our analysis. Also, the reader should notice that the correlation
between X and Y × Z is small under Iδ(D) as desired, which is not surprising since I(D) has
independent marginals on X and Y × Z.

In [20, Proposition 2.13], Mossel proved that the correlation of a product of correlated
probability spaces is equal to the maximum correlation among the individual correlated spaces
(excluding empty components). Hence from the above lemmas:

Lemma 5.5.

ρ
(

R1
∏

i=1

X i,

R1
∏

i=1

Yi; Te

)

≤ δ (3)

ρ
(

R1
∏

i=1

X i × Yi,

R1
∏

i=1

Zi; Te

)

≤ 1 − δ2

d222d+1
(4)

ρ
(

R1
∏

i=1

X i,

R1
∏

i=1

Yi ×Zi;

R1
⊗

i=1

Iδ(di)
)

≤
√

δ (5)
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Here we have used the fact that our verifier’s overall distribution Te is the product of the
distributions T i

e
∼= Hδ(di), and that di ≤ d for each i.

5.2 Influences

In this section we recall basic notions from Fourier analysis, influence and the Bonami-Beckner
operator ; for more on Fourier analysis see, e.g., [22].

We first define a notion of the influence of a set of coordinates on a function f . Please note
that the following definition is not standard (except in the case of singleton sets), but is useful
for this paper:

Definition 5.6. For a function f : {−1, 1}n → R and set of coordinates S ⊆ [n], we define the
influence of S on f to be

InfS(f) =
∑

U⊇S

f̂(U)2.

In the special case S = {i} we write simply Infi(f), and this is the standard notion of the
influence of a coordinate.

We next recall the Bonami-Beckner operator Tρ acting on boolean functions:

Definition 5.7. Let 0 ≤ ρ ≤ 1. The Bonami-Beckner operator Tρ is a linear operator mapping
functions g : {−1, 1}n → R into functions Tρg : {−1, 1}n → R via

(Tρg)(x) = E[g(y)],

where in the expectation, y is formed from x by setting yi = xi with probability ρ and setting yi

to be a uniformly random bit with probability 1 − ρ.

The operator Tρ can alternately be defined by the following formula:

Proposition 5.8.

Tρf =
∑

S⊆[n]

ρ|S|f̂(S)χS .

It is well known that for a “smoothed boolean function” (i.e., T1−γf , where f : {−1, 1}n →
{−1, 1}), the sum of the influences of all coordinates is bounded. We will need a generalization
of this, bounding the sum of influences of all constant-size sets:

Lemma 5.9. For any function f : {−1, 1}n → R with E[f2] ≤ 1, and any parameters 0 < γ ≤
1/2, m ∈ N,

∑

S⊆[n],|S|≤m

InfS(T1−γf) ≤ (m/2γ)m.

The proof appears in Section E.

6 Analysis of the verifier

In this section, we describe the completeness and soundness analysis for our verifier. For full
details, see Section A.

Completeness Analysis: The completeness analysis is entirely standard; given a perfect
labeling L for the d-to-1 Label-Cover instance we can take the “dictator proofs” fu = χL(u),
gv = χL(v). This passes the verifier’s test with probability 1, using the fact that all triples
(x,yj ,zj) generated by Hδ(δ) are in the support of NTW.
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Soundness Analysis: This is the focus of the remainder of the paper. Our task is to show
that for a given d-to-1 Label-Cover input L, if (fu)u∈U and (gv)v∈V is any collection of odd
functions causing the verifier to accept with probability more than 5/8 + ǫ, then we must have
Opt(L) > η, where η > 0 is a constant depending only on ǫ and d.

As usual, let us first arithmetize the probability a given proof passes. We have

Pr[verifier accepts] = Pr
e=(u,v)∼P

Te

Pr[NTW(fu(x), gv(y), gv(z))] =

E
e=(u,v)∼P

Te

[58+ 1
8 (fu(x)+gv(y)+gv(z))+ 1

8 (fu(x)gv(y)+fu(x)gv(z)+gv(y)gv(z))− 3
8fu(x)gv(y)gv(z)].

Since fu and gv are odd for every (u, v), and since Te’s marginal distribution on each of x,
y, and z is uniform, we conclude

E
e=(u,v)∼P

Te

[ 18 (fu(x) + gv(y) + gv(z))] = 0.

The next two terms are also straightforward to handle (recall that δ = (ǫ/2)2):

Proposition 6.1. For any e = (u, v),

E
Te

[ 18 (fu(x)gv(y) + fu(x)gv(z))] ≤ δ/4.

Proof. The joint distribution on (x,y) and (x,z) is the same, so it suffices to show

E
Te

[fu(x)gv(y)] ≤ δ.

But this follows immediately from Lemma 5.5.(3) because fu and gv both have mean 0 and
second moment 1, being odd boolean functions.

So far we have shown

Pr[verifier acc.] ≤ 5
8 + δ

4 + 1
8 E

e=(u,v)∼P
Te

[gv(y)gv(z)] − 3
8 E

e=(u,v)∼P
Te

[fu(x)gv(y)gv(z)]. (6)

The main effort goes into bounding the remaining two terms, especially the last one. We
will prove the following theorems:

Theorem 6.2. For any e = (u, v), the fact that gv : {−1, 1}R2 → {−1, 1} is odd implies

E
Te

[gv(y)gv(z)] ≤ δ.

Theorem 6.3. There exist constants γ, τ > 0 depending only on d, δ such that the following
holds. If for every i ∈ [R1] and every odd-cardinality set S ⊆ π−1

e (i) we have

min{Infi(T1−γ/2fu), InfS(T1−γ/2gv)} ≤ τ, (7)

then
∣

∣

∣

∣

E
Te

[fu(x)gv(y)gv(z)]

∣

∣

∣

∣

≤ 3
√

δ.

Theorem 6.2 is proved in Section B using a novel argument about the positivity of certain
linear operators. Theorem 6.3 is proved in Section C using an Invariance Principle-type proof.

With these theorems in hand we can conclude the proof of the verifier’s soundness by familiar
means. We give a randomized labeling for L based on “list-decoding” each vertex w ∈ U ∪V to
a short list of labels. We decode each u ∈ U to the set of coordinates with influence at least τ
on T1−γ/2fu. We decode each v ∈ V to the union of all sets S ⊆ [R2] of odd cardinality at most
d which have influence at least τ on T1−γ/2gv (note that this decoding does not depend on the
projections Π). By Lemma 5.9, these label lists are of bounded size. Then Theorem 6.3 ensures
that if the last expression in (6) is nonnegligible, there must be a nonnegligible fraction of edges
(u, v) for which (7) fails; by construction, the randomized labeling will satisfy a nonnegligible
fraction of these edges in expectation. For full details, see Section A.
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7 Discussion

Assuming Khot’s d-to-1 Conjecture holds for some finite constant d, we have shown a tight
PCP characterization of NP using 3 nonadaptive queries; more precisely, we have shown Zwick’s
Conjecture and settled H̊astad’s open problem about the inapproximability of satisfiable Max-
NTW beyond the random assignment threshold. The methods in this paper illustrate how to
analyze complicated d-to-1-based inner verifier distributions without pairwise independence.
We hope these techniques will help in settling the approximability of other satisfiable CSPs,
most notably satisfiable Max-NAE (Not-All-Equal).

An open technical question is whether the tradeoff we use between d and η in the d-to-1 Con-
jecture can be improved. Tracing through our proof reveals that we need η = exp(−2O(d2)/ǫO(d))
soundness for d-to-1 Label-Cover to achieve 5/8 + ǫ hardness for Max-NTW. We did not put any
effort into optimizing this dependence. It would be interesting to see if the doubly-exponential
dependence of η on d could be improved, since Raz’s Theorem is that the d-to-1 Conjecture is
true if η needs only be 1/dΩ(1).
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Appendix

A Full completeness and soundness proofs

In this section we give the full details of the completeness and soundness of our verifier, modulo
the analysis of the key quadratic and cubic terms.

We first amplify slightly on the completeness:

Completeness Analysis: Let L be a given d-to-1 Label-Cover input L with val(L) = 1;
say L : U → R1, V → R2 is a perfect labeling. For each u ∈ U the prover can take fu to be the
L(u)th dictator function, χ{L(u)}, and for each v ∈ V can take gv to be L(v)th dictator function
χ{L(v)}. Note that these are odd functions and hence are unaffected by the folding. Now for
any edge e = (u, v) we have that πe(L(v)) = L(u); i.e., L(v) ∈ π−1

e (L(u)). It follows from the
definition of Te that the relevant bits for fu and gv are generated solely from the distribution

T L(u)
e , and each triple (xL(u),yL(v),zL(v)) it generates is in the support of NTW. Hence the proof

passes with probability 1.
Next, we show soundness:
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Soundness Analysis:

Proof. Supposing that the functions fu and gv cause the verifier to accept with probability
exceeding 5/8 + ǫ = 5/8 + 2

√
δ, we conclude from (6) and Theorem 6.2 that

5
8 + 2

√
δ < 5

8 + δ
4 + δ

8 − 3
8 E

e=(u,v)∼P
Te

[fu(x)gv(y)gv(z)],

which implies
∣

∣

∣

∣

∣

∣

E
e=(u,v)∼P

Te

[fu(x)gv(y)gv(z)]

∣

∣

∣

∣

∣

∣

> 16
3

√
δ − δ > 4

√
δ.

By an averaging argument, this implies that for at least a
√

δ fraction of the edges e = (u, v)
(under distribution P ) we have

∣

∣

∣

∣

E
Te

[fu(x)gv(y)gv(z)]

∣

∣

∣

∣

> 3
√

δ.

We call such edges “good”. By Theorem 6.3, we know for every good edge there must exist
some ie ∈ [R1], and odd-cardinality set Se ⊆ π−1

e (ie) such that

min{Infie
(T1−γ/2fu), InfSe

(T1−γ/2gv)} ≥ τ. (8)

As usual, we construct a randomized labeling strategy for L. For each u ∈ U we define

Lu = {i ∈ [R1] : Infi(T1−γ/2fu) ≥ τ}.

For each v ∈ V we define

Lv = {j ∈ [R2] : j ∈ S, InfS(T1−γ/2gv) ≥ τ, |S| ≤ d, |S| is odd}.

Note that the definition of Lv does not depend at all on the projections πe ∈ Π.
By Lemma 5.9 we know that for any of the ±1-valued functions gv we have

∑

|S|≤d InfS(T1−γ/2gv) ≤
(d/γ)d. Therefore at most (d/γ)d/τ sets S can contribute in the definition of Lv and we conclude

|Lv| ≤ d · (d/γ)d/τ for each v ∈ V .

Similarly, we have
|Lu| ≤ 1/(γτ) for each u ∈ U .

Next, by (8), whenever e = (u, v) is a good edge we have that ie ∈ Lu and that Se contributes
to Lv. Since |Se| is odd, it is nonempty; hence we conclude there exists some je ∈ Lv and ie ∈ Lu

with πe(je) = ie.
Finally, we define the randomize labeling for L by choosing a random label from Lw for each

w ∈ U ∪ V (if Lw is empty we can select an arbitrary label). We know that for every good edge
e = (u, v), the randomized labeling has at least a

1

|Lu||Lv|
≥ τ2(γ/d)d+1

chance of choosing ie for u and je for v, thus satisfying e in L. Since the good edges constitute
more than a

√
δ = (ǫ/2) fraction of edges under P , we conclude that the expected P -fraction of

edge weight in L satisfied by the randomized labeling exceeds

η = (ǫ/2)τ2(γ/d)d+1.

Hence Opt(L) > η, a positive constant depending only on d and ǫ (since γ, τ > 0 depend only
on d and δ = (ǫ/2)2), as desired.
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B Analyzing E[gv(y)gv(z )]

This section is devoted to the proof of Theorem 6.2, which we repeat here for convenience:

Theorem 6.2 For any e = (u, v), the fact that gv : {−1, 1}R2 → {−1, 1} is odd implies

E
Te

[g(y)g(z)] ≤ δ.

Recall that Te =
⊗R1

i=1 T i
e , where T i

e = Hδ(di) with Hδ(di)’s domain {−1, 1} × {−1, 1}di ×
{−1, 1}di identified with T i

e ’s domain X i × Yπ−1
e

(i) × Zπ−1
e

(i), and di = |π−1
e (i)|. Let us make

notational simplifications. Clearly only the marginals on the Y and Z domains are relevant for
the theorem; in this section we henceforth identity distributions with these marginals. Next, note
that the statement of the theorem is invariant under permuting g’s coordinates simultaneously
with the distributions N i

e , using the permutation-invariance of the distributions Hδ(di). Thus we
can assume without loss of generality that π−1

e (1) = {1, . . . , d1}, π−1
e (2) = {d1 +1, . . . , d1 +d2},

etc.; this lets us write, simply,

Te = Hδ(d1) ⊗Hδ(d2) ⊗ · · · ⊗ Hδ(dR1
)

without worrying about coordinate positioning. Note also that coordinates i with di = 0 are
irrelevant for the theorem, so we may assume without loss of generality that there are none.
Finally, for the remainder of this section we consider e = (u, v) to be fixed and abbreviate
T = Te, π = πe, g = gv.

The distribution H(D) on {−1, 1}D × {−1, 1}D simply generates (y,z) where y is uni-
formly random and z = ±y randomly. It is easy to see that the correlation ρ({−1, 1}D ×
{−1, 1}D;H(D)) = 1, as E[χS(y)χS(z)] = 1 for any set S with |S| even. The reader can fur-
ther check that the correlation ρ({−1, 1}D, {−1, 1}D;Hδ(D)) = 1 − δ; hence we cannot prove
Theorem 6.2 in the same simple way we bounded the E[fugv] terms in Proposition 6.1.

The key is to exploit the fact that the correlation between odd -cardinality characters under
H(D) is 0, and is at most δ under Hδ(D). Since our g is odd, each term in its Fourier expansion
must have odd-size intersection with at least one block π−1(i); this is what ultimately lets us
prove Theorem 6.2.

B.1 Matrix notation

For the proof, it will be necessary to change notation. Instead of looking at correlations of
functions under a distribution, we will look at bilinear forms with matrix-vector notation. Let
us define the matrix form of a distribution on {−1, 1}D × {−1, 1}D with respect to the Fourier
basis.

Definition B.1. Suppose P is a distribution on {−1, 1}D × {−1, 1}D. The associated matrix
form M(P) is a 2D ×2D matrix defined as follows: The rows and columns of M(P) are indexed
by subsets S, T ⊆ [D]. The (S, T ) entry is defined by

M(P)S,T = E
(y,z)∼P

[χS(y)χT (z)].

As an example, the following is easy to check:

Proposition B.2. For the distribution H(D) on {−1, 1}D ×{−1, 1}D, the matrix M(H(D)) is
a diagonal matrix with (S, S) entry equal to 0 if |S| is odd and equal to 1 is |S| is even.

Henceforth in this section we will also identify functions h : {−1, 1}D → R with column
vectors of length 2D, with entries indexed by the subsets S ⊆ [D] in the same order as in

Definition B.1. The S-entry of vector h will be ĥ(S). With this notation we have the fundamental
relation

E
(y,z)∼P

[h1(y)h2(z)] = h⊤
1 M(P)h2.

The following lemma is easy to check.
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Lemma B.3.

1. Suppose P1 and P2 are two distributions on {−1, 1}D×{−1, 1}D, and P = cP1+(1−c)P2

is a mixture of the two distributions. Then M(P) = cM(P1) + (1 − c)M(P2).
2. Suppose Pi is a distribution on {−1, 1}Di × {−1, 1}Di , i = 1, 2. Let P be the product

distribution P = P1⊗P2. Then M(P) is the Kronecker product M(P) = M(P1)⊗M(P2) (with
the natural identification of indices (S1, S2) ↔ S1 ∪ S2).

B.2 The proof of Theorem 6.2

Now we are ready to prove Theorem 6.2. Using our new notation, we have

E
T

[g(y)g(z)] = g⊤M(Te)g = g⊤

(

R1
⊗

i=1

M(Hδ(di))

)

g.

Let us introduce the distribution E(D) on {−1, 1}D ×{−1, 1}D which generates pairs (y,z)
by choosing y ∈ {−1, 1}D uniformly at random and setting z = y. It is easy to check that
M(E(D)) is the identity matrix. Further introduce distribution

Eδ(D) = (1 − δ)H(D) + δE(D).

The proof of Theorem 6.2 is now an immediate consequence of the following two lemmas:

Lemma B.4.

g⊤

(

R1
⊗

i=1

M(Hδ(di))

)

g ≤ g⊤

(

R1
⊗

i=1

M(Eδ(di))

)

g.

Lemma B.5.

g⊤

(

R1
⊗

i=1

M(Eδ(di))

)

g ≤ δ.

The first lemma is by linear algebra:

Proof. (Lemma B.4) It suffices to show that the matrix

R1
⊗

i=1

M(Eδ(di)) −
R1
⊗

i=1

M(Hδ(di)) (9)

is positive semidefinite. We will show that for each D ≥ 1 the matrices M(Eδ(D))−M(Hδ(D))
and M(Eδ(D))+M(Hδ(D)) are both positive semidefinite. This implies that the matrix in (9) is
indeed positive semidefinite, by the basic matrix algebra result Lemma F.1 proved in Section F.

For notational simplicity, we henceforth omit showing the dependence on D. Since M(Eδ)−
M(Hδ) = δ(M(E)−M(N )), to show that M(Eδ)−M(Hδ) is positive semidefinite we only need
to show it for M(E) − M(N ). For any h : {−1, 1}D → R we have

h⊤M(N )h = E
(y,z)∼N

[h(y)h(z)] ≤
√

E
(y,z)∼N

[h(y)2]
√

E
(y,z)∼N

[h(z)2]

by Cauchy-Schwarz. But note that the marginals of N on {−1, 1}D×{−1, 1}D are both uniform,
and the same is true of E . Hence

√

E
(y,z)∼N

[h(y)2]
√

E
(y,z)∼N

[h(z)2] = E[h2] = E
(y,z)∼E

[h(y)h(z)] = h⊤M(E)h.

So we’ve established h⊤M(N )h ≤ h⊤M(E)h for all h, and hence M(E) − M(N ) is positive
semidefinite as needed.
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As for the matrix M(Eδ)+M(Hδ), by definition it equals 2(1−δ)M(H)+δ(M(E)+M(N )).
From Proposition B.2 we have that M(H) is diagonal with only nonnegative numbers on the
diagonal; hence it is positive semidefinite. Thus to show M(Eδ)+M(Hδ) is positive semidefinite,
it remains to show that M(E) + M(N ) is. But the proof for this is essentially identical to the
above proof for M(E) − M(N ): we only need to start with

h⊤(−M(N ))h = E
(y,z)∼N

[−h(y)h(z)]

and the minus sign disappears in the subsequent application of Cauchy-Schwarz.

We prove Lemma B.5 via Fourier analysis:

Proof. (Lemma B.5) By Proposition B.2 and the fact that M(E(D)) is the identity matrix, we
have that M(Eδ(D)) is a diagonal matrix whose (S, S) entry is equal to 1 if |S| is even and equal
to δ if |S| is odd. Unraveling definitions, it follows that

g⊤

(

R1
⊗

i=1

M(Eδ(di))

)

g =
∑

S⊆[R2]

ĝ(S)2 · δ#{i∈[R1]:|S∩π−1(i)| is odd}. (10)

But g is an odd function, and therefore ĝ(S)2 is nonzero only if |S| is odd. But |S| being odd
implies that |S ∩ π−1(i)| is odd for at least one i, and hence (10) is upper-bounded by

∑

S⊆[R2]

ĝ(S)2 · δ = E[g2] · δ = δ.

C Analyzing E[fu(x )gv(y)gv(z )]

This section is devoted to the proof of Theorem 6.3, which we repeat here for convenience.

Theorem 6.3 There exist constants γ, τ > 0 depending only on d, δ such that the following
holds. If for every i ∈ [R1] and every odd-cardinality set S ⊆ π−1

e (i) we have

min{Infi(T1−γ/2fu), InfS(T1−γ/2gv)} ≤ τ, (11)

then
∣

∣

∣

∣

E
Te

[fu(x)gv(y)gv(z)]

∣

∣

∣

∣

≤ 3
√

δ. (12)

Outline of the proof: We make all of the same notational simplifications as at the
beginning of Section B (except we don’t drop the components with di = 0); note that the
notions of influence are also invariant under permutations of the coordinates. In particular we
write f = fu and g = gv and retain that these are odd functions satisfying condition (11). Let
us also write

Hδ := T = Hδ(d1) ⊗Hδ(d2) ⊗ · · · ⊗ Hδ(dR1
),

and introduce the distribution

Iδ := Iδ(d1) ⊗ Iδ(d2) ⊗ · · · ⊗ Iδ(dR1
).

The overall idea of the proof is to use Invariance Principle-type arguments to show that

E
Hδ

[f(x)g(y)g(z)] ≈ E
Iδ

[f(x)g(y)g(z)].
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We would then use the fact (Lemma 5.5.5)) that ρ({−1, 1}R1 , {−1, 1}R2 × {−1, 1}R2 ; Iδ) ≤
√

δ
to conclude that

∣

∣

∣

∣

E
Iδ

[f(x)g(y)g(z)]

∣

∣

∣

∣

≤ δ.

This conclusion is by definition of ρ, because f has mean zero and second-moment 1 (being an
odd boolean functions) and because g(y)g(z) has variance at most 1 (having range {−1, 1}).

The above outline is a bit imprecise; at a more formal level, we need to break down the
Invariance argument into two steps:

Theorem C.1. There are positive constants γ′ ≥ γ > 0 (depending only on δ and d) such that

∣

∣

∣

∣

E
Hδ

[f(x)g(y)g(z)] − E
Hδ

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)]

∣

∣

∣

∣

≤
√

δ.

Theorem C.2. Assuming τ > 0 is small enough as a function of γ, δ, and d,

∣

∣

∣

∣

E
Hδ

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)] − E
Iδ

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)]

∣

∣

∣

∣

≤
√

δ.

We also have
∣

∣

∣

∣

E
Iδ

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)]

∣

∣

∣

∣

≤
√

δ. (13)

This is again by ρ({−1, 1}R1 , {−1, 1}R2 × {−1, 1}R2 ; Iδ) ≤
√

δ, since T1−γf has mean zero and
second-moment at most 1, and because T1−γ′g(y)T1−γ′g(z) has variance at most 1, having range
[−1, 1]. Combining (13) with Theorems C.1 and C.2 yields the bound (12), completing the proof
of the main Theorem 6.3.

In the remainder of this section we give the proofs of Theorems C.1 and C.2.

C.1 Proof of Theorem C.1

The proof of Theorem C.1 is quite similar to the proof of Mossel’s Lemma 6.2 from [20]. However
we cannot use that result directly for two reasons.

First, we do not have ρ({−1, 1}R1 , {−1, 1}R2 , {−1, 1}R2 ;Hδ) < 1 in the sense of Mossel; in
fact, we have ρ({−1, 1}R1 , {−1, 1}R2 × {−1, 1}R2 ;Hδ) = 1, as discussed in Section 4 directly
after the definition of Te. It turns out we can evade this difficulty just by relying on the fact
that ρ({−1, 1}R1 × {−1, 1}R2 ,×{−1, 1}R2 ;Hδ) < 1 (see Lemma 5.5.(4)).

The second reason we cannot use Mossel’s Lemma 6.2 directly is that we need to keep a
careful distinction between the usual boolean Bonami-Beckner operator Tρ and Mossel’s more
general Bonami-Beckner operator.

We now proceed with the proof of Theorem C.1. We assume some familiarity with the
Section 2 of Mossel’s work [20], including the Efron-Stein decomposition of functions on product
probability spaces.

Proof. As in Mossel’s Lemma 6.2 we insert the Bonami-Beckner operators one-by-one. The
proof is composed of the following three lemmas:

Lemma C.3. By taking γ′ > 0 small enough as a function of δ and d we ensure

∣

∣

∣

∣

E
Hδ

[f(x)g(y)g(z)] − E
Hδ

[f(x)g(y)T1−γ′g(z)]

∣

∣

∣

∣

≤
√

δ/3. (14)

Lemma C.4. We also have
∣

∣

∣

∣

E
Hδ

[f(x)g(y)T1−γ′g(z)] − E
Hδ

[f(x)T1−γ′g(y)T1−γ′g(z)]

∣

∣

∣

∣

≤
√

δ/3. (15)
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Lemma C.5. By taking γ > 0 small enough as a function of γ′, δ, and d we ensure
∣

∣

∣

∣

E
Hδ

[f(x)T1−γ′g(y)T1−γ′g(z)] − E
Hδ

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)]

∣

∣

∣

∣

≤
√

δ/3. (16)

We now prove the three lemmas, beginning with Lemma C.3.

Proof. (Lemma C.3) We have

∣

∣

∣

∣

E
Hδ

[f(x)g(y)g(z)] − E
Hδ

[f(x)g(y)T1−γ′g(z)]

∣

∣

∣

∣

=

∣

∣

∣

∣

E
Hδ

[f(x)g(y) · (id − T1−γ′)g(z)]

∣

∣

∣

∣

=

∣

∣

∣

∣

E
(x,y)∼Hδ

[f(x)g(y) · U(id − T1−γ′)g(x,y)]

∣

∣

∣

∣

, (17)

where U denotes the conditional expectation operator (written “T” in [20]) for the correlated
probability space (({−1, 1}R1 × {−1, 1}R2)× ({−1, 1}R2),Hδ), mapping functions on the latter
space {−1, 1}R2 into functions on the former space {−1, 1}R1 × {−1, 1}R2 .

We now consider the quantity inside the expectation in (17) to be a product of two functions
on {−1, 1}R1 × {−1, 1}R2 , namely F = fg and G = U(id − T1−γ′)g. We take the Efron-
Stein decomposition of these two functions with respect to the (product) distribution Hδ on
{−1, 1}R1 × {−1, 1}R2 . Then by orthogonality of the Efron-Stein decomposition and Cauchy-
Schwarz,

(17) =

∣

∣

∣

∣

∣

∣

∑

S⊆[R1]

E
(x,y)∼Hδ

[FS(x,y) · GS(x,y)]

∣

∣

∣

∣

∣

∣

≤
√

∑

S⊆[R1]

‖FS‖2
2

√

∑

S⊆[R1]

‖GS‖2
2, (18)

where the 2-norms ‖ · ‖2 are with respect to Hδ’s marginal on {−1, 1}R1 × {−1, 1}R2 . By
orthogonality again, the quantity

∑

S⊆[R1]
‖FS‖2

2 is just ‖F‖2
2, which is precisely 1 because F ’s

range is {−1, 1}. Hence we have

(18) ≤
√

∑

S⊆[R1]

‖GS‖2
2. (19)

As Mossel shows, the conditional expectation operator U commutes with taking the Efron-
Stein decomposition; i.e., GS = UG′

S , where G′ = (id−T1−γ′)g. Here the Efron-Stein decompo-
sition is with respect to Hδ’s marginal distribution on the Z-space {−1, 1}R2 , viz., the uniform
distribution. It is also easy to check that this Efron-Stein decomposition of g has

gS =
∑

U⊆[R2]:π(U)=S

ĝ(U)χU .

It follows that applying the Bonami-Beckner operator T1−γ′ to g also commutes with taking
the Efron-Stein decomposition (technically, this uses γ′ < 1). Hence we have GS = UG′

S =
U(id − T1−γ′)gS . Substituting this into (19) yields

(19) =

√

∑

S⊆[R1]

‖U(id − T1−γ′)gS‖2
2. (20)

Recall from Lemma 5.5.(4) that the correlation

ρ(({−1, 1}R1 × {−1, 1}R2) × ({−1, 1}R2),Hδ) ≤ ρ0 := 1 − δ2

d222d+1
;

using this in Mossel’s Proposition 2.12 we conclude that for each S ⊆ [R1],

‖U(id − T1−γ′)gS‖2 ≤ ρ
|S|
0 ‖(id − T1−γ′)gS‖2, (21)
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where the 2-norm on the right is with respect to the uniform distribution on {−1, 1}R2 .
Next, observe that

‖(id − T1−γ′)gS‖2
2 =

∑

U⊆[R2]:π(U)=S

(

1 − (1 − γ′)2|U |
)

ĝ(U)2

≤
∑

U⊆[R2]:π(U)=S

(

1 − (1 − γ′)2d|S|
)

ĝ(U)2 =
(

1 − (1 − γ′)2d|S|
)

‖gS‖2
2,

where we used that π is d-to-1. Substituting into (21) and then into (20), we determine

(20) ≤
√

∑

S⊆[R1]

ρ
2|S|
0

(

1 − (1 − γ′)2d|S|
)

‖gS‖2
2. (22)

We now bound

ρ
2|S|
0

(

1 − (1 − γ′)2d|S|
)

≤ exp

(

− δ2

d222d
|S|
)

· (2d|S|γ′);

simple calculus shows that the maximum of this, over |S|, is at most

d322d+1

eδ2
γ′. (23)

By choosing γ′ > 0 small enough we can upper-bound (23) by δ/9; specifically, we need to
choose

γ′ = (δ/2d)O(1).

Doing so, we get

(22) ≤
√

∑

S⊆[R1]

(δ/9)‖gS‖2
2 = (

√
δ/3)

√

E[g2] =
√

δ/3,

since g’s range is {−1, 1}. This completes the proof of Lemma C.3.

The proof of Lemma C.4 is essentially identical. The two differences are: i) we interchange
the roles of y and z, which is okay because Hδ is symmetric under this interchange; ii) we use
F = f(x)T1−γ′g(z), which does not have E[F 2] precisely 1 but which still has E[F 2] ≤ 1, since
T1−γ′g is bounded in [−1, 1].

It remains to prove Lemma C.5. We cannot use the same method as in the previous lemmas,
since the correlation ρ({−1, 1}R1 , {−1, 1}R2 × {−1, 1}R2 ;Hδ) = 1. However the fact that we
have already inserted T1−γ′ ’s into the y and z spaces breaks the perfect correlation with x,
allowing us to effect the proof.

Proof. (Lemma C.5) By definition of the Bonami-Beckner operator we can write

E
Hδ

[f(x)T1−γ′g(y)T1−γ′g(z)] = E
H∗

δ

[f(x)g(y∗)g(z∗)],

where H∗
δ is the distribution on {−1, 1}R1 × {−1, 1}R2 × {−1, 1}R3 defined by first generat-

ing (x,y,z) ∼ Hδ and then forming y∗, z∗ by rerandomizing each bit in y, z (respectively)
independently with probability γ′. Note that H∗

δ can also be written as a product distribution

H∗
δ = H∗

δ(d1) ⊗ · · · ⊗ H∗
δ(dR1

),

where the distribution H∗
δ(D) on {−1, 1}×{−1, 1}D ×{−1, 1}D is defined in the analogous way.

The following lemma is proved in Section G:
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Lemma C.6. Assuming 0 < D ≤ d,

ρ({−1, 1}, {−1, 1}D × {−1, 1}D;H∗
δ(D)) ≤ 1 − γ′2d

/2.

As we’ve seen [20, Proposition 2.13], this lemma implies

ρ({−1, 1}R1 , {−1, 1}R2 × {−1, 1}R2 ;H∗
δ) ≤ ρ∗0 := 1 − γ′2d

/2. (24)

It is now easy to complete the proof of the present lemma using the same proof technique
used for Lemma C.3: One shows that

∣

∣

∣

∣

E
H∗

δ

[f(x)g(y∗)g(z∗)] − E
H∗

δ

[T1−γf(x)g(y∗)g(z∗)]

∣

∣

∣

∣

≤
√

δ/3,

(which is equivalent to the bound (16)) by selecting γ small enough. Specifically, one needs

(ρ∗0)
2|S|

(

1 − (1 − γ)2d|S|
)

≤ δ/9,

which can be achieved by taking
γ = (δ/γ′)O(d) > 0.

Having proved Lemmas C.3–C.5, the proof of Theorem C.1 is complete.

C.2 Proof of Theorem C.2

The technique for the proof is similar to the original Invariance Principle [21] and the “mul-
tidimensional” version of it due to Mossel [20]. Again, though, we cannot use the results in
either of these papers directly. The reason is that one cannot execute a truncation argument
passing from “smoothed functions” to “low-degree functions” in the trilinear setting; degree-
truncated functions no longer need to have range [−1, 1], and this conflicts with the last step in
our one-at-a-time replacement argument in Theorem C.1.

Instead we employ a novel but natural strategy: working directly with smoothed functions
in the inductive proof of invariance. Our inductive proof of Theorem C.2 works as in [21, 20]
by changing the distribution from Hδ = Hδ(d1) ⊗ · · · ⊗ Hδ(dR1

) to Iδ = Iδ(d1) ⊗ · · · ⊗ Iδ(dR1
)

one component at a time. Specifically, we will show that for each k ∈ [R1],

∣

∣

∣

∣

∣

E
⊗

k−1

i=1
Iδ(di)⊗

⊗R1
i=k

Hδ(di)

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)]

− E
⊗

k

i=1
Iδ(di)⊗

⊗R1
i=k+1

Hδ(di)

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)]

∣

∣

∣

∣

∣

≤ ∆k, (25)

where

∆k := τγ/6



2dInfk(T1−γ/2f) +
∑

S⊆π−1(k),|S| odd

InfS(T1−γ/2g)



 .

If we sum this over all k ∈ [R1], the triangle inequality implies that
∣

∣

∣

∣

E
Hδ

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)] − E
Iδ

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)]

∣

∣

∣

∣

≤ τγ/6



2d
R1
∑

k=1

Infk(T1−γ/2f) +
∑

S⊆[R2],|S|≤d

InfS(T1−γ/2g)





≤ τγ/6(2d(1/γ) + (d/γ)d) (by Lemma 5.9)

≤ 2τγ/6(d/γ)d.
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We now choose τ > 0 small enough as a function of γ and d so that this bound is at most
√

δ,
completing the proof. This requires

τ = δO(1/γ) · (γ/d)O(d/γ).

Thus it remains to show (25). Due to the rather severe notational complication, we will just
show it for the case k = 1. The reader will see that the proof for k = 2 . . . R1 is the same; the
only fact used about the unchanged product distribution

Iδ(d1) ⊗ · · · ⊗ Iδ(dk−1) ⊗ · ⊗Hδ(dk+1) ⊗ · · · ⊗ Hδ(dR1
)

is that its marginals on x, y, and z are uniform. What follows is the proof:

Lemma C.7. Write H′
δ for the distribution Hδ(d2) ⊗ · · · ⊗ Hδ(dR1

). Then

∣

∣

∣

∣

E
Hδ(d1)⊗H′

δ

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)] − E
Iδ(d1)⊗H′

δ

[T1−γf(x)T1−γ′g(y)T1−γ′g(z)]

∣

∣

∣

∣

≤ τγ/6



2dInf1(T1−γ/2f) +
∑

S⊆[d1],|S| odd

InfS(T1−γ/2g)



 . (26)

Proof. Let us write x′ for strings (x2, . . . , xR1
), y′ for strings (yd1+1, . . . , yR2

), and strings z′

similarly. We break up the Fourier expansion of f according to its dependence on x1:

f(x) = F∅(x
′) + x1F1(x

′).

Similarly, we break up the Fourier expansion of g according to its dependence on the bits
y1, . . . , yd1

:

g =
∑

S⊆[d1]

χS(y1, . . . , yd1
)GS(y′).

Here for any S ⊆ [d1] we have

GS(y′) =
∑

Q⊆[R2],Q∩[d1]=S

ĝ(Q)χQ\S(y′). (27)

It is easy to check that we have

GS(y′) = E
y1,...,yd1

[g(y1, . . . ,yd1
, y′)χS(y1, . . . ,yd1

)]

and therefore the function GS is always bounded in [−1, 1]. Similarly F∅ and F1 are bounded
in [−1, 1]. We also observe that we have the Fourier expansions

T1−γf(x) = T1−γF∅(x
′) + (1 − γ)x1T1−γF1(x

′), (28)

T1−γ′g(y) =
∑

S⊆[d1]

(1 − γ′)|S|χS(y1, . . . , yd1
)T1−γ′GS(y′). (29)

We employ the following lemma, whose proof appears in Section H:

Lemma C.8. For any functions F : X → R, G : Y → R, H : Z → R,

E
Hδ(D)

[F (x)G(y)H(z)] − E
Iδ(D)

[F (x)G(y)H(z)] =
∑

S⊆[D],|S| odd

(1 − δ)F̂ ({1})Ĝ(S)Ĥ(S).
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We now upper-bound the LHS of (26) by

∣

∣

∣

∣

E
H′

δ

[

E
Hδ(d1)

[T1−γf(x1,x
′)T1−γ′g(y1, . . . , yd1

,y′)T1−γ′g(z1, . . . , zd1
,z′)]

− E
Iδ(d1)

[T1−γf(x1,x
′)T1−γ′g(y1, . . . , yd1

,y′)T1−γ′g(z1, . . . , zd1
,z′)]

]∣

∣

∣

∣

.

Using Lemma C.8 and recalling (28) and (29), one can check that this is equal to

∣

∣

∣

∣

∣

∣

∑

S⊆[d1],|S| odd

(1 − δ)(1 − γ)(1 − γ′)2|S| E
H′

δ

[T1−γF1(x
′)T1−γ′GS(y′)T1−γ′GS(z′)]

∣

∣

∣

∣

∣

∣

≤
∑

S⊆[d1],|S| odd

(1 − γ)(1 − γ′)2|S| · E
H′

δ

[|T1−γF1(x
′)T1−γ′GS(y′)T1−γ′GS(z′)|]

≤
∑

S⊆[d1],|S| odd

(1 − γ)(1 − γ′)2|S| · ‖T1−γF1‖3‖T1−γ′GS‖2
3, (30)

where the last step uses Hölder’s Inequality, and the norms ‖ ·‖3 are with respect to the uniform
distribution. This is indeed the only step using properties of the distribution H′

δ, the fact that
its three marginals are uniform.

We now use the following lemma, whose proof in Section I is a straightforward application
of the Hypercontractive Inequality of Bonami [5] and Gross [9]:

Lemma C.9. For any function f : {−1, 1}n → [−1, 1] and 0 < γ < 1,

‖T1−γf‖3 ≤ ‖T1−γ/2f‖(2+γ)/3
2 .

As F1 and GS are indeed bounded in [−1, 1], we can upper-bound

‖T1−γF1‖3‖T1−γ′GS‖2
3 ≤ ‖T1−γ/2F1‖(2+γ)/3

2 ‖T1−γ′/2GS‖(4+2γ′)/3
2 . (31)

By expressing the Fourier coefficients of GS using g’s original Fourier coefficients (via (27))
we have

‖T1−γ′/2GS‖2
2 =

∑

Q⊆[R2],Q∩[d1]=S

(1 − γ′/2)2|Q|−2|S|ĝ(Q)2

≤
∑

S⊆Q⊆[R2]

(1 − γ′/2)2|Q|−2|S|ĝ(Q)2 = (1 − γ′/2)−2|S| · InfS(T1−γ/2g),

where we also used γ′ ≥ γ in the last step.
A similar calculation yields

‖T1−γ/2F1‖2
2 ≤ (1 − γ/2)2 · Inf1(T1−γ/2f).

Plugging these last two bounds into (31) and then into (30), we upper-bound the LHS of (26)
by

∑

S⊆[d1],|S| odd

(

Inf1(T1−γ/2f)
)1/3+γ/6 ·

(

InfS(T1−γ/2g)
)2/3+γ/3

.

By the hypothesis (11) of the overarching theorem we are proving, Theorem 6.3, either
(Inf1(T1−γ/2f))γ/6 ≤ τγ/6 or (InfS(T1−γ/2g))γ/6 ≤ τγ/3 for each S in the sum. In either case
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we can bound the above by

τγ/6 ·
∑

S⊆[d1],|S| odd

(

Inf1(T1−γ/2f)
)1/3 ·

(

InfS(T1−γ/2g)
)2/3

≤ τγ/6 ·
∑

S⊆[d1],|S| odd

(

Inf1(T1−γ/2f) + InfS(T1−γ/2g)
)

(using a1/3b2/3 ≤ a + b for a, b ≥ 0)

≤ τγ/6 ·



2dInf1(T1−γ/2g) +
∑

S⊆[d1],|S| odd

InfS(T1−γ/2g)



 .

This completes the proof of the inductive Lemma C.7

D Proofs of the correlation Lemmas 5.2–5.4

Proof. (Lemma 5.2) Recall that Hδ(D) = (1− δ)H(D)+ δN (D). Note that the marginals of all
distributions mentioned are uniform on X and on Y. Now suppose that f : X → R, g : Y → R

are any functions with E[f ] = E[g] = 0, E[f2],E[g2] ≤ 1 (under the uniform distribution). Then

E
Hδ(D)

[f(x)g(y)] = (1 − δ) E
H(D)

[f(x)g(y)] + δ E
N (D)

[f(x)g(y)] = δ E
N (D)

[f(x)g(y)],

because x and y are independent under H(D), and

δ E
N (D)

[f(x)g(y)] ≤ δ
√

E
N (D)

[f(x)2]
√

E
N (D)

[g(y)2] ≤ δ

by Cauchy-Schwarz. This establishes ρ(X ,Y;Hδ(D)) ≤ δ.

Proof. (Lemma 5.3) For this we rely on Lemma 2.9 from Mossel’s work [20] which implies that
ρ(X × Y,Z;Hδ(D)) ≤ 1 − α2/2, where α is the least probability of an atom under Hδ(D), so
long as the distribution Hδ(D) is “connected”. It is easy to check that α = δ

d2d for Hδ(D), so
the proof is complete as long as we have connectedness.

“Connectedness” here refers to the undirected bipartite graph G(X × Y,Z) which has an
edge joining left-vertex (x, y1, . . . , yD) and right-vertex (z1, . . . , zD) if and only if

Pr
Hδ(D)

[(x,y1, . . . ,yD) = (x, y1, . . . , yD), (z1, . . . ,zD) = (z1, . . . , zD).

We now show this graph is indeed connected. Recall that Hδ(D) = (1 − δ)H(D) + δN (D).
Let (z1, . . . , zD) be an arbitrary right-vertex. By definition of N (D), we know (z1, . . . , zd)
is connected to (x = z1, y1 = z1, y2 = −xz2, . . . , yd = −xzD). And by definition of H(D),
the left-vertex (x = z1, y1 = z1, y2 = −xz2, . . . , yd = −xzD) is connected to (−1, z2, . . . , zD).
Hence (z1, ...,zD) is connected to (−1,z2, . . . ,zD). We can make the same argument for indices
2, . . . ,D and conclude that (−1,z2, . . . ,zD) is connected to (−1,−1, z3, . . . ,zD), that this vertex
is connected to (−1,−1,−1,z4, . . . ,zD), etc., and hence that all right-vertices are connected to
the right-vertex (−1, . . . ,−1). Hence all right-vertices are connected. Therefore the whole graph,
by the easy observation that no left-vertex is isolated.

Proof. (Lemma 5.4) Recall that Iδ(D) = (1−δ)I(D)+δN (D). It may seem as though we should
have ρ(X ,Y × Z; Iδ(D)) ≤ δ because the marginals of I(D) on X and Y × Z are independent.
However this is incorrect because the marginals of I(D) and N (D) on Y ×Z are not the same.
Nevertheless we can still achieve an upper bound of

√
δ, as follows.

Let f : X → R be any function with E[f ] = 0, E[f2] ≤ 1 under the uniform distribution
(which is the marginal of I(D), N (D), and hence Iδ(D) on X ). Let also G : Y ×Z → R be any
function with EIδ(D)[G(y,z)] = 0, EIδ(D)[G(y,z)2] ≤ 1. This latter property yields

1 ≥ E
Iδ(D)

[G(y,z)2] = (1 − δ) E
I(D)

[G(y,z)2] + δ E
N (D)

[G(y,z)2] ≥ δ E
N

[G(y,z)2]. (32)
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We now observe that

E
Iδ(D)

[f(x)G(y,z)] = (1 − δ) E
I(D)

[f(x)G(y,z)] + δ E
N (D)

[f(x)G(y,z)]

≤ (1 − δ) E
I(D)

[f(x)] E
I(D)

[G(y,z)] + δ
√

E
N (D)

[f(x)2]
√

E
N (D)

[G(y,z)2],

where we have equality for the first summand because the marginals of I(D) on X and Y × Z
are independent, and where we used Cauchy-Schwarz on the second summand. But we know
that EI(D)[f(x)] = 0 and that

δ
√

E
N (D)

[f(x)2]
√

E
N (D)

[G(y,z)2] ≤ δ ·
√

1 ·
√

1/δ,

using (32). Hence

E
Iδ(D)

[f(x)G(y,z)] ≤
√

δ

and this completes the proof that ρ(X ,Y × Z; Iδ(D)) ≤
√

δ.

E Proof of Lemma 5.9

Proof. We have
∑

S⊆[n],|S|≤m

InfS(T1−γf) =
∑

|S|≤m

∑

U⊇S

(1 − γ)2|U |f̂(U)2.

Each expression (1 − γ)2|U |f̂(U)2 is counted exactly
∑m

i=0

(

|U |
i

)

times, and this quantity is at
most (|U |+1)m (since we can overcount the subsets of U of cardinality at most m by imagining
picking m times from the set U ∪ {nothing}). Hence the above is at most

∑

U⊆[n]

(|U | + 1)m(1 − γ)2|U |f̂(U)2.

Since
∑

U f̂(U)2 = E[f2] ≤ 1 by hypothesis, we can complete the proof by showing that (|U | +
1)m(1 − γ)2|U | ≤ (m/2γ)m always.

The result is clear for m = 0 (assuming 00 = 1) and is otherwise a simple exercise. We have

(u + 1)m(1 − γ)2u ≤ (u + 1)m exp(−2γu) =: f(u),

and basic calculus implies that the maximum of f(u) for u ≥ 0 occurs when u = (m/2γ) − 1
(which is nonnegative since m ≥ 1, γ ≤ 1/2). At this value of u we have f(u) = (m/2γ)m exp(−(m−
2γ)) ≤ (m/2γ)m as required, where we again used m − 2γ ≥ 0.

F Proof of the matrix algebra lemma

The following result of matrix algebra is likely known; we were unable to find a reference.

Lemma F.1. Let Ai and Bi be mi × mi matrices, i = 1 . . . n, and suppose that Ai − Bi and
Ai + Bi are positive semidefinite. Then

⊗n
i=1 Ai −

⊗n
i=1 Bi and

⊗n
i=1 Ai +

⊗n
i=1 Bi are also

positive semidefinite.

Proof. We prove the claim by induction on n. The base case is immediate. For the inductive
step, one begins by checking the identity

n+1
⊗

i=1

Ai−
n+1
⊗

i=1

Bi = 1
2 (An+1 + Bn+1)⊗

(

n
⊗

i=1

Ai −
n
⊗

i=1

Bi

)

+ 1
2 (An+1 − Bn+1)⊗

(

n
⊗

i=1

Ai +

n
⊗

i=1

Bi

)

.
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By induction, all four matrices appearing on the RHS above are positive semidefinite; hence the
entire RHS is positive semidefinite. The same argument with the identity

n+1
⊗

i=1

Ai+
n+1
⊗

i=1

Bi = 1
2 (An+1 + Bn+1)⊗

(

n
⊗

i=1

Ai +
n
⊗

i=1

Bi

)

+ 1
2 (An+1 − Bn+1)⊗

(

n
⊗

i=1

Ai −
n
⊗

i=1

Bi

)

.

completes the induction.

G Proof of Lemma C.6

Proof. The proof is quite similar to the proof of Lemma 5.4 from Section D. Let f : X → R be
any function with E[f ] = 0, E[f2] ≤ 1 under the uniform distribution (which is the marginal
of H∗

δ(D) on X ). Let also G : Y × Z → R be any function with EH∗

δ
(D)[G(y∗,z∗)] = 0,

EH∗

δ
(D)[G(y∗,z∗)2] ≤ 1.

By the definition of H∗
δ(D), there is a γ′2D

chance that all 2D bits in y, z are rerandomized
in forming y∗, z∗. Call this event V . Note that conditioned on V occurring, the bit x is
independent of the strings y∗, z∗; also x is independent of V . Thus we have

E
H∗

δ
(D)

[f(x)G(y∗,z∗)] (33)

=
(

1 − γ′2D
)

E
H∗

δ
(D)

[f(x)G(y∗,z∗) | ¬V ] + γ′2D
E

H∗

δ
(D)

[f(x)G(y∗,z∗) | V ]

=
(

1 − γ′2D
)

E
H∗

δ
(D)

[f(x)G(y∗,z∗) | ¬V ] + γ′2D
E

H∗

δ
(D)

[f(x)] E
H∗

δ
(D)

[G(y∗,z∗) | V ]

=
(

1 − γ′2D
)

E
H∗

δ
(D)

[f(x)G(y∗,z∗) | ¬V ]

≤
(

1 − γ′2D
)√

E
H∗

δ
(D)

[f(x)2]
√

E
H∗

δ
(D)

[G(y∗,z∗)2 | ¬V ]

≤
(

1 − γ′2D
)√

E
H∗

δ
(D)

[G(y∗,z∗)2 | ¬V ]. (34)

We also have

1 ≥ E
H∗

δ
(D)

[G(y∗,z∗)2] =
(

1 − γ′2D
)

E
H∗

δ
(D)

[G(y∗,z∗)2 | ¬V ] + γ′2D
E

H∗

δ
(D)

[G(y∗,z∗)2 | V ]

≥
(

1 − γ′2D
)

E
H∗

δ
(D)

[G(y∗,z∗)2 | ¬V ].

Substituting this into (34) gives an upper bound of

(

1 − γ′2D
)

/

√

1 − γ′2D =

√

1 − γ′2D ≤ 1 − γ′2D
/2 ≤ 1 − γ′2d

/2,

establishing that

ρ({−1, 1}, {−1, 1}D × {−1, 1}D;H∗
δ(D)) ≤ 1 − γ′2d

/2

as claimed.

H Proof of Lemma C.8

Proof. We use the Fourier expansion of each function in the LHS above, so F is expanded in
terms of the characters χU , U ⊆ [1], G in terms of characters χV ⊆ [D], and H in terms of
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characters χW , W ⊆ [D]:

LHS =
∑

U,V,W

F̂ (U)Ĝ(V )Ĥ(W )

(

E
Hδ(D)

[χU (x)χV (y)χW (z)] − E
Iδ(D)

[χU (x)χV (y)χW (z)]

)

.

(35)
Both Hδ(D) and Iδ(D) are mixture distributions with δ weight on N (D): coupling the choice
of mixing components and using linearity of expectation, we have

E
Hδ(D)

[χU (x)χV (y)χW (z)] − E
Iδ(D)

[χU (x)χV (y)χW (z)]

= (1 − δ)

(

E
H(D)

[χU (x)χV (y)χW (z)] − E
I(D)

[χU (x)χV (y)χW (z)

)

. (36)

Notice that H(D) and I(D) have the same marginal distribution on Y × Z. Hence for (36)
to be nonzero, U must be nonempty — and therefore equal to {1}. When U = {1} we have that

E
I(D)

[χU (x)χV (y)χW (z)] = E
I(D)

[x] E
I(D)

[χV (y)χW (z)] = 0.

As for the other term in (36), it is not hard to check that EH(D)[xχV (y)χW (z)] is zero unless
V = W and |V | is odd; in this case, the expectation is 1. Thus (35) is equal to the RHS, as
claimed.

I Proof of Lemma C.9

Proof. Even stronger we can prove that for f ′ : {−1, 1}n → [−1, 1],

‖T1−γ′f ′‖3 ≤ ‖f ′‖(2+2γ′)/3
2 . (37)

The result then follows from observing that

‖T1−γf‖3 ≤ ‖T1−γ/2T1−γ/2f‖3 ≤ ‖T1−γ/2f‖(2+γ)/3
2 ,

where the first step uses 1− γ ≤ (1− γ/2)2 and the fact that T1−γ/2 is a contraction in L3, and
the second step uses (37) (since T1−γ/2f is also bounded in [−1, 1]).

To prove (37) we observe

‖T1−γ′f ′‖3 = E[|T1−γ′f ′|3]1/3 ≤ E[|T1−γ′f ′|2+2γ′

]1/3 = ‖T1−γ′f ′‖(2+2γ′)/3
2+2γ′ ,

using the fact that |T1−γ′f ′| ≤ 1. Now we use the Hypercontractive Inequality, observing that

1 − γ′ ≤ 1/
√

1 + 2γ′, to conclude that the above is at most ‖f ′‖(2+2γ′)/3
2 .

26


	Introduction
	The PCP Characterization of NP
	Max-kCSPs and Approximability
	Optimal inapproximability, and Khot's Conjectures
	Satisfiable Max-NTW

	Our Contribution and Methods 
	Methods

	Khot's d-to-1 Conjectures, and PCP reductions
	The d-to-1 Conjecture
	PCP System Framework

	The test distribution Te
	Correlations and Influences
	Correlations
	Influences

	Analysis of the verifier
	Discussion
	Full completeness and soundness proofs
	Analyzing E[gv(y)gv(z)]
	Matrix notation
	The proof of Theorem 6.2

	Analyzing E[fu(x)gv(y)gv(z)]
	Proof of Theorem C.1
	Proof of Theorem C.2

	Proofs of the correlation Lemmas 5.2--5.4
	Proof of Lemma 5.9
	Proof of the matrix algebra lemma
	Proof of Lemma C.6
	Proof of Lemma C.8
	Proof of Lemma C.9

