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ABSTRACT

Consider the edge-connectivity survivable network design prob-
lem: given a graph G = (V, E) with edge-costs, and edge-
connectivity requirements rij ∈ Z≥0 for every pair of ver-
tices i, j ∈ V , find an (approximately) minimum-cost net-
work that provides the required connectivity. While this
problem is known to admit good approximation algorithms
in the offline case, no algorithms were known for this prob-
lem in the online setting. In this paper, we give a ran-
domized O(rmax log3 n) competitive online algorithm for this
edge-connectivity network design problem, where rmax =
maxij rij . Our algorithms use the standard embeddings of
graphs into random subtrees (i.e., into singly connected sub-
graphs) as an intermediate step to get algorithms for higher
connectivity.

Our results for the online problem give us approxima-
tion algorithms that admit strict cost-shares with the same
strictness value. This, in turn, implies approximation al-
gorithms for (a) the rent-or-buy version and (b) the (two-
stage) stochastic version of the edge-connected network de-
sign problem with independent arrivals. For these two prob-
lems, if we are in the case when the underlying graph is com-
plete and the edge-costs are metric (i.e., satisfy the triangle
inequality), we improve our results to give O(1)-strict cost
shares, which gives constant-factor rent-or-buy and stochas-
tic algorithms for these instances.

Categories and Subject Descriptors: F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems

General Terms: Algorithms, Theory

Keywords: Approximation Algorithms, Online Algorithms,
Network Design Problems
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1. INTRODUCTION

We consider the edge-connectivity version of the survivable
network design problem (SNDP): given a graph G = (V, E)
with edge-costs c(e), and edge-connectivity requirements rij ∈
Z≥0 for every pair of vertices i, j ∈ V , the goal is to find a
subgraph H = (V, E′) with minimum cost

∑
e∈E′ c(e) such

that H contains rij edge-disjoint paths between i and j.
The problem is of much interest in the network design com-
munity, since it seeks to build graphs which are resilient
to edge-failures. Since the problem is NP-hard (it contains
the Steiner tree problem), it has been widely studied from
the viewpoint of approximation algorithms. These connec-
tivity problems were one of the earliest applications of the
primal-dual method in this area which led, over a sequence of
papers, to the development of an O(log rmax)-approximation
algorithm [22]. Subsequently, the first use of iterative round-
ing in approximation algorithms led to a 2-approximation for
this problem (and for the general problem of network design
with weakly-supermodular functions) [28].

In this paper we extend the study of survivable network
design problems in two different directions. First, we study
these problems in the online setting: we are given a graph
with edge costs, and an upper bound rmax on the connectiv-
ity demand1. Now a sequence of vertex pairs (i, j) ∈ V ×V is
presented to us over time, each with some edge-connectivity
demand rij—at this point we may need to buy some edges
to ensure that all the edges bought by the algorithm provide
rij edge-connectivity between vertices i and j. The goal is to
remain competitive with the optimal offline solution of the
current demand set. To the best of our knowledge, no online
algorithms were previously known for this problem even for
the rooted 2-connectivity case (i.e., for the case where all
the vertex pairs share a root vertex r and the connectivity
requirement is 2 for all pairs)—in fact, one can show lower
bounds of Ω(min{|D|, log n}) on the competitive ratio for
2-connectivity if D is the set of terminal pairs given to the
algorithm (see Appendix A).

Theorem 1.1 For the edge-connected survivable network de-
sign problem, there is an α = O(rmax log3 n)-competitive on-
line algorithm.

A somewhat surprising ingredient of our proof is that we
use distance-preserving embeddings into random trees (i.e.,
into singly connected structures) to get algorithms for higher

1We can remove this assumption of knowing rmax up front by
losing another log rmax in our approximation guarantee; for sim-
plicity we assume that we know rmax.



connectivity. In our work, these embeddings allow us to sim-
plify the cost structure of the network and to abstract out
a latent set-cover-type problem, where the cuts are the sets
and we want to cover them using edges. We should point
out that the use of such randomized embeddings also im-
plies that our algorithm is competitive only against oblivious
adversaries, who are not aware of the algorithm’s random
coin tosses. We also note that while computational aspects
are often brushed aside in online analysis, our online algo-
rithm can be implemented in time O(mrmax), and hence is
polynomial-time only for constant rmax. Please read Sec-
tion 2 for a high-level overview of our ideas.

Stochastic and Rent-or-Buy Problems. Another direction
to extend the edge-connectivity problem is the stochastic
case when the instance is drawn according to a probability
distribution. In this paper we consider the case when we
have a product distribution: for each pair i, j we are given
a probability pij , and are guaranteed that tomorrow each
pair will flip their coins independently, and if the coin turns
up heads, they’ll demand k-connectivity. (For simplicity we
assume all pairs require the same connectivity k.) We can
buy some edges today (at cost c(e)), but if we wait for the
actual set D the edges will cost λc(e) tomorrow, for a pre-
specified inflation parameter λ ≥ 1; we seek to minimize
the expected cost. Given an α-approximation algorithm for
the basic k-edge-connectivity problem that admits β-strict
cost shares, one can get a randomized algorithm which is an
(α + β)-approximation for the stochastic version.

A similar result holds for the rent-or-buy version of k-
connectivity, where we are given a set of {si, ti} pairs, and
the goal is to define k-edge-disjoint paths between each si-ti.
If ne different pairs use an edge e, the cost of edge e is defined
to be c(e)×min{ne, M} for some threshold M , capturing the
fact that there is some incremental cost for different pairs
using the same edge, but at some point this cost tapers off
(and we “buy” the edge). Again, an α-approximation for k-
edge-connectivity with β-strict cost shares gives an (α +β)-
approximation.

Theorem 1.2 For constant k, the online algorithm for k-
edge-connectivity is a polynomial-time α-approximation al-
gorithm with α-strict cost-shares. Hence, the problems of
rent-or-buy and two-stage stochastic k-edge-connectivity with
independent decisions admit 2α = O(k log3 n)-approximations.

The only previous results known for these versions of higher-
connectivity problems were O(1)-strict cost-shares implicitly
given by Chuzhoy and Khanna [16], and independently (but
explicitly) by Chekuri et al. [12] for the special case of rooted
connectivity, where all pairs seek k-connectivity to a single
source r (and hence to each other).

Metric Costs. Finally, we improve on these cost-sharing
mechanisms for the special case when the underlying graph
is complete and the costs satisfy the triangle inequality to
get the following result. At a high level, our cost-shares
are based on combining ideas from the strict cost-shares
of Fleischer et al. [21] for Steiner forest, and the metric k-
connectivity algorithms of Cheriyan and Vetta [15].

Theorem 1.3 There is an O(1)-approximation algorithm
for metric k-edge-connectivity with O(1)-strict cost-shares.

Hence, both the problems of rent-or-buy k-edge-connectivity
and two-stage stochastic k-edge-connectivity with indepen-
dent decisions admit constant-factor approximations.

1.1 Related Work

Steiner network problems have received considerable atten-
tion in approximation algorithms: Agrawal et al. [2] and
Goemans and Williamson [23] used primal-dual methods
to design approximation algorithm for Steiner forests and
other 1-connectivity problems (and some higher connectiv-
ity problems where multiple copies of edges could be used).
Klein and Ravi [30] gave an algorithm for the 2-connectivity
problem, which was extended by Williamson et al. [37] and
Goemans et al. [22] to higher connectivity problems, yielding
O(log k) approximations for k-connectivity, all using primal-
dual methods. Jain [28] gave an iterative rounding technique
to obtain a 2-approximation algorithm for the most general
problem of SNDP. These techniques have recently been em-
ployed to obtain tight results (assuming P 6= NP) for network
design with degree constraints [33, 34, 6]. Vertex connectiv-
ity problems are less well-understood: [14, 32, 18] consider
problems of spanning k-connectivity, and provide approxi-
mation algorithms with varying guarantees depending on k.
Fleischer et al. [20] give a 2-approximation for vertex connec-
tivity when all rij ∈ {0, 1, 2}. Recently, the papers [10, 13,
16] consider the problem of single source k-vertex connec-
tivity, culminating in a simple greedy O(k log n) algorithm.
In fact, the papers [13, 16] also implicitly give O(k)-strict
cost shares for the single source node-connectivity prob-
lem. As far as we can see, their techniques do not apply
in the case of general survivable network design where ver-
tex pairs do not share a common root, nor do they imply
online algorithms with adversarial inputs. When the edges
have metric costs, there have, expectedly, been better ap-
proximation algorithms for vertex connectivity. Khuller and
Raghavachari [29] gave O(1)-approximations for k-node con-
nected spanning subgraphs. Cheriyan and Vetta [15] later
gave O(1) approximations for the single source k-connected
problem and a O(log rmax)-approximation for metric node-
connected SNDP. Recently, Chan et al. [11] give constant
factor approximations for several degree bounded problems
on metric graphs. As for inapproximability, Kortsarz et

al. [31] give 2log1−ε n hardness results for the node-connected
survivable network design problem.

Imase and Waxman [26] first considered the online Steiner
tree problem and gave a tight Θ(log k)-competitive algo-
rithm. Awerbuch, Azar and Bartal [5], and subsequently
Berman and Coulston [8] gave the same guarantee for the on-
line Steiner forest problem. We do not see how to use these
ideas for higher connectivity. In this paper, we use results of
Alon et al. [3] for the online (weighted) set cover problem;
the ideas here have been extended by Alon et al. [4] and
Buchbinder and Naor [9] to get online primal-dual based al-
gorithms for fractional generalized network design. (We can
solve the fractional k-connectivity problems using these, but
we do not know how to round them well.)

The use of strict cost-shares to get algorithms for rent-
or-buy network design appears in [24]. Approximation algo-
rithms for two-stage stochastic problems were studied in [27,
35], and some general techniques were given by [25, 36]; in
particular, using strict cost-shares appears in [25].



1.2 Preliminaries

For most of the paper, we will present our results in the form
of the k-edge connected network design problem (k-EC-ND),
which is survivable network design where rij ∈ {0, k}—this
is just for simplicity; our results extend to the more general
survivable network design problem whilst incurring small
losses in the guarantees.

1.2.1 Strictness

An α-approximation algorithm Alg is said to be β-strict for
the k-EC-ND problem if there exist cost shares ξ(D, (si, ti))
for all (si, ti) ∈ D (where D ⊆

(
V

2

)
is the set of demand

pairs) such that:
•

∑
(si,ti)∈D ξ(D, (si, ti)) ≤ OPTD, where OPTD is the

cost of the optimal solution.
• There is an efficient augmenting procedure Augment

(which takes as input a terminal pair) such that the
subgraph Augment((si, ti))∪Alg(D\(si, ti)) k-connects
si and ti, and the cost of edges output by Augment(si, ti)
is at most β ξ(D, (si, ti)) for all (si, ti) ∈ D.

1.2.2 Cost Shares from Online Algorithms

Given an α-competitive online algorithm for k-EC-ND, order
all possible vertex-pairs and demand pairs in some canon-
ical universal ordering, and feed the actual demands D in
the order induced by this ordering. For (si, ti) ∈ D, define
the cost share ξ(D, (si, ti)) to be 1

α
times the cost of the

augmentation cost incurred by the online algorithm. By the
α-competitiveness, we have

∑
i
ξ(D, (si, ti)) ≤

1
α
· αOPT =

OPT; moreover, the fixed ordering of the demands means
that the augmentation cost is at most the online algorithm’s
cost increase when we present it si-ti, i.e., α · ξ(D, (si, ti)).

2. THE BASIC IDEA, AT A HIGH LEVEL

Imagine we want to convert the connectivity augmentation
problem into a hitting set problem: we are given a subgraph
H of G that has l-connected si-ti (where l < k), and we
want to l + 1 connect si-ti. If we think of the si-ti cuts as
sets, then we want to hit all these si-ti cuts with edges. This
is clearly doomed, since there are M = 2n−1 cuts, and an
O(log M) approximation for hitting set will be useless.

We could do better by noting that each minimal si-ti cut
in H is given by only l edges. While this bounds the number
of cuts in H by M =

(
m

l

)
, the subgraph H might contain

only a small fraction of G, and there may be many more cuts
in G corresponding to the same cut in H—even an exponen-
tial number, and we are back to square one. Alternately, we
could try to hit the cuts by paths connecting two nodes in
H (instead of edges in G), but there could be exponentially
many such paths, this seems like another bad idea.

What the results in Section 3 show is that this is not a
bad idea at all if we are slightly careful. Loosely speaking,
if we take a random distance-preserving spanning subtree
T ⊆ G, then we show that we can augment the connectivity
using only the fundamental cycles with respect to this span-
ning tree T . Interestingly, the (random) distance-preserving
property allows us to control the cost of these connectivity
augmentations. Of course, this high-level view oversimpli-
fies things a bit: please read on for details. In Sections 3.1
and 3.2 we show how we can hit cuts by a small number of
cycles/paths, and then Sections 3.3 and 3.4 use these ideas
to develop our algorithms.

3. k-EC-ND ON GENERAL GRAPHS

In this section, we present a Õ(k log2 m log n)-competitive
online algorithm for the k-EC-ND problem on general graphs
with demand set D ⊆

(
V

2

)
. We show how this also gives us

Õ(k log2 m log n)-strict cost shares, and hence implies poly-
logarithmic approximation guarantees for the rent-or-buy
and stochastic k-EC-ND problems.

3.1 Embedding into Backboned Graphs

One of the major advantages of network design problems
which only sought 1-connectivity was that one could embed
the underlying metric space into random trees [7, 19, 17, 1],
since the problems were easier on trees. Such a reduction
seems impossible even for 2-connectivity as the problem is
trivially infeasible on a tree. However, the simple but crucial
observation is to not ignore these ideas, as we show below.

Given a graph G = (V, E) with edge lengths/costs c(e),
probabilistically embed it into a spanning subtree (which we
call the base tree) using the results of Elkin et al. and Abra-
ham et al. [17, 1]. Formally, this gives a random spanning
tree T = (V, ET ⊆ E) of G with edge lengths ĉT where for
all x, y ∈ V , it holds that

• ĉT (e) = c(e) for all edges e ∈ ET , and hence dT (x, y) ≥
dG(x, y)
• E[dT (x, y)] ≤ Õ(log n)·dG(x, y), where dG is the graph

metric according to the edge lengths c(e).

The distance dT is defined in the obvious way: if PT (u, v) is
the unique u-v path in T , then dT (u, v) =

∑
e∈PT (u,v) ĉT (e).

Instead of throwing away non-tree edges, imagine each non-
tree edge e = {u, v} ∈ E \ ET being given a new weight
ĉT (e) = max{c(e), dT (u, v)}. This suggests the following
definition:

Definition 3.1 A graph G = (V, E) with edge weights c :
E → R is called a backboned graph if there exists a spanning
tree T = (V, ET ) such that all edges e = {u, v} 6∈ ET have
the property that c(e) ≥ dT (u, v). In this case, T is called
the base tree of G.

Note that the embeddings of [17, 1] probabilistically embed
graphs into backboned graphs with small expected stretch.

Theorem 3.2 A β-competitive online algorithm for k-EC-ND

on backboned graphs implies a randomized β × Õ(log n)-
competitive algorithm for k-EC-ND on general graphs (against
oblivious adversaries). Also, β approximation algorithms for
k-EC-ND on backboned graphs imply randomized β×Õ(log n)
approximation algorithms on general graphs.

Hence, for the subsequent sections (except those for the met-
ric instances) we will assume that the input graph is a back-
boned graph, and will use its properties to design online and
“cost-sharing” approximation algorithms.

3.2 A Small Collection of Covering Cycles

In this section, we show how we can augment connectivity
for a demand pair si-ti by showing that all its cuts can be
covered by a small set of fundamental cycles (with respect to
the base tree T ) of low cost. Suppose G is a backboned graph
that is an instance of the k-EC-ND problem with demand set



D. Let T be the base tree in G. For any edge e = {u, v} 6∈
ET , define the base cycle Oe to be the fundamental cycle
{e} ∪ PT (u, v) of e with respect to T .

Now, let H be a subgraph which l-connects (where l < k)
si-ti for some (si, ti) ∈ D, and suppose H also contains
the base tree path PT (si, ti). The l-connectivity assumption
implies there are l edge-disjoint paths from si to ti in H :
denote this set of edge-disjoint paths by Pi. Clearly, any
l-cut (a set of l edges from H) which disconnects si and ti

in H must pick exactly one edge from each path in Pi: we
define violH(i) to be the set of all such l-cuts.

Labeling: Consider any cut Q ∈ violH(i). Since Q is a
minimal si-ti l-cut in H , it must be that any end vertex of a
cut edge is reachable from one of si or ti in H \Q. We label
each end vertex v reachable from si in H \Q by L (i.e. we
set label(v) = L), and each end vertex v reachable from ti

by R (we set label(v) = R). Every other vertex in V (G) has
a label U ; hence all but at most 2|Q| nodes are labeled U .
Note that the labeling of the end vertices of a cut Q depends
on the subgraph H and not just the set of edges in Q.

Theorem 3.3 (Cut Cover Theorem) Take an instance
of k-EC-ND with optimal solution OPT. Let H ⊆ G l-
connect si-ti for l < k, and let the base tree path PT (si, ti) ⊆
H. Then for any l-cut Q ∈ violH(i), given the labeling of
the endpoints of Q as described above, we can find an edge
e = {u, v} ∈ E(OPT) such that Oe \ Q connects some L-
vertex to some R-vertex. This ensures that si and ti are
connected in (H ∪Oe) \Q.

Note that the algorithms in Sections 3.3 and 3.4 depend
only on the statement of the above Cut Cover Theorem 3.3,
so readers strapped for time can jump straight to the algo-
rithms.

Proof. Consider a cut Q ∈ violH(i). Note that Q ∩ T 6= ∅,
since by our assumption the base tree path PT (si, ti) ⊆ H
and hence the cut Q must contain some edge on it. Let
the edges Q ∩ T separate the base tree into into t ≤ l + 1
components C = {C1, C2, . . . , Ct}. The terminals si and
ti must belong to different components: let C(si) and C(ti)
denote the components containing them. In general, let C(v)
denote the component containing vertex v. A component
C ∈ C is called a star component if it contains some vertex
from PT (si, ti). We refer to the edges in Q ∩ T as portal
edges. For every component C 6= C(ti) ∈ C, let the parent
edge head(C) be the first portal edge on the base tree path
from any vertex in C to ti; note that C(ti) does not have a
parent edge. For example, in Figure 3.1, the dashed edges
are the portal edges, head(C2) is the portal edge between C2

and C1, and C1, C4, C5, C10 are the star components.

Since each edge in Q belongs to a distinct path in Pi (Q is
a minimal l-cut separating si-ti), the end vertices of any por-
tal edge—and indeed of any edge in Q—have distinct labels
from the set {L, R}. For a portal edge e, say its L-vertex is
its unique endpoint labeled L, and its other endpoint is its
R-vertex.

To prove Theorem 3.3, we will show that there exists an
edge e = {u, v} /∈ Q which lies in an optimal solution such
that Oe \ Q contains a path between an L-vertex and an
R-vertex in Q; in turn, this will ensure that si and ti are
connected in (H ∪ Oe) \ Q, completing the proof. For the

si

ti
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L L

L

L

L

L

L

R

R

R

R

R

R

R

R

R

C1

C2

C3

C4 C5

C6

C7

C8

C9

C10

L

Figure 3.1. Example of the Portal Graph: circles are components,
the dashed edges are portal edges, and dotted edges are other base-
tree edges.

remainder of the proof, an edge {u, v} which satisfies this
property is said to cover the cut Q.

The Canonical Sequence: Since si and ti can be k-
connected in G, there must be a si-ti path P ∗ contained
in the optimal k-EC subgraph with P ∗ ∩ Q = ∅. We first
eliminate some “redundant” edges from P ∗ and show that
among the other edges, there is one that covers Q. First
remove all edges from P ∗ that are internal to some com-
ponent in C. Now consider a new undirected graph—the
component graph—whose vertex set is the collection C of
components, and there is an edge (Ci, Cj) when there is
an edge {u, v} ∈ P ∗ such that u ∈ Ci and v ∈ Cj . The
edges in P ∗ now correspond to a path (not necessarily sim-
ple) between C(si) and C(ti) in the component graph. We
then remove edges from P ∗ that correspond to cycles in the
component graph, and are left with a set of edges P ∗ corre-
sponding to a simple path between C(si) and C(ti) in the
component graph. Say the edges of P ∗ in this order are
〈e1 = (u1, v1), e2 = (u2, v2), . . . , ep = (up, vp)〉. Note that
C(ui) = C(vi−1) for 2 ≤ i ≤ p; however ui need not be the
same as vi−1 in general. We refer to this resulting sequence
of edges also as P ∗ and call it the canonical sequence, and
all the components C(uj) the canonical components.

For a contradiction, suppose there is no edge {u, v} ∈
P ∗ that covers the cut Q. We now prove a set of lemmas
about the canonical sequence and the labeling of the portal
edges to show that this cannot happen. Recall that each
portal edge has different labels from {L, R} on its endpoints.
When tracing some u-v path in the base tree T , we say
some portal edge is crossed with signature (L → R) if the
endpoint labeled L is closer to u than to v in the base tree
T . Clearly, the signature of the portal edge depends on the
starting vertex u and ending vertex v of the path.

Lemma 3.4 (Alternating Paths Lemma) Suppose none
of the edges {u′, v′} ∈ P ∗ covers Q. For any edge {u, v} ∈
P ∗, if the first portal edge on PT (u, v) is crossed with sig-
nature (L → R), then the final portal edge on PT (u, v) is
crossed with signature (R → L). Also, the portal edges
crossed along the way have alternating signatures (L→ R),
(R → L), . . ., (L → R), (R → L). An analogous state-



ment is true in the case the first portal edge is crossed with
signature (R→ L).

Proof. If the u-v base tree path PT (u, v) first crosses a por-
tal edge with signature (L → R) and also ends by crossing
a portal edge with signature (L→ R), the base cycle O{u,v}

would connect the first L-vertex in C(u) to the final R-vertex
in C(v). Moreover, the portions of O{u,v} within C(u) and
C(v) are disjoint from Q, and hence O{u,v}\Q would connect
these L and R vertices, contradicting the fact that {u, v}
does not cover Q. For example, in Figure 2(a) we see that
x and y would be connected in O{u,v} \Q.

x

u

vy

R

R
R L

e ∈ P ∗

L

L

(a) Alternating Paths Lemma

u1v1

u2

v2

C

entry(e1)entry(e2)

exit(e2)

e1

e2

R

L

L
L

R
R

exit(e1)

(b) {u1, v1} and {u2, v2} transit C

Figure 3.2. Illustrative figures for the proof. Again, the dashed edges
are portal edges, dotted edges are other base-tree edges, and solid
edges belong to P ∗.

Likewise, if the path PT (u, v) enters some component C
through a portal edge signed (L → R) and also exits C
through an (L → R) edge, the portion of O{u,v} within C
would connect the entry vertex labeled R and exit vertex
labeled L in O{u,v} \Q, again giving a contradiction.

Lemma 3.5 (Star-Path Lemma) Suppose no {u′, v′} ∈
P ∗ covers Q. Consider the portal edges e′1, e

′
2, . . . , e

′
s when

traversing the si-ti path PT (si, ti) on the base tree T . Then
the signatures of these edges alternate (L → R), (R → L),
. . ., (L→ R).

Proof. If we have two consecutive portal edges e′j , e
′
j+1 that

are signed (L→ R), then we would have an L-vertex and an
R-vertex, both of which lie on the path PT (si, ti), belonging
to the same (star) component C. Since we assume that H
contains PT (si, ti), these two vertices would be connected in
H \Q, thus contradicting the fact that Q is a cut.

Lemma 3.6 (Consistency Lemma) Suppose no {u′, v′} ∈
P ∗ covers Q. Consider a component C 6= C(ti) such that
head(C)’s L-vertex is in C. Then, for any {u, v} ∈ P ∗, if

PT (u, v) intersects the component C, the portal edge PT (u, v)
takes when entering C (if any) has its L-vertex in C. The
same is true for the portal edge PT (u, v) takes when exit-
ing C, if any. An analogous statement holds if head(C)’s
R-vertex is in C.

Proof. Let entry(u, v) and exit(u, v) denote the portal edges
used by PT (u, v) to enter and exit C respectively if we tra-
verse PT (u, v) from u to v. For an edge {x, y} ∈ P ∗, we
say {x, y} transits a component C if PT (x, y) intersects C,
but neither x nor y belong to C. (see Figure 2(b) for an
example.)

We first consider the case when C is not a star component.
We prove the lemma if C is a canonical component; the proof
for the other case is very similar. Let 〈e′1, e

′
2, . . . , e

′
a〉 ⊆ P ∗

be the edges in P ∗ which transit C (in that order) before
some edge e1 ∈ P ∗ has an endpoint in C. (Such an edge ex-
ists because C is a canonical component.) The subsequent
edge e2 ∈ P ∗ exits C, and let 〈e′′1 , e′′2 , . . . , e′′b 〉 ⊆ P ∗ be the
following edges that transit C. Since C is not a star compo-
nent, entry(e′1) and exit(e′′b ) must be the edge head(C), which
by the assumption of the lemma has its L-vertex in C. By
Lemma 3.4, exit(e′1) must have its L-vertex in C as well. Fur-
thermore, since the base path traversals are all done along
the tree T , it is not hard to see that entry(e′j+1) = exit(e′j)
for 1 ≤ j < a. Inductively applying the alternating paths
lemma, all the portal edges entry(e′j) and exit(e′j) have their
L-vertices in C. Since entry(e1) = exit(e′a), we also get that
entry(e1) has its L-vertex in C. The same inductive argu-
ment applied starting with e′′b and working backwards shows
that the entry and exit edges used by e′′j for all j, and e2

all have their L-vertices in C. For the case when C is not a
canonical component, the argument is simpler, since we do
not have edges e1, e2.

Finally, when C is a star component, it is no longer true
that the edge entry(e′1) is the same as head(C). However,
either C = C(si) (in which case the proof is the same as
above without any edges e′j or e1), or else entry(e′1) must be
the head edge for the previous star component Cprev on the
si-ti path. Hence, since head(C) has its L-vertex in C, the
Star-Path Lemma 3.5 implies that entry(e′1) = head(Cprev)
also has its L-vertex in C. Now the rest of the proof is
identical to that above.

Lemma 3.7 (Final Component Lemma) Suppose there
is no {u′, v′} ∈ P ∗ that covers Q. For any {u, v} ∈ P ∗ such
that PT (u, v) intersects C(ti), the portal edge taken to enter
C(ti) has its R-vertex in Cti

. The same is the case for the
portal edge taken to exit C(ti), if any.

Proof. The proof of the above lemma is very similar to
that for the previous one. Essentially, we don’t have edges
of the form e2 and e′′j , since Cti

is the final component on
the path P ∗. Also, because e1 is the first edge in P ∗ to tran-
sit C(ti), entry(e′1) must be the head edge for the previous
star component Cprev on the si-ti path. From the Star-Path
Lemma 3.5, we get that entry(e′1) has its R-vertex in C(ti).
By Lemma 3.4, exit(e′1) must have its R-vertex in C(ti)
as well. Like in the previous proof, entry(e′j+1) = exit(e′j)
for 1 ≤ j < a. Inductively applying the alternating paths
lemma, all the portal edges entry(e′j) and exit(e′j) have their
R-vertices in C. Since entry(e1) = exit(e′a), we also get that
entry(e1) has its R-vertex in C.



To complete the proof of Theorem 3.3, we argue the fol-
lowing.

Lemma 3.8 Suppose no {u′, v′} ∈ P ∗ covers Q. Then for
all vertices vj belonging to P ∗ (for 1 ≤ j ≤ p), we have
C(vj) 6= C(ti).

Proof. Since C(u1) = C(si), we know that head(C(u1))’s
L-vertex is in Cu1

. By the Alternating Paths Lemma 3.6,
the final portal edge on PT (u1, v1) had its L-vertex in C(v1).
This implies that C(v1) 6= C(ti), otherwise we would violate
the Final Component Lemma 3.7. Hence, since C(v1) 6=
C(ti), then by the Consistency Lemma 3.6, we get that
head(C(v1))’s L-vertex must be in C(v1). Because C(uj+1) =
C(vj) for all j, we have head(C(u2))’s L-vertex is in C(u2),
and we can proceed inductively.

But note that Lemma 3.8 implies that we never reach
C(ti) while following the canonical path, which contradicts
the fact that P ∗ corresponds to a path between C(si) and
C(ti) in the component graph. This contradiction completes
the proof, and hence implies that there must be some edge
{u, v} ∈ P ∗ that covers the cut Q.

3.3 Augmentation using Hitting Sets

We now show how we can use the covering property to get
a low-cost augmentation. Given an instance G, c(·) of the
k-EC-ND problem, suppose we have a subgraph H such that
all terminal pairs (si, ti) are l-connected in H : we now iden-
tify sets and elements such that the Hitting Set problem
exactly captures the problem of augmenting H to (l + 1)-
connect every si to ti. Moreover, we want to do this in a
way such that the number of sets and elements is small; if
we were allowed exponentially many sets, we could imagine
each l-cut (U, V \ U) that separates si from ti to be a set,
and the edges of G \ H to be the elements, such that ele-
ment/edge e belongs to the set/cut (U, V \ U) if e ∈ ∂U .
But this gives us too many sets, as mentioned in Section 2.

To do this more efficiently, consider this: we can imag-
ine H already contains the base tree, since it costs at most
as much as the optimum k-EC solution. Now look at the
following hitting set instance IA: for each violated l-cut
Q ∈ violH(i) for a terminal pair si-ti, we have a set in our
instance. (Recall that now Q ⊆ E can be just a set of
edges.) In case the same set of edges Q separate several ter-
minal pairs, we have a set for each terminal pair. For each
edge e = {u, v} in G we have an element. An element/edge
e belongs to a set/cut Q if the edge e covers the cut Q—in
other words, if the base cycle Oe satisfies the property that
(H ∪ Oe) \ Q connects si-ti. The cost of an element e is
simply the cost of the base cycle Oe, which is at most 2c(e),
by the properties of the backboned graph. Note that in this
instance, the number of sets is at most |D| ·ml = O(n2ml)
and the number of elements is at most m. A straightforward
consequence of the Cut Cover Theorem 3.3 establishes the
following:

Theorem 3.9 (Augmentation Theorem) Given an back-
boned instance G, c(·) of the k-EC-ND problem, suppose we
have a subgraph H containing the base tree such that the ter-
minal pairs (si, ti) are l-connected (with l < k) in H. Then
the instance of the hitting set problem IA created above has

a solution costing at most 2 c(OPT). Furthermore, if the
set of elements/edges bought in a solution to the hitting set
instance is F , then (H∪(∪e∈F Oe)) is a network that (l+1)-
connects every terminal pair si-ti.

As a warmup, this shows that we can solve the k-EC-ND

problem, and more generally the generalized Steiner connec-
tivity problem, on any backboned graph by starting off with
the base tree as the 1-connected network, and repeatedly
applying Theorem 3.9 (and a good approximation algorithm
for hitting set) to augment the connectivity from l to l + 1
at cost O(log(n2ml))c(OPT). In total, this approach gives
us an approximation guarantee of

∑
l
O(l log m + log n) =

O(r2
max log m + rmax log n). Finally, translating this to gen-

eral networks loses another almost-logarithmic factor via
Theorem 3.2. However, we can do better (and even do it
online), as we now show.

3.4 Online Algorithm using Hitting Sets

To give an online algorithm for k-EC-ND, let us consider
the above proofs again. When we defined the hitting set
instance I corresponding to the (l + 1)-augmentation prob-
lem, it appeared as if the notion of an element/edge e hit-
ting a set/cut Q depended on the subgraph H . However,
this is not the case: recall that the Cut Cover Theorem 3.3
showed that for any l-cut Q ∈ violH(i), there exists an edge
e = {u, v} ∈ OPT such that Oe \Q connects an L-vertex to
an R-vertex. In fact, if we were only given some set of edges

Q̂ and some labels on its endpoints, and the theorem gives
us an edge e, then this edge e is good for all subgraphs H

such that (i) PT (si, ti) ⊆ H , (ii) Q̂ is an l-cut separating
si and ti in H , and (iii) the labels are indeed the labels we

would get given H and Q̂. Moreover, for any cut Q, once
we know the L and R labels of its end vertices, we can also
identify whether an element {u, v} covers the cut Q. These
are the properties we exploit in our online algorithm.

For the online algorithm for backboned graph, we first set
up an instance I of the hitting set problem:

• Universe. For each edge e ∈ E, we have an element;
there are N = m elements. The cost of element e is
c(Oe) ∈ [c(e), 2c(e)].
• Sets. For each l ∈ {1, 2, . . . , (k − 1)}, we have a col-

lection Fl of Ml :=
(

m

l

)
2l sets, where each set Ql is

a set of l edges along with {L, R} labels on the end-
points of these edges. Hence F = ∪lFl are all the
M := O((2m)k) sets.
• Incidence. A element e = {u, v} hits a set Ql if

O{u,v} \ Ql connects an L-vertex and an R-vertex in

Ql.

Now when a terminal pair (si, ti) arrives, we first buy the
edges on si-ti base tree path PT (si, ti) that have not yet been
bought, and then perform a series of (k− 1) augmentations.
In round l, we feed all the minimal violated cuts with l
edges in the current subgraph H along with their {L, R}
labels to the online hitting set algorithm, which results in
a new subgraph with increased connectivity. Note that the
deterministic online algorithm for weighted set cover given
by Alon et al. [3] would be O(log N log M) = O(k log2 m)-
competitive on this hitting set instance as well. Formally,
the algorithm is given in the next page.



Algorithm 1 OnlineAlg(D) for online k-EC-ND on back-
boned graphs

1: let H ← ∅.
2: set up the instance I of online hitting set.
3: for each terminal pair (si, ti) that arrives do
4: let H ← H ∪ PT (si, ti)
5: for l = 1 to k − 1 do
6: while si-ti not l + 1-connected in H do
7: find some violated l-cut Q between si-ti in H

and its labeling w.r.t. H
8: feed (Q, labeling) to online hitting set algorithm;

let its output be F ⊆ E
9: let H ← H ∪ (∪e∈F Oe)

10: end while
11: end for
12: end for

Theorem 3.10 The algorithm OnlineAlg is has a competi-
tive ratio of O(k log2 m) for the k-EC-ND problem on back-
boned graphs.

Proof. The proof essentially reiterates the aforementioned
facts. Consider the case where τ terminals have arrived,
and let OPT be an optimal offline network k-connecting
{si, ti}i≤τ . Clearly, the total cost spent in Step 4 in buy-
ing base tree paths is at most c(OPT). Moreover, since for
each request we feed the online algorithm, there is an ele-
ment/edge e ∈ OPT that hits it (Theorem 3.3), the opti-
mal offline cost to hit all our requests is at most 2c(OPT).
(The factor 2 arises because we buy Oe with cost at most
2c(e), even though OPT may only buy e.) Hence, from the
O(log M log N)-competitiveness of the online hitting set al-
gorithm, we get O(k log2 m)-competitiveness for our online
algorithm.

Combining this with Theorem 3.2, and with the discussion
in Section 1.2, we immediately get:

Corollary 3.11 (Result for General Graphs) There is
an Õ(k log2 m log n)-competitive randomized online algorithm
for the k-EC-ND problem on general graphs.

Corollary 3.12 (Cost Shares from Online Algorithms)
The (randomized) α-competitive k-EC-ND algorithm gives α-
strict cost shares for k-EC-ND. Hence, there is a randomized
2α-approximation for the rent-or-buy version of k-EC-ND,
and also for the two-stage stochastic version with indepen-
dent arrivals.

4. COST SHARES FOR METRIC k-EC-ND

We now consider the k-connectivity network design prob-
lems with metric costs: when the underlying graph is com-
plete, and the edge costs satisfy the triangle inequality. We
first give an O(1)-approximation algorithm and then show
that it is O(1)-strict, implying O(1)-approximations for met-
ric stochastic and rent-or-buy versions. Though algorithms
with better approximation ratios are known for metric k-EC-ND,
we present one on which our cost shares are based.

4.1 An Algorithm for the Metric Case

Consider an instance G = (V, E) of k-EC-ND with terminal
pairs in D; let D represents the set of all terminals, i.e.,
D = ∪(si,ti)∈D{si, ti}. Call a set S ⊆ V valid if there exist
a demand (si, ti) ∈ D such that |S ∩ {si, ti}| = 1. De-
fine ∂S to be the set of edges with one endpoint in S, and
x(E′) =

∑
e∈E′ xe. Finally, let Nv represent the set of the

k nearest neighbors of vertex v in G. The LP relaxation of
the k-EC-ND problem is the following:

(LPk) minimize
∑

e∈E
cexe

subject to (1) x(∂S) ≥ k ∀ valid S ⊆ V
(2) 0 ≤ xe ≤ 1, ∀ e ∈ E

Let OPT and OPTLP be optimal integral and fractional solu-
tions to the given instance; clearly c(OPTLP) ≤ c(OPT). Our
algorithm is based on ideas Cheriyan and Vetta [15] used for
metric node connectivity problems: run the AKR algorithm
([2]) to 1-connect the demand pairs, then k-connect u and v
(using neighbors) if AKR buys (u, v).

Algorithm 2 MetricAlg(D) for metric k-EC-ND

1: let network S ← ∅. Run the AKR algorithm on D to get
forest F .

2: let F̃ ← subgraph obtained by taking Euler tour of each
component of F .

3: for each edge e = (u, v) in F̃ do
4: let S ← S ∪ {(u, x) | x ∈ Nu} ∪ {(v, x) | x ∈ Nv}
5: let S ← S ∪ min-cost matching between Nu and Nv

6: end for

Theorem 4.1 The network S output by algorithm MetricAlg

k-connects the terminal pairs in D, and has cost c(S) ≤
10 c(OPT). Furthermore, if (u, v) ∈ F , then u and v are
k-edge connected in S.

Proof. We first show that the network S is indeed a feasible
solution. Consider a terminal pair (s, t) ∈ D. Since F is a
feasible Steiner forest solution for D we know that s and
t belong to the same tree in F and therefore, to the same

cycle in F̃ . We now show that any pair of vertices that lie

on a cycle in F̃ are k-edge connected in S. Consider vertices

u and v such that (u, v) ∈ F̃ . Since we connect u to Nu and
v to Nv and add in a perfect matching between the vertices
of Nu \Nv and Nv \Nu in S, it is easy to see that u and v
are k-edge connected. By transitivity of edge connectivity,

any two vertices on a cycle in F̃ are k-edge connected. This
proves that S is a feasible solution. Further, we also observe
that if (u, v) ∈ F , u and v are k-connected in S.

To bound the cost, we use the following lower bounds
on the cost of an optimal solution (similar bounds were
also used by Cheriyan and Vetta [15] for node-connectivity
SNDP):

• c(OPT) ≥ 1
2

∑
v∈D

c(v, Nv).

• c(F̃ ) ≤ 4
k

c(OPT).

Let us explain why these are true: In any feasible solution,
each terminal has to connect to at least k distinct neighbors.
This coupled with the fact that each edge could be counted
at most twice in the neighborhoods gives us the first bound.



The second bound follows from the fact that scaling a feasi-
ble LP solution to k-EC-ND by a factor k is feasible to the
Steiner forest LP. We lose an additional factor 4 due to the
approximation guarantee of the AKR algorithm, and because

F̃ is an Euler tour of F . The total cost of S is then

c(S) ≤
∑

u∈F̃
c(u, Nu) +

∑
(u,v)∈F̃

(c(u, Nu) + c(v, Nv) + k · c(u, v))

≤ 3
∑

u∈F̃
c(u, Nu) + k

∑
(u,v)∈F̃

c(u, v)

≤ 10 c(OPT)

Here, the cost of the min-cost matching between Nu and
Nv was bounded by c(u, Nu)+ c(v, Nv)+ k · c(u, v) by using
the triangle inequality of the metric space.

4.2 Getting Strict Cost Shares

As basis for our cost sharing scheme, we use the cost shares
associated with the AKR algorithm, as given by Fleisher et
al. [21]. We refer to this cost sharing scheme as the FKLS

analysis. In the following, let FD denote the AKR solu-
tion on demand set D. The FKLS analysis defines functions
ξ′ : E × V → R and ξ : D → R as follows. Each edge
e ∈ FD is assigned two witness terminals w1 and w2 such
that ξ′(e, w1) = ξ′(e,w2) = ce/4. ξ′(e, v) is set to 0 for all
v ∈ V \ {w1, w2}. For edges not in FD, ξ′(e, u) = 0 for all
u. The total cost share of a terminal pair (si, ti) is then
ξ((si, ti)) =

∑
e∈FD (ξ′(e, si) + ξ′(e, ti)). Also, for e ∈ FD,

let τe denote the time at which e was bought by the AKR al-
gorithm; denote the time at which (si, ti) gets connected in
FD by τi. The witnesses satisfy the following properties:

1. Consider a demand (si, ti) and any edge e ∈ FD bought
at time τe ≤ τi. If neither si nor ti is a witness for e,
then e is also bought in the run of AKR (D \ (si, ti)).
In particular, for any edge e on the unique path con-
necting si and ti in FD, if si and ti don’t witness e,
then e ∈ FD\(si,ti).

2.
∑|D|

i=1 ξ((si, ti)) ≤ 2
k
c(OPTLP(D)). Further, the solu-

tion obtained by running AKR on D \ (si, ti) can be
augmented with edges of cost O(1)ξ((si, ti)) to get a
subgraph which connects si and ti. In fact, these “aug-
menting” edges are those which si or ti witness.

Given that the 1-connectivity problem has nice witness
properties, the most natural thing to try would be to de-
fine cost shares for k-connectivity in the following way: for
any edge e that si or ti witness, the cost share for (si, ti) in-
cludes the cost of k-connecting u and v (at most 2 c(u, Nu)+
2 c(v, Nv) + k c(u, v)). When defined in this form, although
we would be able to augment a solution of MetricAlg(D \
(si, ti)) to k-connect si-ti by paying O(1) × ξk((si, ti)), we

cannot directly bound
∑|D|

i=1 ξk((si, ti)), since the quantity
c(u, Nu) could be counted several times. However, this can
happen only if the degree of u in the approximate solution is
high. Observing this, we look at transforming the AKR so-
lution into a low-degree one while preserving the witness
properties. (An Euler tour would get us the low-degree tree,
but it would not satisfy good witness properties we desire.)
This would help us get the desired cost shares.

Let FD be the forest obtained by running the AKR algo-
rithm on demand set D. We apply the following modification
step for each tree in FD. Consider a tree TD, and arbitrarily

root it at r. We now perform a reverse breadth-first (bot-
tom up) traversal, and create a modified solution F mod (= ∅
initially).

Modification: Suppose we are at vertex u in our traversal:
Nothing is done if it is a leaf. If it is an internal node having
degree 2, then the edge between u and it’s child is included
in F mod. If it has degree more than 2, then we perform the
following local modification (u is said to be the main vertex
being altered in the step, and the edges being altered are the
children edges incident at u):

Let v1, v2, . . . , vp be an ordering of the child vertices of
u ordered such that τ(u,v1) ≤ τ(u,v2) ≤ . . . ≤ τ(u,vp). We

anchor the edge (u, v1) and add it to F mod. For every other
edge (u, vi), we add the edge (vi, vi−1) to F mod. The wit-
nesses of (u, v1) remain the same as those assigned by the
FKLS algorithm, and the witnesses of the edge (vi, vi−1) in
F mod are the FKLS witnesses of (u, vi) in FD. Note that the
degree of u in F mod is reduced to 2, whereas the degree of u’s
child vertices (which were 2 before this step) are increased
by at most 1. After this step, u would never be the main
vertex being altered in any step meaning that it’s degree will
be at most 3 in F mod.

u

v1 v2 v3 v1 v2 v3vp vp

F Fmod

u

Figure 4.3. A step in the modification: u is the main vertex being
altered

This local modification is performed in a reverse breadth
first fashion. It is easy to see that we obtain a forest whose
cost is at most twice the cost of the AKR solution. Further,
each vertex has degree at most 3 and each edge has at most
2 witnesses.

Lemma 4.2 The forest F mod created by the above modifi-
cation is such that (i) c(F mod) ≤ 2c(FD), (ii) vertices in
F mod have degree at most 3, and (iii) there exists witness
definitions such that:

• If Wi is the set of edges in F mod for which either si or
ti is a witness, then for any edge (u, v) in the unique
path connecting si and ti in FD, u and v remain con-
nected in the subgraph Wi∪FD\(si,ti), where FD\(si,ti)

is the forest returned by the running AKR algorithm on
demand set D \ (si, ti).
• At most 2 terminals witness any edge in F mod.

Proof. Conditions (i) and (ii) follow directly from the con-
struction of F mod. We prove (iii) by showing that u and v
are in fact connected by a path comprising of a sequence of
edges in Wi followed by an edge which belongs to FD\(si,ti).
Consider the stage in the alteration procedure when (u, v)
is being altered. One of u or v has to be the main node be-
ing altered: without loss of generality, we assume u is being
altered. There are two cases to be considered:
Case (1): (u, v) is not witnessed by {si, ti}: Since (u, v)



lies on the unique si-ti path in FD, we know that τ(u,v) ≤
τi. Therefore, by the first property of the FKLS analy-
sis, this edge will be bought by the AKR algorithm when
run on D \ (si, ti), and therefore u and v are connected in

FD\(si,ti) ⊆Wi ∪ FD\(si,ti).
Case (2): (u, v) is witnessed by one of {si, ti}. Recall that
we had assumed that u is main the vertex being altered.
In the case that (u, v) was the edge being anchored, we
know that (u, v) is present in the modified tree F mod and
has the same witnesses as before, meaning (u, v) ∈ Wi ⊆

Wi∪FD\(si,ti). If (u, v) was not the edge being anchored, let
v1, v2, . . . , vp be the ordering of the child vertices of u chosen
by the alteration procedure. Note that v ∈ {v2, v3, . . . , vp}.
Without loss of generality, let v be vq. Also, let r be the
largest index such that 1 ≤ r < q and that (u, vr) is not
witnessed by either si or ti.

If such an r does not exist, it means that each of the
edges (u, v1), (u, v2), . . . , (u, vq) are witnessed by si or ti,
and therefore (u, v1), (v1, v2), . . . , (vq−1, vq) all belong to Wi,

meaning that u and v are connected in Wi ∪ FD\(si,ti).

If such an r exists, then we know that each of the edges
(u, vr+1), . . . , (u, vq) are witnessed by si or ti - meaning that
each of the edges (vr, vr+1), . . . , (vq−1, vq) are in Wi. Fur-
ther, by the way we ordered the children of u, it is clear
that τ(u,vr) ≤ τ(u,vq) ≤ τi. The latter inequality is because
of the fact that (u, vq) is on the unique path connecting si

and ti, and therefore cannot be bought after si and ti are
connected. Hence, by property 1 of the FKLS algorithm, we
know that (u, vr) is bought in the run of AKR(D \ (si, ti)).

Therefore, u and v are connected in Wi ∪ FD\(si,ti). This
completes the proof.

We are now ready to define the O(1)-strict cost shares for
this problem.

Cost Shares: For each terminal pair (si, ti), we set its cost
share to be

ξk((si, ti)) =
∑

(u,v)∈Wi

(2 c(u, Nu) + 2 c(v, Nv) + k c(u, v))

Recall that Wi is the set of edges which either si or ti

witness in F mod. Since each vertex in F mod has degree at
most 3 and each edge e has at most 2 witnesses, we get∑

i ξk((si, ti)) ≤
∑

u∈D 12 c(u, Nu) + 2k
∑

e∈F mod c(u, v) ≤
32 c(OPT(D)). To show that these cost-shares are O(1-
strict, we also need to give an algorithm which can aug-
ment edges of cost ξk((si, ti)) to a subgraph returned by
MetricAlg(D \ (si, ti)) in order to k-connect si and ti.

Augmentation Algorithm: Augment ((si, ti)): For all
(u, v) ∈Wi, k-connect u and v using minimum cost.

Analysis: From Lemma 4.2, we know that if an edge (u, v)
lies on the unique path connecting si and ti in FD, then
u and v are connected in Wi ∪ FD\(si,ti). Therefore u and
v would be k-connected in Augment((si, ti))∪MetricAlg(D\

(si, ti)): consider an edge (u′, v′) ∈Wi∪FD\(si,ti). If (u′, v′)
is in Wi, then the augmentation algorithm would k-connect
u′ and v′. If it is in FD\(si,ti), then from Theorem 4.1,
MetricAlg(D \ (si, ti)) would k-connect u′ and v′. Hence, all

edges on the u− v path contained in Wi ∪ FD\(si,ti) are k-
edge connected in Augment((si, ti))∪MetricAlg(D \ (si, ti)).
Therefore, from transitivity of edge connectivity, si and ti

are k-edge connected in Augment((si, ti)) ∪ MetricAlg(D \
(si, ti)). This completes the proof.

The following theorem therefore follows.

Theorem 4.3 The algorithm MetricAlg permits O(1)-strict
cost shares for k-EC-ND, implying O(1) approximations for
metric rent-or-buy and two stage stochastic (with indepen-
dent arrivals) k-EC-ND problems.
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APPENDIX

A. LOWER BOUND

In this section, we show that, if D is the set of demands
that have arrived till some point, then there are instances
where the competitive ratio of any online algorithm is Ω(|D|)
for |D| = O(log n), even for the rooted 2-edge connectivity
problem. Consider the graph given in Figure A.4. There is
a binary tree of depth L, and all the leaves are connected to
the root with distinct “back” edges. All edges in this graph
have unit cost. For ease of exposition, we will assume that
the edges bought when seeing any demand are a minimal
set of edges to achieve the connectivity requirement for that
demand; any edges not in the minimal set are considered to
be bought at the first time they are actually used.

r

L

.

.

.

level 2

s1

level 3

s2

s3

Figure A.4. A lower bound of Ω(L)

All the requests will be vertices that need 2-connectivity
to the root r. The first request is level-1 vertex s1; one
feasible solution is to buy the edge s1-r, and the second
path is some path from s1 to a leaf and back to r using a
“back”-edge. However, this is not the only minimal solution
possible: perhaps the algorithm can buy two disjoint paths
from s1 to two leaves which use their back-edges to connect
to r. In any case, there will be at least one vertex on level-
3 that is not yet connected to the root. We then give any
such vertex on level-3 as the next request. The third request
will be some vertex on level-5 that is a descendent of the
second request, and which is not yet connected to the root; in
general, the next request is always chosen to be a descendent
of the previous demands. This ensures that there is always
a feasible solution of cost L+1 for all the demands seen thus
far, whereas the online algorithm pays at least Ω(L) for the
first Ω(L) requests, giving us the claimed lower bound.

Note that this construction also works against oblivious
adversaries if we choose a random descendent at level-(2i−1)
as the i-th request.


