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1. [introduction

This paper is concerned with the following problem:

Problem 1.1. Given is a digraph G = (V, E, f ) where f: E + R’i associates

with each edge of G a d-vector of rational numbers. Determine whether G

contains a zero-cycle, that is, a cycle whose edge vectors sum to the zero vector.

When the edge vectors are integral, G can be viewed as a representation of a

periodic graph It has been shown by Iwano and Steiglitz [12, 14] that the

periodic graph generated by G contains a directed cycle if and only if G has a

zero-cycle.

Periodic graphs are infinite digraphs with a regular structure. For a given

finite digraph G = (V, E ) with integral vector-weights cl, E R~ (called the

dependence graph), the corresponding periodic graph is generated as follows:

Place a copy of the vertex set of G at each point of the integral lattice in Rd.

For every lattice point z and for every edge (i, j) G E, connect the copy of

vertex i that is located at z with the copy of vertex j that is located at z + c,,.

The problem on this infinite periodic graph is to identify a cycle or conclude

that none exists. See Figure 1 for an example of a dependence graph and the

corresponding periodic graph.

The problem was first introduced in a paper by Karp et al. [16], where it was

raised in the context of recursive definitions. They gave an algorithm that

amounts to solving polynomially many linear programs. They stated the prob-

lem of validity of recursive definitions as detecting a cycle in a periodic graph.

Consider n functions F,,. . . . F,l on the d-dimensional integral lattice defined

by

F,(z) = ~l(Fl(z –C,l),..., F,,(Z –c,,,)),

(the CLJ’Sare integral vectors) where the ~J’s are specified (assume for simplic-

ity the boundary conditions F(z) = O for z @ R:). The corresponding depen-

dence graph has n vertices L),, . . . . u,,, and edges ( L’,, L)) of weight c,, if F,(z)

depends on K(z – cl]). In order for the functions to be well defined, it is

necessary and sufficient that there will be no cycle whose total vector weight is

nonnegative. The problem of detecting a nonnegative cycle can be reduced to

the problem of detecting a zero cycle by adding at each vertex i, d loops with

weight (–l,O, . . .. O). (01, l,. .. ,0) ,..., (O,..., O, – 1). As an example, consider
the recurrence relation I’(z) = Hz – 1) + F( z – 2). The corresponding de-

pendence graph consists of a single vertex and two loops of weights – 1 and

– 2.
The problem was re-introduced by Iwano and Steiglitz [12, 14], following

Orlin [24]. Orlin studied properties of one-dimensional periodic graphs which

included computing strongly connected components. Kosaraju and Sullivan [17]

presented a polynomial-time algorithm. The time complexity of the latter is

O(Zn log n), where Z is the complexity of a certain linear programming

problem with 2n2 variables and rn + n + k constraints (n = IVl, m = El). They

also presented 0(Z) algorithms for the cases d = 2,3.

It was conjectured in [17] that combinatorial algorithms exist for the cases

d = 2,3. Although the notion of a combinatorial algorithm is not well defined,

we believe we have confirmed this conjecture and have in fact proven more

than what was expected. We show that not only for d = 2,3, but also for any
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F1~. 1. A two-dimensional dependence graph G and the periodic graph G*.

fixed d, the problem can be solved in strongly polynomial time, and indeed by

“combinatorial” algorithms. Furthermore, our algorithms can be implemented

on a parallel machine so that membership in the class .#i% is established for

any fixed d. To complement these results, we also show that the general

problem (where d is considered part of the input) is as hard as the general

linear programming problem in a sense, as follows: We show that any linear

programming problem can be reduced in strongly polynomial time and logspace

to our problem with general d.

Consider an instance of Problem 1.1 where m = IEl is the number of edges

and n = IVI is the number of vertices. We show that, when d is fixed, the

problem can be solved within the following bounds:

(i) O(logz~n + logdm) parallel time on O(n3 + lTZ) processors.
(ii) 0(m(log2dn + logdm)) sequential time, when m = Q(n310g n).

(iii) O((n3 + m)logzdn) sequential time, when m = O(nqlog n) and m =

Miz*).

(iv) 0(n310g2(d-2Jn + ~lnl log~td-l) n) sequential time, when m = O(nz).

The constant factors hidden in the above bounds are of the order of 0(3’~’),

and arise from the multidimensional search algorithm [1, 7, 22].

It is worth mentioning that other properties of periodic graphs were consid-

ered in the literature. The computation of strongly connected components [24]

(see Section 6.2), scheduling the computation of systems of recursive defini-
tions [16, 26] (see Section 6.1), planarity testing [11], computing connected

components, recognizing bipartiteness [5, 13, 24], and computing a minimum

average-cost spanning tree [5, 24].

Our algorithm for Problem 1.1 is based on recursively solving instances of
either one of the parametric minimum cycle or the parametric minimum

cycle-mean problems. The time complexity is dominated by that of solving

O(d) instances of the parametric minimum cycle problem with d – 1 parame-

ters, m edges and n nodes. The parametric minimum cycle (respectively,
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cycle-mean) problem is defined as follows: Consider a digraph where weights.

which are linear functions of d variables (“parameters”), are associated with

the edges. Each set of values for the parameters corresponds to a set of scalar

weights associated with the edges of the graph. The goal, roughly, is to find the

set of values for which the weight of the minimum-weight cycle (respectively,

minimum cycle-mean) is maximized.

The parametric extensions of the minimum cycle and the minimum cycle-

mean problems, which are interesting in their own right, can be solved by a

sequence of linear programming problems. We present algorithms that per-

form the computation in strongly polynomial time and in . / %’, when the

number of parameters is fixed. The method is based on an integration of

techniques from [20] and [22]. It is a general tool for achieving strongly

polynomial bounds. The method used to maximize the function that maps sets

of parameter values to the value of the minimum-weight cycle can actually be

applied to maximize (respectively, minimize) large family of convex (respec-

tively, concave ) functions.

More specifically: suppohe @ c R ‘i is a convex set given as an intersection of

k halfspaces, and let g: & ~ R be a concave function that is computable by a

piecewise affine algorithm (i.e., roughly, an algorithm that performs only

multiplications by scalars, additions. and comparisons of intermediate values

that depend on the input). Assume that such an algorithm w’ is given and the

maximal number of operations required by d on any input (i.e., point in 6?) is

T. Under these assumptions, for any fixed d. the function g can be maximized

in a number of operations polynomial in k and T. (see [2] and [3] for a

description of the method without details specific to the parametric minimum

cycle problem.)

Hence, the method can be applied to obtain strongly polynomial algorithms

for parametric extensions of other problems.

In Section 2, we give some necessary definitions. In Section 3, we give an

overview of the basic ideas underlying our algorithms. In Section 4, we describe

a strongly polynomial algorithm for detecting zero-cycles. This algorithm is

stated in terms of solving instances of a parametric version of the minimum

cycle problem. Section 5 contains some necessary geometric lemmas. Section 6

discusses two other problems periodic graphs for which the cycle detection

algorithm is applicable. One problem is computing the strongly connected

components, the other is scheduling the computation of systems of uniform

recurrences that are modeled by periodic graphs. In Section 7, we give a

strongly polynomial and logspace reduction of general linear programming

problem to the cycle detection problem when we allow the dimension of the

weights to be part of the input.
Sections 8– 10 introduce the parametric minimum cycle and the parametric

minimum cycle-mean problems and present strongly polynomial algorithms

when the number of parameters is fixed. In Section 8, we give some definitions

and describe the general setup. In Section 9, we present a simplified algorithm

for the parametric minimum cycle-mean problem. The goal of this presentation

is to give the reader a sense of how the strongly polynomial time bounds are

achieved. Details that are not essential for the qualitative result of strongly

polynomial time bounds are avoided. The reader may skip Section 9, since the

succeeding sections are independent. In Section 10, we give an algorithm for

the problem of parametric minimum cycle. This section introduces additional
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ideas whose purpose is to improve the sequential and parallel time bounds. In

Section 11, we present a scheme for obtaining strongly polynomial algorithm

for parametric extensions of other problems.

2. Preliminaries

Definition 2.1. Given a graph G = (V, E), a circulation x = (x,,) ((i, j) e E)

is a solution of the system:

~(x,J-xJ,)=O (ill,..., n)

X20.

Let E(x) denote the set of actiL’e edges, that is, edges (i, j) with X,j >0.

Vertices incident on active edges are said to be acti~e in x. If the active edges

form a connected subgraph of G, then we say that the circulation x is

connected. If these edges form a simple cycle, then we say that x is a simple

cycle, and with no ambiguity we continue to talk about the set of active vertices

as a simple cycle.

Remark 2.2. Every circulation x is a sum of connected circulations, corre-

sponding to the decomposition of E(x) into strongly connected components.

Moreover, it is also well known (and easy to see) that every circulation can be

represented as a sum of simple cycles. If a connected circulation x = (x,, )

consists of rational numbers, then it is proportional to an integral circulation.

A connected integral circulation can be represented by a cycle (U(), u 1, ..., Uq

= u,]) ((u-,, u,) G E), not necessarily simple, where x,, is interpreted as the

number of times the edge (i, j) is traversed throughout the cycle. It is easy to

construct irrational circulations that cannot be interpreted this way.

Definition 2.3. Given vector weights c, = (c~J,..., c~)~ ((i, j) ~ E) (i.e.,

using the notation of Problem 1.1, c,, = jl’e) where e = (i, j)), a circulation

x = (x,, ) is called a zero-circulation if it satisfies the vector equation X,,, c,, XZJ

= O. An integral connected nontrivial zero-circulation is called a zero-cycle.

3. An Olerliew

We first present an informal overview of the basic ideas involved in the

zero-cycle detection algorithm.

Suppose G = (V, E, f) contains a vector zero-cycle C, that is, the sum of the

vector weights cl, around C is equal to the zero vector. Obviously, for any

A = R~, the sum of the scalar weights ATC,J around C is zero. It follows that for

every A E R~, the weight of the minimum cycle relative to the scalars ATcl, is

nonpositive. In other words, if there exists a A = Rd such that all the cycles are

positive relative to ATC,,, then this A certifies that there are no zero-cycles. On

the other hand, it can be shown that if for every A # O there exists a negative

cycle, then there exists a vector zero-cycle.
The observation of the preceding paragraph suggests that one might first

attempt to find a A for which all the cycles are positive relative to the weights

ATC,,. In other words, we wish to maximize over A the weight of the minimum

cycle relative to the scalar weights ATC,J.
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This task can be viewed as a parameterized extension of the well-known

problem of detecting the existence of negative cycle or finding a minimum

weight cycle in a graph with scalar weights. The latter scalar weights problem

can be viewed as asking for an evaluation of a function at a given A, which can

be solved by running an all-pairs shortest-paths algorithm. The search for A as

above can be formulated as an optimization problem over the A-space, where

one seeks to maximize the function of the minimum weight of any cycle

relative to the Arc,] ‘s. However, there is a certain difficulty with this approach

since the minimum is not well defined when there are negative cycles. Note

that we do not require the cycle to be simple, since the problem of finding a

minimum simple cycle if. /&F-hard. However, we can instead consider one of

the following quantities: (i) the minimum cycle-mean, that is, the minimum of

the average weight per edge of the cycle, or (ii) the minimum of the total

weight of cycles (not necessarily simple) consisting of at most n edges. It is easy

to see that the sign of the minimum cycle-mean (which is the same as the sign

of the quantity defined in (ii)) distinguishes the following three cases: (1) there

exists a negative cycle, (II) there exists a zero cycle but no negative cycles, and

(III) all the cycles are positive.
If an algorithm for either (i) or (ii) of the preceding paragraph is given, which

uses only additions, comparisons, and multiplications by constants, then such

an algorithm can be “lifted” to solve the optimization problem. Very roughly,

the basic idea (which is explained in [19], [20], and [21]) is to run the given

algorithm simultaneously on a continuum of values of A, while repeatedly

restricting the set of these values, until the optimum is found. Another

interpretation of the lifted algorithm is that it operates on linear forms rather

than constants. When the lifted algorithm needs to compare two linear forms,

it first computes a hyperplane that cuts the space into two halfspaces, such that

the outcome of the comparison is uniform throughout each of them. The

algorithm then consults an “oracle” (whose details are given later) for selecting

the correct halfspace, and moves on. The lifted algorithm maintains a polyhe-

dron P, which is the intersection of the correct halfspaces.

As noted above, if a vector A is found such that all the cycles are positive,

then we are done. Otherwise, the lifted algorithm concludes that A = 0 is an

optimal solution, that is, for every k there exists a nonpositive cycle, so the

choice of A = O maximizes the weight of a minimum cycle, However, the zero

vector itself does not convey enough information. Nonetheless, the algorithm

actually computes a vector ~ # O (called a separating vector) in the relative

interior of the set of optima,’ along with a “certificate” of Optimality. The

certificate consists of vector circulation values c,, . . . . c,. These values span in

nonnegative linear combinations a suitable linear space, proving that there is
no direction to move so that the minimum cycle becomes positive. This

“certificate” is used to actually find a zero-cycle when the algorithm decides

that one exists. The scalar weights ~~c,, then induce a decomposition of the

graph, where two vertices are in the same component if they belong to the

same scalar zero-cycle. It is then shown that a vector zero-cycle exists in the

given graph if and only if such a cycle exists in one of the components. Also, if

1There IS alsn the powbdlty that the zero vector IS the only opt]mal solutlon. so there ]s no
separating vector. However, [n this cdse, assummg strong connectivity of the graph, 1[ can be
~hown that a zero-cycle ewsts.
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there is only one component (and the graph has more than one vertex) then

there exists a zero-cycle. These observations suggest an algorithm that itera-

tively computes a separating vector, decomposes the graph accordingly, and

works on the components independently. The depth of the decomposition tree

is bounded by the dimension of the weights.

The part we have so far left open is the “oracle” that recognizes the correct

halfspace. It turns out that, as in [22], the oracle can be implemented by

recursive calls to the same algorithm in a lower dimension. This will be

explained in detail later.

We have outlined the general framework for establishing the qualitative

result of strongly polynomial-time bounds for any fixed dimension. However, to

get more efficient algorithms and to establish membership in .4%, we perform

multi-dimensional searches as in [1], [7] and [22]. By doing so, we reduce the

number of calls to an “oracle” algorithm that actually need to be performed, to

a polylog in the number of decisions. The design can be viewed as an

integration of the techniques of [20] and [22] (and the further improvements of

[1, 7]).

4. Detecting Zero-Cycles

In this section, we develop an algorithm that decides the existence of a

zero-cycle in the vector-weighted graph G = (V, E, f), f: E ~ Zd. If a zero-

cycle exists in G, we find an explicit one. The algorithm introduced in

this section uses as a subroutine the parametric minimum cycle algorithm of

Section 10.

PROPOSITION 4.1. A graph G = (V, E, f ) with llector weights (see Problem

1.1) has a zero-cycle (see Definition 2.3) $ and only if it has a connected

zero-circulation.

PROOF. Note that, if there exists a connected zero-circulation, then there

exists a rational connected one. Hence, there exists an integral connected

zero-circulation that is equivalent to a zero-cycle (see Remark 2.2). ❑

Definition 4.2. Given a vector-weighted graph G = (V, E, f ), we use the

following definitions and notation:

(i) Let X denote the cone of vector A = (Al,..., ~d)~ for which the scalar-

weighted graph (V, E, f ~ A ) has no negative cycles.

(ii) A nonzero vector A = rel int % (the relative interior of %) is called a

separating uector for G.

(iii) A separating vector A for which the scalar-weighted graph (V, E, f ‘A)

has only positive cycles is called a witness for G.

A witness proves the nonexistence of nontrivial zero-circulations. Although

for this purpose the vector does not have to be in rel int %, we add this as a

requirement that is helpful in the recursion.

Remark 4.3. The cone $’ can be described as the projection on the X-space
(Rd) of a cone in R“+~ (the space of (ml,..., VE, A)) which is characterized by

the inequalities:

m-, – r] + ATC,l > 0 (i, j) =E.
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Note that the system of inequalities above is the linear programming dual of

the zero-circulation problem.

Dejl?zition 4.4

(i) Given G = (P’, E, f), denote by CIRC(G) the set of all circulation values

c = Zt, ,Ctj Xl, (where x = (x,]) is a circulation in G).
(ii) Given a separating vector A # O (i.e., A e rel int s), denote by

ORTH(G, A) the set of vectors c E CIRC(G), which are orthogonal to A.

Note that CIRC( G) is a convex polyhedral cone.

P~O~OS1’rlON 4.5. The set X is precise~ the set of L’ectors h such that ATC >0

for all c G CIRC(G).

PROOF. For any circulation x and any set of scalars i-r,.

~(m-, - 7T,)X,, = o.

l,]

If the (vector) value of x is c, then

ATC = ~ ( A%,)x,,.

l>J

By Remark 4.3, if A ~ W, then ATC >0. Conversely, if ATC >0 for all c ~

CIRC(G), then obviously there are no negative cycles in (V, E, f 7 A ), so

A =%. ❑

THEOREM 4.6

(i) ORTH(G. A) ih independent of A, and hence tvill be denoted by ORTH(G).
In fact, ORTH(G) is the linealip space of CIRC(G ). (In case Y = {O}, define

OR TH(G) to be the entire Rd. )

(ii) ORTH(G) = (lin%)’ , that is, the orthogonal complement of the linear

subspace spanned by 2? (hence, it is a linear subspace).

PROOF. The proof is based on a geometric analysis that is given in Sec-

tion 5. ❑

The zero-cycle detection algorithm partitions the graph recursively into node

disjoint subgraphs. The tree structure defined by this partitioning process, with

subgraphs as nodes, is referred to as the decomposition tree of the graph G. In

this partition, the subgraphs are the connected components of a “maximal” (in

the sense of the number of active edges) zero-circulation. This definition
implies that a zero-cycle exists in G if and only if a zero-cycle exists at least in

one of the subgraphs that G is partitioned into. If a subgraph is not partitioned

any further, it is a “leaf” of the decomposition tree, and for this subgraph, the

algorithm determines the existence of a zero-cycle directly. In [16] and [17], this

partition is computed by solving a set of linear programming problems in order
to decide, for each edge, whether or not it is active in any zero-circulation in G.

The subgraphs are the connected components induced by the active edges. In

this paper, the computation of the partition is done differently by an algorithm

that gives strongly polynomial-time bounds.

For a given graph G = (V, E, f), the algorithm first tries to find a witness (if

a witness is found, a zero-cycle does not exist, and we stop). In case a witness
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does not exist, a separating vector is computed. The computation of a witness

or a separating vector is done by using the parametric minimum cycle algo-

rithm developed in Section 10. The algorithm then proceeds to compute a

partition of G using the separating vector found in the previous step. If the

partition has only one subgraph, it is shown that a zero-cycle exists in G;

otherwise, the algorithm proceeds recursively on the subgraphs. Note that a

witness or a separating vector can be computed by solving linear programming

problems. The difficulty is to find a strongly polynomial-time solution.

In the rest of this section, we first discuss the two subroutines used by the

algorithm and then proceed to the algorithm itself (Subsection 4.3). The first

subroutine is the computation of a witness or a separating vector (Subsection

4.1). The second (Subsection 4.2) is the partitioning of the graph when a

separating vector is given.

4.1. COMPUTING A WITNESS OR A SEPARATING VECTOR

Problem 4.7. Given is a graph G = (V, E, f ). Find a witness for G (see

Definition 4.2) if one exists; otherwise, find a separating vector A or conclude

that no such vector exists,z and provide a collection % of circulations with

vector-values c 1, ..., c’ along with a set of positive numbers a 1, ..., CY, such

that r = O(d), cone{ ci,. ... c’} o ORTH(G), and X:. ~CI,C’ = O.

Rentark 4.8. the collection ‘% is used to compute an explicit zero-cycle if

one exists. It enables us to construct a circulation of any given value c’ =

ORTH(G). The decision problem (existence of a zero-cycle) can be solved even

if @ is not given.

PROPOSITION 4.9. Problenl 4.7 can be sollled using three applications of the

parametric minimum cycle algorithm on G witil d – 1 parameters.

PROOF. Deferred to Section 8. ❑

The following proposition is used for the proof of Proposition 4.9.

PROPOSITION 4.10. Gil’en lectors C1,.. ., c’ c R~, and a subspace S C R’i, the

following two conditions are equivalent.

(i) For e[ery A @ S, rein{ ATC1, ..., A~c’} <0.

(ii) cone{c] ,.. .,}3S1S1.

PROOF. The equivalence follows from Farkas’ Lemma (see proposition

4.12). First, we assume (i) and show that (ii) is implied. Consider z ● S 1. If a

vector y = R~ is such that YTZ < 0, then obviously Y @ S. The latter) combined

with (i) gives the left-hand side condition on Farkas’ Lemma. Therefore, from

the right-hand side, we have z ~ cone{c 1, ..., c,}.

We show that (ii) implies (i). Assume that z = S 1 ~ z ~ cone{c 1,..., C,}. It

follows from Farkas’ Lemma that for all z ~ S L t we have (VY ~ R~ )YTZ <0

+ rein{ y7 cl} < 0. Consider a vector A @ S. There must exist z ~ S L such that
ZTA < 0 (otherwise, VZ ~ S 1 , ZTY = O in contradiction to ~ @ ~). We have

Z7 A <0. Therefore, it follows from the left-hand side of Farakas’ Lemma that

min{ATc,} <0. ❑

2 Note that z # 0 since O =%, a separating vector exists lf and only lf % + {O}.
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COROLLARY 4.11. Let the Lectors c 1,.. ., c‘ be circulation Lallles. If for elery

(’ector A E lin Y, min{hrc’, . . . . LTC’} < 0, then cone{cl, . . . . c’} > ORTH(G).

PROOF. Take S = lin %, and recall from Theorem 4.6 part (ii) that

ORTH(G) = (lin 3?)1 . H

PROPOSITION 4.12 (FARWW’ LEMMA [8]). For any uectom z, c, = R~, i =

1,..., r,

(VY G Rd)(yTZ <0- m~{y’cl} <0] =Z E cone(c).

4.2. COMPUTING THE PARTITION. After computing a separating vector, the
zero-cycle detection algorithm proceeds to compute a partition of the graph. In

this subsection, we define this partition, and discuss some of its properties. We

also present the algorithm that computes the partition when the separating

vector is given.

The essence of the following proposition is mentioned in [17].

PROPOSITION 4.13. Let G = (V, E, w ) be a scalar-weighted graph with no

negatile cycles. Using one application of an all-pairs shortest path algorithm, file

can find Lertex disjoint subgraphs G,, . . . . G,I of G with the following properties.

Edges or lertices that are not actile in any zero-cycle of G are not contained in any

of the G, ‘s. Two vertices L{ and [1 are in the sanle G, if and only if there exists a

(scalar ) zero-cycle of G in which both u and c are actile.

PROOF. Apply an all-pairs shortest path algorithm to compute the distance

d,,, between all pairs of vertices a, L’ c V. Two vertices u, 1’ are in the same

subgraph G, if and only if d,,, + d,,, = 0. If d,, >0, then L) is not a part of a

zero-cycle and does not belong to any G,.

In order to identify all the edges that participate in some zero-cycle, do the

following: Select arbitrarily some vertex w and use a single-source shortest-path

algorithm to compute the distances rr, ( LI = V) from the vertex w to all other

vertices. For every edge (u, L’) define,

8,,, - n,, – n-, + d,,, >0.

Determine that (u, 1’) is an active edge if and only if 8,,, = O. ❑

Remark 4.14. Each component of the partition of Proposition 4.13 contains

a zero-cycle where all the vertices of the component are active. This zero-cycle

can be constructed easily from the shortest paths.

PROPOSITION 4.15. Suppose h is a separating [’ector of G = (V, E, f ). Con-

sider the scalar weights w = f Th on the edges of G. Obsen~e that by the definition

of a separating Lector, there are no negatiLe cycles in the scalar weighted (V, E, w ).

Let Gl,.. . , G,l be the partition of G into subgraphs as defined in Proposition 4.13,

relati[ ‘e to the scalar weigi~ts w. Under these conditions, a ( l~ector) zero-cycle exists

in G if and only if ( Lwctor) zero-cycle exists i~l one of the G, ‘s.

PROOF. The “if” part is trivial. For the “only if” part, suppose .x is a

(vector) zero-cycle of G = (V, E, f). Then x is a scalar zero-cycle of

(V, E, f 7 A). By the definition in Proposition 4.13. all the vertices active in x
are in the same component G, and hence x is a vector zero-cycle of G,. ❑
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PROPOSITION 4.16. If CIRC(G) contains a nontriL’ial linear subspace, then a

nontn”tlial ( L’ector) zero-circulation exists in G.

PROOF. The proof is immediate. ❑

PROPOSITION 4.17. If ‘% = {Cl,..., C,} c R1 and al >0 (i = 1,..., r) are

such that X:=, a, c, = O, then for any v c RI, it takes O(l~r) time either to find

nonnegative rational constants (31, ..., ~, such that v = X ~, c,, or to recognize

that no sLlch constants exist.

PROOF. Express v as a linear combination of the vectors in % by solving

the linear system of equations v = Xy, c,. This system has 1 equations and r

variables, and thus can be solved by Gaussian eliminations using 0( lzr)

operations. If -y, are nonnegative take ~, = y,; otherwise, denote a =

minl~,~.al, y=mml~t~t~t and let ~, = Y, – (y/ct)cx,. It is easy to Verify

that 81 (1 s i < r) are nonnegative and X:=, /3,c, = O. ❑

PROPOSITION 4.18. Let A be a separating lector of G = (V, E, f ). Let

G,,.. ., G,f be the partition of G into subgraphs (as defined in proposition 4.13),

relatile to the scalar weights f T A. If the partition constitutes a single subgraph (i. e.,

q = 1), then G has a ( Lector) zero-cycle.

PROOF. If G has a single component relative to f TA, then all active

vertices and edges are contained in GI. Observe that all cycles with vector

value in ORTH(G) are scalar zero-cycles relative to f T h. There exists a scalar

zero-cycle in (V, E, f T k ) in which all the vertices of G, are active. Thus, there

exists a value c = ORTH( G) that is attained at a circulation where all the

vertices in G ~ are active, so this circulation is connected. By Theorem 4.6 and

Proposition 4.16, there exists a circulation, not necessarily connected, whose

value is – c. The active vertices in this circulation must be contained in G 1.

By combining the connected circulation supporting c with the one supporting

– c, we obtain a connected (nontrivial) zero-circulation, that is, a zero-cycle

of G. ❑

Remark 4.19. Suppose we have a set ‘%’ of (vector) cycle values such that
cone % Q ORTH( G). The vector zero-cycle of Proposition 4.18 can be explic-

itly constructed as follows: We compute a connected zero-circulation relative

to the scalar weights f T A, in which all the vertices are active. The vector value

of this circulation is c E ORTH(G) (see Remark 4.14). It follows from Proposi-

tion 4.17 that we can construct a circulation with value – c. The combination of

the two circulations is a connected zero-circulation.

Remark 4.20. Assume the graph G does not have a separating vector (i.e.,

ORTH(G) = R’~). If we are given a set % of cycle values whose conic hull

equals R~, then a zero-circulation can be constructed as follows: Find a cycle

in which all the vertices are active (G is strongly connected). Denote the value

of this cycle by c. It follows from Remark 4.14 that we can find a circulation

with value – c. The combination of the two circulations is a (nontrivial)
connected zero-circulation.

Remark 4.21. Remarks 4.19 and 4.20 discuss the construction of an explicit

zero-cycle. Observe that if %’ is of size O(d), then the time complexity of

constructing a zero-cycle is O(d3) (see Proposition 4.17).
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PROPOSITION 4.22. A ~vitness for G exists if a?ld onh if G does not hale a

nontril)ial zero-circulation.

PROOF. The proof is immediate. ❑

4.3. THE ALGORITHM

Algorithm 4.23 [zero-cycle detection].

(i)

(ii)

(iii)

(iv)

Run an algorithm for Problem 4.7 on G (see Proposition 4.9). If a witness

for G is found, then stop. Otherwise, find a collection ‘& of circulation

values such that cone 8 ~ ORTH(G), and either find a separating vector

A or conclude that none exists. In the latter case, conclude that a

connected zero-circulation, and hence a zero-cycle, exist in G (see Remark

4.20 for an explicit construction of the zero-cycle). Otherwise,

Construct the partition of G that is defined in Propositions 4.13 and 4.15.

If the partition is empty, then G does not have a zero-cycle. Otherwise,

If there is only one component (i.e., q = 1), then by Proposition 4. 1S,

G(V,~, ~) has a zero-cycle (see Remark 4.19 for how to find the zero-cycle

explicitly).

Run the zero-cycle detection algorithm on G,,..., G. (recursively). By

Proposition 4.15, G has a zer;-cycle if and’ only i; at least one of

Gl, . . ..G~ has one.

In the rest of the present section, we prove the correctness and analyze the

complexity of Algorithm 4.23.

PROPOSITION 4.24. If G is partitioned into G ~, ..., G~ (see Proposition 4.15)

and for some G,, dinI(ORTH( G, )) = dim(ORTH(G)), then G, will ~lot be parti-

tioned any further by the algorithm.

PROOF. Since ORTH(GZ) c ORTH(G), equality of dimension implies

equality of the sets, so a separating vector for G is a separating vector for

G,. ❑

COROLLARY 4.25. Algorithm 4.23 terminates after at most d – 1 phases of

partitioning.

PROPOSITION 4.26. The time conlplexip of the zero-cycle detection algorithm

for a graph G = (V, E, f ) (where f is d-dimensional) is dominated by the
complexity of 3 d applications of sok’ing Problem 4.7 on G.

PROOF. First, observe that the complexity of explicitly constructing a zero-
cycle (see Remark 4.21) is dominated by the complexity of the rest of the

algorithm. Consider the recursion tree of Algorithm 4.23. The recursion tree

corresponds to the decomposition tree of the graph G. By Corollary 4.25. this

tree has d levels. Each level is a phase of partitioning a collection of subgraphs

Gl,.. ., G~, with total number of n = /VI vertices. The total computation done

at such a phase is solving Problem 4.7 for each subgraph G,, and then, if

needed, partitioning it as described in Proposition 4.13. Observe that the time

and processor complexities of solving Problem 4.7 and partitioning all the

subgraphs at a certain phase, are dominated by the complexities of the same

computation done on the graph G. Recall (see Proposition 4.13) that a

partitioning operation amounts to an all-pairs shortest path computation.
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Therefore, the complexity of computing the partition is dominated by the

complexity of solving Problem 4.7. It follows that at each level of the tree, the

total complexity of the computation is dominated by the complexity of solving

Problem 4.7 on G. ❑

THEOREM 4.27. The complexity of the zero-cycle detection algorithm for a

graph G = (V, E, f ) (where f is d-dimensional) is essentially dominated by 3d

applications of the parametric minimum cycle algorithm presented in Section 10,

when applied to instances with d – 1 parameters that inloke the graph G.

PROOF. The proof follows from Propositions 4.9 and 4.26. ❑

5. Geometric Lemmas

In this section, we give the necessary lemmas which establish the proof of

Theorem 4.6. The reader is referred to [10] for background.

For any subset C of Rd, denote

c+= {zJ:(vu = C)(uru 2 o)}.
Recall that a cone that does not contain a nontrivial linear space is said to be

pointed.

The following proposition states well known facts about cones [9].

PROPOSITION 5.1

(i) EL’ery cone C is a direct sum, C = L @ CP, of a linear subspace L (tJle
lineali~ space of C) and a poirzted cone CP.

(ii) The cone CP is contained in the orthogonal complement of L in lin C.

(iii) dim(CP) = dim(C) - dim(L).

PROPOSITION 5.2

(i) IF L c R’J “n a lirlear subspace, then L h = L ~ .

(ii) For elety cone C, we hale C+= C; f’ LA , where C = L Q CP as abol~e.

PROOF. The proof of part (i) follows from the fact that if L is a linear

subspace and y ● L ~, then y~d = O for all d e L. Part (ii) follows from the

equality C+= C; n L+ and from part (i). ❑

PROPOSITION 5.3. If C is a point cone, C’ is of jidl dimension.

PROOF. The following claim is a consequence of the duality theorem of

linear programming. For any finite set of vectors U1, ..., u’, if there does not

exist a vector w = (al, ..., a,)r > 0, a # O, such that Xa, u.’ = O, then there

exists a vector z) such that v~u’ > 1, i = 1, ..., r. Thus, if C is a pointed cone

(not necessarily polyhedral), there exists a vector ~ such that for everY

unit-vector u = C, v~u > 1. It follows that u = C+ and there exists a ball B,
centered at LY, such that for every w = B and u E C (u # 0) we have WTU > 0.

This implies that B c C+. ❑

PROPOSITION 5.4

dim(C+) = dim(L’).
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PROOF. It follows from Proposition 5.3 that C,; is of full dimension in the

space lin CP. Recall that lin L’P c L‘. The proof follows from Proposition 5.2

part (ii). El

PROPOSITION 5.5. If h ● relent. then for cdl c E CP (c # O), ATC >0.

PROOF. From the proof of Proposition 5.3 and Proposition 5.4, h follows

that there exists a vector u such that for every unit-vector Zt c CP, u ‘u > 1,

and for every w G L, v~w = O. The set C + is full dimensional relative to L ~ .

Therefore, if ATC = O for some c G CP (c # O), then A @ rel int C+. ❑

Let C = CIRC(G) (see Definition 4.4). Let L and C’[, be as in Proposition

5.1. Let % be as in Definition 4.2.

PROPOSITION 5.6
~=c+

PROOF. Immediate from Proposition 4.5. ❑

PROPOSITION 5.7. For e[’eq A E rel int(.%), the set ORTH( G, A) is equal to

the linear sLlbspace L.

PROOF. lt follows from Propositions 5.5 and 5.6, that if A E rel int % and

c e C are orthogonal, then c ● L. On the other hand, since % c L1 (see

Proposition 5.2), if c e L and A G Y, then ATC = O. ❑

6. Applications of the Zero-Cycle Detection Algorithm

We first introduce some notation for the discussion of periodic graphs (see

Section 1). For a given G = (V, E, f ) where f: E ~ Z“ and V= {l,.. .,n},

denote by G* = (V*, E“ ) the infinite periodic graph that is defined by G as
explained in Section 1. We refer to G* as a d-dimensional periodic graph.

Formally,

V*= ZiXV={(z, i):z~Z~, i= V},

E*= ZC~XE={(z, e):z GZd, e= E}.

If e = (i, j), we also identify the edge (z, e) with pair ((z, i), (z +f(e), j)).

The zero-cycle detection algorithm of Section 4 computes the decomposition

tree of an input graph G = (V, E, f ) and the separating vectors for all the

subgraphs sitting at the nodes of this tree. Recall that this computation can be

performed by solving polynomially many LP programs. In Section 4, we
presented strongly polynomial-time solution when the dimension d is fixed. We

discuss two problems that can be solved easily when the decomposition tree

and the separating vectors are given.

6.1. SCHEDULING. The first application is the problem of scheduling a

system of uniform recurrence equations. The problem was raised by Karp et al.

[16] and algorithms that solve it were given in [16], [25], and [26]. These

algorithms are stated in terms of solving systems of linear inequalities and

therefore do not establish strong polynomiality. We show that the knowledge of

the decomposition tree and the separating vectors enables us to produce an

immediate solution. Hence, we obtain strongly polynomial complexity bounds.
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A system of uniform recurrence equations is a finite set of relations among

functions ~: Zd a R (i = 1,..., n),

(The definition can be easily extended to accommodate the case where the
value of some F, is related directly to more than one value of some ~.) Such a

system can be modeled by a finite graph G = (V, E, f), where the functions F,

correspond to the vertices. It is called the “dependence graph” in [16]. This

graph defines a periodic graph G* whose vertices correspond to the function

values F,(z), (i = 1,...,n, z ~ Z~, z > O). The direct dependencies among

function values are modeled by the edges of G*, as follows: If e = (i, j) = E

and ~(e) = a, then the evaluation of F,(z) requires the knowledge of F~(z – a)

(and having all the required knowledge is sufficient). For simplicity, suppose it
takes one time unit to evaluate the q!J,’s, that is, given all the required

knowledge, it takes one time unit to calculate the function value.

For “efficient” parallel evaluation of the function values, one would like to

find large sets of “independent” values, that is, sets of values that can be

computed simultaneously. Here, two values are independent if there is no

directed path in G* between their corresponding vertices. A set of values is

called independent if every two members of the set are independent. The

problem of finding a maximal independent set of values is not easy, since the

problem of deciding whether there exists a directed path in G*, from (z 1, i 1) to

( Z2, iz) is ./V@-Complete, even for one-dimensional periodic graphs (see [24]).
A subspace S, c ~ is said to be independent if the values F,(z) (z E S,) are

independent. Interestingly, one can compute, in polynomial-time, maximal

independent subspaces [16, 26]. Let ~ = Z~ X {i}, i = 1,...,n. A maximal

independent subspace S, gives a partition of ~ into independent “isomorphic”

flats S,(U = S,~), where S, = (zf, O) + S, = {(c) + z, i)lz = S,}.

The algorithm for maximal independent subspaces finds for each i, i =

1,..., n, a matrix Al, of dimensions (d – dim(S, )) X d, whose rows are linearly

independent, and whose null space is S,. Following [26], the matrix Al, is called

the scheduling matrix of i.

An algorithm that computes the scheduling matrix for the special case where

the decomposition tree of G is of depth one was given in [16]. In this special

case, assuming that G is strongly connected, the scheduling matrix would be

the same for all i. In fact, M = Ml = “”” = M. consists of a single vector

u = RJ, which is computed by solving a set of linear programming problems.

Obviously, the null space of u is of dimension d – 1. Any solution of the set of

linear programs used in [16] is in the interior of the set {vI(VC = CIRC)
(UrC > o)}. Observe that every such v is a separating vector (see Definition 4.2)

for G. Moreover, it is a witness since the decomposition tree has depth one. A

more formal statement follows.

PROPOSITION 6.1. Suppose G = (V, E, f ) is strongh connected and G* has

no cycles. If the decomposition tree of G is of depth one and LJ is a separating
Lectov (and hence a witness) for G, then the null space of v is a maximal

independent subspace.

PROOF. The null space of u has dimension d – 1. Therefore, if it is

independent, it must be maximal. It remains to show that the null space of u is
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independent. First, we claim that for any subspace S, if S n CIRC = {O}, then

foralli (ill,..., n)andforallu~ S~, the set {(u + z, i)lz e S} is indepen-

dent. To prove this claim, assume to the contrary that for some b + O in S and

some i. there exists a directed path in G* from (u, i) to (u + b, i). Thus, there

is a cycle in G with vector weight b, which implies b ● CIRC, and hence a

contradiction. Second, we claim that the intersection of the null space of any

witness v with CIRC is equal to {O}. To prove the second claim, observe that if

a witness exists, then the cone CIRC of possible circulation values is pointed.

Therefore, since ORTH( G ) is the lineality space of CIRC( G) (see Theorem

4.6), we have dim(ORTH(G)) = O. Observe that ORTH(G) is the intersection

of the null space of any separating vector with CIRC (see Definition 4.4).

Assuming the second claim holds, the first claim implies that S(u) is an

independent subspace. This concludes the proof of the proposition. ❑

Roychowdhury and Kailath [26] generalized the result of [16] and gave an

algorithm that computes the scheduling matrices for any dependence graph G,

where the decomposition tree is not necessarily of depth one. In the general

case, the scheduling matrices A4, (i = 1, . . . , H) need not be all identical, or

even of the same dimension. Their algorithm first computes the decomposition

tree of G, along with the separating vectors of the subgraphs sitting at the

nodes of the decomposition tree. Subsequently, the algorithm uses these

separating vectors to construct the scheduling matrices. The latter construction

is trivial (see Definition 6.2 and Proposition 6.3).

The algorithm of Roychowdhury and Kailath [26] (like the algorithm for the

depth one case of [1 6]) is based on solving O(nz) sets of linear inequalities and

therefore, does not establish strong polynomiality. Recall that the zero-cycle

detection algorithm computes the decomposition tree of G along with a

collection of separating vectors that correspond to the subgraphs of G sitting

at the nodes of the decomposition tree. Hence, the results obtained here imply

that the scheduling matrices can be computed within the time bounds of the

zero-cycle detection algorithm, that is, in .4’% and strongly polynomial time.

When the decomposition tree of G and the separating vectors at its nodes

are given, it is easy to compute the scheduling matrices [26]:

Definition 6.2. Let G = (V, E, f ) be a dependence graph, where V =

{1,. . . . ~z}. Consider the decomposition tree of G, and the separating vectors of

the subgraphs sitting at the nodes of the tree. For each vertex i G V, consider

the set of subgraphs that are sitting in the decomposition tree and of which i is

a member. This set of subgraphs corresponds to a path in the decomposition

tree. Define the path of a vertex i to be the ordered set of subgraphs along this
path.

PROPOSITION 6.3. For a gilen dependence graph G = (V, E, f), the schedul-

ing matnl M, oj a [ ertex i is the matrix whose rows are the separatitlg l’ectors of tile

subgraphs along the path of i.

6.2. STRONG CONNECTIVITY. Another application of the zero-cycle detec-
tion algorithm is the following. Given a dependence graph G = (V, E, f ),

compute the strongly connected components of G+, that is, find graphs

G, = (~, E,, f, ) such that the graphs G: are isomorphic to each of the strongly

connected components of G ~. The problem of strong connectivity on periodic
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graphs was first raised by Orlin [24]. However, his paper is concerned only with

one-dimensional periodic graphs (i.e., when fi ~ + Z is a scalar function).

Orlin gave an algorithm for the one-dimensional case that does not seem to

generalize to higher dimensions. This is not surprising since the strong connec-

tivity problem is obviously at least as hard as zero-cycle detection in G: The

periodic graph G* does not have a cycle if and only if it has no nontrivial

strongly connected components. We show that the zero-cycle detection algo-

rithm can be used to compute the strongly connected components of G*. More

specifically, we prove that the strongly connected components are the con-

nected components of the subgraphs sitting at the leaves of the decomposition

tree.

The relation between the decomposition tree of the dependence graph G

and the strongly connected components of G* is given by the following

proposition:

PROPOSITION 6.4. The strongly connected components of G* are precisely the

connected components of the graphs G,*, where G~ is any subgraph of G sitting at a

leaf of the decomposition tree of G.

PROOF. The proof is immediate from the following two claims: The first

claim is that every strongly connected component of G* must be contained in

some G,*. This is obvious since all zero-cycles of G must be contained in one of

the G, ‘s. The second claim is that every connected component of a G: is

strongly connected. It suffices to show that every path ( el, e?, ..., el) in G, is

part of a zero-cycle. Since every eJ (j = 1,..., 1) participates in a zero-cycle C,,

the cycle U ~= ~C, is a zero-cycle that contains the path. ❑

REMARK 6.5. A strongly connected component S c V* of G* is such that if

(a, i), (b, i) G S, then (a + a(a – b), i) = S for any integer a.

It follows from Proposition 6.4 that for a given dependence graph G =

(V, E, f), we can compyte a collection of dependence graphs G, (i = 1,..., r),

such that the graphs (Gl )* are isomorphic to the strongly connected compo-

nents of G*. This is done as follows:

Algorithm 6.6 [Strongly connected components of G*].

(i) Compute the decomposition tree of G. Denote by G, (i = 1,..., r) the
subgraphs sitting at the leaves of the decomposition tree.

(ii) For each G,, compute a dependence graph G,, such that (~1 )* is isomor-

phic to each of the connected components of G?.

Step (i) of the algorithm involves the computation of the decomposition tree,

that is, the zero-cycle detection algorithm. Step (ii) involves the computation of

the connected components of the G; ‘s. An algorithm for computing connected

components of a periodic graph is given in [5].

7. Discussion

The obvious open question that arises is whether Problem 1.1, where the

dimension d is part of the input, can be solved in strongly polynomial time, and
whether it is in the class J&7’. It is interesting to note the following:

PROPOSITION 7.1. The problem of detecting a zero cycle (Problem 1.1) is

P-complete, and also the general linear programming problem is reducible to it in

strongly polynomial time.



808 E. COHEN AND N. MEGIDDO

PROOF. The general linear programming problem is equivalent (in strongly

polynomial time and an .4’%’ reduction) to the problem of solving the following

system:

Ax=o

o# x20, (s)

where A = R’” “. Consider a network consisting of ~z parallel edges from

vertex s to vertex t and one edge from t to s. (It is a trivial matter to avoid

parallel edges if this is desired.) Associate with the ith edge the weight-vector

given by the ith column of A, and associate with the reverse edge the zero

vector. The existence of a nontrivial zero circulation in this network is equiva-

lent to the existence of a solution to the given system (S). This establishes our

claim. •l

In view of Proposition 7.1, the questions stated in the beginning of this

section are equivalent to two famous and difficult open questions.

Recall that we considered zero-cycle that were not necessarily simple.

Unfortunately, if simplicity of the cycle is added to the requirements, the

problem becomes .Y?-complete. Moreover, even the problem of recognizing

whether a graph with scalar weights has a simple cycle with a total weight of

zero is ,/Y@-complete. This follows from the fact that the knapsack problem can

be reduced to detecting a simple zero-cycle in a graph whose edges form a ring,

where two consecutive vertices are connected with two parallel edges.

8. Para)netric Minimum Cycle: Prelimirmries

In this section, we define the parametric minimum cycle and the parametric

minimum cycle-mean problems as instances of a special class of convex

optimization problems. In Section 8.1, we discuss the “hyperplane query”

subproblem. Section 8.2 contains material relevant for solving the second part

of Problem 4.7. We suggest to skip Section 8.2 in first reading. In Section 8.3,

we give the proof of Proposition 4.9, and hence, complete the reduction of the

zero-cycle detection problem to solving instances of Problems 8.5 and 8.7.

The parametric minimum cycle and the parametric minimum cycle-mean

problems are a generalization of the corresponding nonparametric problems.

In instances of these problems with d – 1 parameters, the edge weights are not

constants but are linear functions of the parameters. When values (a vector in

R:) are assigned to the parameters, we get an instance of the nonparametric

problem. We associate with each parametric instance a function of the form

g: R’{- 1 ~ R, which is a mapping from assignments of values for the parame-
ters to the solution of the corresponding nonparametric problem. We shall see

that these functions are piecewise linear and concave. A solution of a paramet-

ric problem is, roughly, an assignment of values to the parameters that

maximizes the solution of the resulting nonparametric problem. This is equiva-

lent to the problem of maximizing the function associated with the parametric

instance.

We give some definitions and notations.

Definitioiz 8.1

(i) For a finite set %’ c R~, denote by LY : R~ ~ R the lower envelope of the

linear functions that correspond to the vectors in %, Lv( X) = mine ~, CTA.
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The vectors c c $27, and interchangeably the linear functions CTA are

referred to as pieces of L&. If for A’ = R’i and c G C we have CTA’ =

L% ( h’) we say that c is actile at A’.

(ii) Suppose H c R~ is a flat, F c R ~ is the subspace parallel to it, and

%= {c,,..., c,) c R~ is a set of vectors. A balancing combination of 27

relative to H is a positive linear combination ~;=, a, c1 that is orthogonal to

F. If H = R’/, we say that Z{=, a, c, = O is a balancing combination of ‘% if

cl,, ..., Q!r > 0.

Let R; denote the set of vectors A = (Al,..., A~)~ = Rd such that Ad = 8.

Definition 8.2. For g: Rd - R (g: H j R where H c Rd is a hyperplane),

we introduce the following definitions and notations:

(i) Denote by A, - A (possibly A = 0) the set of vectors A c R’ (A ● H)

where g(A) n maximized.

(ii) Denote by%, - 2? the set of A = R~ (A ● H) such that g(A) >0. Also,

denote by %8 the set of A =X n R:.

(iii) An algorithm that computes the function g is called piecewise afli~ze, if the

operations it performs on intermediate values that depend on the input

vector are restricted to additions, multiplications by constants, compar-

isons, and making copies.

(iv) When g = Lv (% c R’{), we say that g’ = LY is a weak approximation of

g, if the pieces of g’ comprise a subset of the pieces of g (%’ c %) and aff

Ag = aff A~,. The function g’ = Ly, is a minimal weak approximation of

g, if there is no proper subset %“ of f%” such that L6,, is a weak

approximation of g.

The functions we consider are concave, piecewise linear, and are of the form

g: R’/-l ~ R (sometimes we denote the range by R$). We also assume that

each such function is given by a piecewise affine algorithm (we use the notation

M) that evaluates it at a given point. The parametric minimum cycle and

parametric minimum cycle-mean problems are special cases of the following

problem:

Problem 8.3. If g(A) >0 for some A, then output such A; otherwise, find

A e rel int A. We sometimes add the following requirement. If g s O, find a

subset %’ of the pieces of g, such that Lp is a minimal weak approximation of

g, and find a balancing combination of % relative to R~. We refer to this last

task as the “optional” part of the problem.

Intuitively, the set % certifies that the function g does not exceed its

maximum value. The advantage of considering it is that while the number of

pieces of g may be very large, the size of a minimal weak approximation is at

most 2 d.

The scheme we present here to solve Problem 8.3 for the parametric

minimum cycle is quite general and can be applied to any concave function g
as above.

Let G = (V, E, j ) be as in Problem 1.1. The vector-weights jle) (e = E) are

interpreted as linear functions of d – 1 variables (parameters):

f(e) =fl(e)A, + . . . +fd_,(e)Ad_, +fd(e).
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When A is assigned with specific

resulting set of scalar weights.

Parametric mi?limum cycle-?nean:

E. COHEN AND

numerical values. we denote

N. MEGIDL)O

by f’A the

Definition 8.4. Consider G = (V, E, f ), where for (i, j) = E, f(i, j) = cl, c

Rd,

(i) For a subset of edges E’ c E, denote by f ( E’ ) the (d – 1)-variable linear
function (1/l E’ l)Z& ~ ~ f ( e).

(ii) ~~ote by g(A) the minimum cycle-means relative to the scalar-weights

1/”

Prob/enz 8.5 (Parametric Minimum Cycle-Mean). For a given graph G =

(V. E, f ), if g(A) >0 for some A, then output one such A; otherwise, find
A c relint A.

Parametric nlillimanz cycle:

llefini~ion 8.6. Consider G = (V. E, f ), where for e ● E, f(e) = c, = R“,

(i) For E’ c E, denote by f (E’ ) the (d – 1)-variable linear function Z,. ~ f (e).

(ii) Let C = C(A) denote a cycle of at most n edges which minimizes the total
scalar weight ATC,. Denote g(A) = f (C)T h.

Problem 8.7 (Parametric Minimum Cycle). For a given graph G = (V, E, f ),

if g(A) > 0 for some A, then output any such A: otherwise find A* = rel int A

and a collection 8 = {Ct, . . ., C’,} of cycles, each of at most n edges, such that

L U’(C, )IJ=.(ll ,}} is a minimal weak approximation of g (see Definition 8.2),

along with a balancing combination of the cycle values f ( ‘%) relative to R;.

Note that the function g defined for both problems above is of the form
g=L ~> where t? is the collection of all possible vector values of cycle-means

(Problem 8.5) or cycles of at most n edges (Problem 8.7). Also note that g is

concave and computable by a piecewise affine algorithm (see Figure 3 for an

example of such functions). The parallel of the optimal part in Problem 8.3 is

omitted in the statement of Problem 8.5. In Problem 8.7, however, the optional

part corresponds to the collection of cycles. We explain the purpose of

considering the optional part. Recall that in Section 4 the problem of detecting

zero-cycles was reduced to solving Problem 4.7. Solving the latter problem

amounts to (i) computing a separating vector, which is needed to solve the

decision problem, and (ii) finding a collection of cycles, which is used for

computing an explicit zero-cycle when one does exist. Proposition 4.9 tied the
solution of Problem 4.7 to solving instances of the parametric minimum cycle

and the parametric minimum cycle-mean problems. The proof of Proposition

4.9 was deferred to this section. We see that in order to compute a separating

vector (and hence decide existence of a zero-cycle) it suffices to consider

Problems 8.5 and 8.7 where the optional part is omitted.

8.1. THE ORACLE PROBLEM, We find the following subproblem useful for

the solution of Problem 8.3. The goal in Problem 8.3 is to maximize a function

over some domain. Intuitively, the following is a useful tool: decide on which

~The mvzunum c}cbneun is the mmlmum, over all s]mple cycles. of the total weight of d cycle
dnmte.dby the number of lts edges.
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(1,2) (-1,2)
v

G=
(2, 7)

(-2, 2)
(3, 4) (4, -5)

Separating Vector: A = (1,1)

(-1,2)

G,= ~

(-2, 2) ‘2= u
(4, -5)

Witness Vector: A = (–1, 1) Witness Vector: A = (1, –1)

FIG. 2 Example of the decomposition of a graph G

–2A + 5
v

G=

$A+2
A–1

g(,A)

I

Minimum cycle of at most 2 edges in G

g(~) = min{~A+2, A +4,–X+4}

811

Minimum cycle-mean in G

g(~) = min{~~ +2,–~A +2}

FIG. 3. Example of g for a grdph G with 2-dimensional weights.

side of a given query hyperplane (in the A space) g(A) is either maximized or
unbounded. We refer to a procedure that solves this problem as an oracle.

Clearly, such an “oracle” would enable us to perform binary searches over the

A space. In order to achieve strongly polynomial bounds, however, we use a

more sophisticated approach where the number of hyperplane queries needed

is of the order of the number of comparisons done by M. Each hyperplane
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query can be resolved by one oracle call. By using the multi-dimensional search

techniques and exploiting the parallelism of w’ we can do better: We present a

solution where the number of oracle calls performed is a polylog in the number

of comparisons (hyperplane queries needed).

The function g is a concave piecewise linear mapping from R~ into R.

Concave functions have the property that it can be effectively decided which

side of a given hyperplane H contains the maximum of the function. The

decision can be made by considering a neighborhood of the maximum of the

function relative to H, searching for a direction of ascent from that point. This

principle is explained in detail in [22] and is developed below for the special

structure of our problem.

Problenl 8.8. Given is a concave function g: R~ ~ R and a hyperplane H in

the

(i)

(ii)

(iii)

We

k-space.

Recognize whether there exists A E H such that g(A) >0, and if so,

output any such A: otherwise,

find A ● H n rel int(A), if such a A exists, and generate a solution of

Problem 8.3 for g; otherwise, if H n rel int ,4 = @,

recognize which of the two halfspaces determined by H either intersects

rel int A, or has g unbounded on it.

refer to a procedure that solves Problem 8.8 as an oracle and to the

hyperplane H as the query Ilyperplatle.

The method presented here solves instances of Problem 8.3 by running a

“simulation” of the algorithm .@, where (i) additions and multiplication are

replaced by vector operations, and (ii) comparisons are replaced by hyperplane

queries. Problem 8.8 is solved by three recursive calls to instances of Problem

8.3 on functions of the form g’: R~- i ~ R. For a point A ● R:, define

g~ = L% ~ as the function whose pieces are all the pieces of g = L! which are

active at A E R~ (%’ = {c ● %Ic7 A = g( A))). The functions to which the

recursive calls are made are restrictions of functions of the form gh to

hyperplanes. We give a method to convert a piecewise affine algorithm o? that

computes g to a piecewise affine algorithm .c#’ that computes g’ and performs

the same number of operations as M. Algorithms that solve Problem 8.8 for the

parametric minimum cycle and the parametric minimum cycle-mean functions

are given in following sections.

8.2. GEOMETRIC LEMMAS. We prove some properties of weak approxima-

tions and balancing combinations. These properties are used later for solving
the “optional” part of Problem 8.3, that is, to solve the second part of Problem

4.7.

For a set F c R“, we use the following notation: aff F is the affine hull of F,

that is, the smallest flat that contains F, lin F is the subspace spanned by F,

and cone F is the convex cone spanned by F (conic hull of F).

PROPOSITION 8.9. Suppose that g = L ~ , where F is a finite set of L’ectors,
A* G AR, and I%’ = {c G &lc TA* = g( A%)}. T/le function L, t is a weak approxi-

mation of g.

PROOF. Consider g in a neighborhood A*. Since C is finite, there exists an

open neighborhood ~ of A* such that L, ( A ) = g(A) for every A = ~.
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Consider a vector A’ and denote by L the open line segment determined by k’

and A*. Consider a point A“ ● L n N, and let c E %’ be a piece of g active at

Al’. Since g(A”) s g( A* ) we have g(A’) < g(A* ). Suppose that A’ @ aff A. We

need to show that Lfi,( A’) < g( A* ). For every A ● L, g(A) < g( A* ), since

otherwise we have A’ E aff A. In particular the latter holds for A“. It follows

that Lt,(A’) s c~A’ < g(A*). ❑

COROLLARY 8.10. If Lc, is a minimal weak approximation of g, we haue

CTA = g(A) for all c = %“ and A G affA. It follows that A~,, = affA.

PROPOSITION 8.11. If g = LW and for some A ● rel int A and c c %’ we have

CTA = g(A), then CTA = g(A) for all A E affA.

The proof is immediate.

PROPOSITION 8.12. Suppose g = L@, where @ c R~, is bounded from above.

Let F= {cl,..., c, ~ c @ be a set of pieces of g. Under these conditions,

(i) The function LF is a weak approximation of g f and onlj if cone ~ L

(aff A,)’ . If LF is a minimal weak approximation of g, cone %’ = (aff Ag) L .

(ii) If LF is a minimal weak approximation of g, then there exist positice numbers
al, ..., a, such that X;., ale, = O and hence lin ~ = (aff A~) ~ .

(iii) Zf al,..., a, as in (ii) are gioen explicitly, then every c ~ ( aff A) 1 can be

expressed as a nonnegative linear combination oj’ vectors in %7 using 0(d2r)

operations.

PROOF. The function L< is bounded from above on R~, and hence is

nonpositive. Therefore, O E A, L;(A) = O, and aff A = lin A is a subspace.

Part (i) follows from Proposition 4.10. The equality when L, is a minimal weak

approximation follows from Corollary 8.10. Parts (ii)–(iii) are direct conse-

quences of Part (i) and Proposition 4.17. ❑

Remark 8.13. Suppose H = {A G R~laTA = /3} ( P > O) is a hyperplane,

F = {A = Rdla~A = O} is the subspace parallel to H, and X* c H is a point on

the hyperplane. By applying standard methods, using 0( d3) operations we can

find an affine mapping M from H onto R~- 1 that maps A* to O. All such

mappings are of the form M: H ~ R’i - 1, M(A) = L( A – A*) where the matrix

L E R(~– ‘)x~ is such that L(F) = {LA\A G F’} = Rd. Within the same time

bound we can compute the matrices L-1 = R’[x ‘d-1, that map R’j - 1 onto the

subspace F, and F = Rd Xd such that for y G Rd, Fy is the projection of y into

the subspace F.

PROPOSITION 8.14. Let F c Rd be a jkite set of L’ectors, and suppose

L ~ ; R~ ~ R is bounded. Suppose we are gilen a hypeplane H c Rd, along witl~ a

point A“ E A~W~.J Under these conditions, 0(d3) operations we can compute an

affine mapping k: H - R d– 1(M< A* ) = 0), and a linear mapping of the L)ectors

in $?7’ = {c E %71cTA$ = LE (A)) (the pieces of Lz that are “active” at A*) into
l~ectors in @ c R d– ~. These mappings corll~ert the problem of computing a minimal

weak approximation of L ~ restricted to H into an equil~alent problem of computing

a minimal weak approximation of L?: Rd -‘ * R.

Jgl H is the function g whose domain is restricted to H.
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PROOF. We use the notation of Remark 8.13. It follows from Proposition

8.9 that L&~ is a weak approximation of ~t ,~, so we can consider only the

vectors in the set %’. pet K = FL-l, and f% = {Elc = ?“} where ~ = CIK. We

show that (i) the set % is such that for all A G H, c ● %’, CTA = i7M( A ) +

L.-( A’), and (ii) for Y c 8, the set Y c & is such that Lk is a minimal weak

approximation of L7 if and only if L ~, is a minimal weak approximation of

L tlH.

For a vector y ● R(I denote by y’ = yTa\llall the projection of y into the

subspace spanned by a, and denote by j = Fy = y – y’ the projection of y on

F. Observe that F = { flal ~ ● R}L c R~, and thus for all x, y E R’[, xTy = iTj

+ x’y’, and for all A E H we have A! = ( A*)’.

For c = ~’, define ~ = ;TL -1 = cK Consider vectors c ● S’ and h = H.

Recall that crA* = L, ( A’ ), and therefore we need to show that C7( A – h’) =

tTA4(A). Note that cr(A – A*) =~T(~ – R) +c’(A’ – (A*)’ ). Since X = (A7Y

for all A ~H, we have CT(A – A*) =~TL-iL(A – A*) =;TM(A). ❑

PROPOSITION 8.15. Urlder the conditions of Proposition 8.14, the follo~ving

holds: A set of l’ectors {cl, ..., c,} C t?’, and a set of positil)e numbers

al, . . .. a!.> CYl> 0 satisfj Z{=, a,~, = O if and only if Z:., Qlcl = – ya and

y >0. Moreoler, y >0 if and o~lly if L ~ ,~{ <0. The scalars a, are indepetldent

of the particular choice of A* and the linear mappings.

PROOF. We continue to use the notation of the proof of Proposition 8.14.

Recall that tL = ;, and thus Z:., a,i?, = (Z:., a,~,)L = O. Hence, X[. ~a,cl =

X;=, attt + x;=, ate; = X:=, a,c~. Denote c; = c~a. We need to show that

Z;=, alcj <0 and the inequality is strict if and only if LV ( A’ ) <0. Recall that
for all c ● 2?’, crA* = L( (A*). Thus, (Z{= la, cJ)’A* = (E~=la,cJ)a~h* < 0,

and equality holds if and only if LY ( A* ) = O. To conclude the proof, observe

that A* G H, and therefore aT A’ = ~ >0. ❑

PROPOSITION 8.16. Suppose we are gilen a set of L’ectors 1%’= {c,,. . . . c,} c R~

such that %’ spans R(I and a balancing combination of F (see Definition 8.1 part

ii). By using 0( rd~ ) operations, we can find a minlrnal SLlbSet ‘%” c F (I%’ I <2 d )

t}lat spans R~ and (i balancing combination for &.

PROOP. Assume that the vectors c,, . . . . c,{ span R’{. In order to find a

solution, we use an iterative step with the following properties. If 1%I > ?d, we

fipd a balancing combination for ‘F\ ~ where 8“ c {Cd+,, . . . . e2d+, ) and

1%1 >1. It is easy to verify that after repeating this step at most r – 2d times,
we get a balancing combination for a subset ‘Z” of f“, which spans Rd and is of

size at most 2 d.

The iterative step is as follows: Solve the linear system of equalities

~~!~~l P,cl = O. The vectors c~+l,..., CZ,~+I are linearly dependent, and hence
this system is feasible. Assume without loss of generality that for at least one

index i,/?l>O. Letll={d-+l <i<2dl~, >0}, Iz={d+l< i<2dl @,<

0}, y = min(e ,,aL/~l, and ‘3’ = {CJI G 11, a,/~l = y}. We have Z,= ~,,,,, plc, =

0, and & # 0. Consider w’ = (aj, . . . . a;) where al = al (i @ 11 U lZ), a; = a,

– -y~l (i ● 1, U lZ). It is easy to verifi that aj >0 and a: = O if and only if

c, G %. It follows that xc ~ ~ _F ci~c, = XC ~ , a,c, – y~, ~ ~, ~1 , ~,c, = O. Thus,

the vectors in % \ f? spari R~, and EC .,’. < a~c, is a balancing combination.
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The complexity is as follows: The first step amounts to computing d indepen-

dent vectors {c,,..., cd}, what can be done in 0(rd2 ) time. In each iterative
step, we solve a system of linear equalities. This can be done in 0(d3)

operations, using Gaussian eliminations. Noti$e, however, that in two consecu-

tive iterations, the linear systems have d – I$%1columns in common. In such a

case, when the matrix of the first problem is given in upper triangular form, the

second system can be solved in only 0( I~1 dz ) operations. Thus, the total

number of operations is 0( rd2 ). ❑

COROLLARY 8.17. Suppose g = L ~ where (Y c R~) is bounded from aboue.

Assume we are giuen a set of L)ectors ~ = {c,, . . . . c.} and a balancing conlbina-
tion of % such that (i) LF is a weak approximation of g, and (ii) there exist

A* ● rel int A such that for all c E @ we halle cT A* = g(N). Under these

conditions, in 0(rd2 ) operations we can compute $Y c E sllch that Lw, is a

minimal weak approximation of g, and a balancing combination of P’. The size of

such ~’ is at most 2(d – dim(A)).

PROOF. It follows from Corollary 8.10 and Propositions 8.11 that for all

c G %, c G ( aff A) 1 . It follows from Proposition 8.12 that the vectors % span

the subspace (aff A) 1. To conclude the proof, note that the subspace (aff A) 1

is of dimension d – dim(G). ❑

PROPOSITION 8.18. Suppose g = L~ has the property that there exist a L’ector

A* = rel int A such that CTA* = g(A) for all c G ~. Suppose we are gil’en:

(i) Hype@anes Ha (8 e { – 1,0, l}), where Ha = {hlaTA = a + 8} for some
vector a and a E R, and HO contains A*.

(ii) Sets of L’ectors E6 = {c!,..., cr~} C% and CX8GR’J (8= {–1,0,1}) SLLCIZ

that L ~, is a minimal weak approximation of g IH~, and Z~Z, a ~c,s is a

balancing combination of @ relatiue to H6 (8 c { – 1,0, l}).

By using 0(d3Z ~ E~- ~,”, ~}ra) operations, we can compute a set of Lectors & and a

balancing combination of @ relatile to R;, such that @ c u ~ , ~_ ~ ~ ,}%’6 and Lf

is a minimal weak approximation of g.
.,

PROOF. We give a description of an algorithm. In the first step, the

algorithm computes a set %’ c % of size at most Za ~ ~_, “ ~}ra and a balancing

combination of 6’, such that L%, is a weak approximation ‘of g. This is done as

follows:

(i) If A c ~0~then ~’ = u t ● {o, L-1)$%iS such that G I is a weak wproxi=
tion of g. To find a balancing combination, the algorithm computes pa > 0

(8 = {– 1,0, 1}) such that Z 8 8 = O. Otherwise,8G{–1.0,1)R?V=l% CL

(ii) Ha n A + 0 (for either 8 = 1 or o = – 1). It turns out that the set
%“ = %8 is such that L%, is a weak approximation of g. Hence, the

algorithm chooses ~ 8 as the coefficients of a balancing combination.

Assuming that $%’-is a weak approximation of g the algorithm proceeds as

follows: In case (ii) % = F is obviously a minimal weak approximation of g. In

case (i) it follows from-Corollary 8.17 that by using 0( d3 X5. ~~1,” ~)r8) opera-

tions we can compute t? c % and a balancing combination for %, such that LK

is a minimal weak approximation of g.



816 E. COHEN AND N. MEGIDDO

What remains is to prove that L, ~ is indeed a weak approximation of g.

Denote by A ~ c Ha the set of maximizers of g restricted to Ha. By using an

appropriate translation of the coordinates, we can transform the problem so

that % c R’l-l, g: R~-l ~R, H8 = {A = R’i-’laTA = 6), A* = O, and g(A)

= O. This transformation preserves the property of a subset being a weak

approximation or having a balancing combination relative to a given flat. A

balancing combination in the transformed problem corresponds to a balancing

combination relative to R; in the original one. Note that in the transformed

problem, O = A, so the flat aff A is a subspace.

Let A; G rel int A8. Observe that g is linear, that is, for all a >0, g( a A) =

ag( A). Thus, in case (i), A = AC]. In case (ii), consider the intersection of A

with the open halfspace {A 18(arA) > O}. The set A is convex. Thus, if is not

empty, it must contain a relative interior point of A. The hyperplane Ht is

contained in this halfspace and hence this intersection is not empty, and
dim A& = dim A – 1. Note that O G aff A8. Thus, the flat aff Aa Q { ,Bh~l ~ ●

R} must be contained in aff A. On the other hand, this flat is of the same

dimension as aff A and therefore equality holds. Consider any A’ ● R’i - 1 such

that h’ G aff A. In order to prove that L& weakly approximates g, we need to

show that there exists a c E g’ such that CTA’ >0.

First, we prove case (i). If aTA’ = O, then we are done, since A E ZIO and

%’0 c S’. Otherwise, -assume without loss -of generality that arA’ = ~ >0.

Consider the vector A = A/~. The vector A lies on the line determined by O

and A, and is such that aTA = 1.Since aff A is a flat, if it contains two points

on a Line, it contains the whole line. Therefore, O = aff A and Al @ aff A imply

that A @ aff G. It follows that there exists a c G %’1 such that ~Tc <0. Finally,

observe that A’Tc = ( ~ X)~c <0.

To prove case (ii), define A“ to be the vector A!’ = A’ + ~ A% where ~ = (8
— aT A’ )/(a7 A%). Note that aTX’ = 8 and thus X’ = Ha. Moreover, X’ 6!

aff As, since otherwise A’ c aff A. Thus, there exists a c ● %3 such that

c TA“ < 0. We have A% = aff A and therefore A!’ has the same projection on

(aff A) 1 as A’. It follows from Proposition 8.11 that for all c’ E ~a, c’ =

(aff A)’ . Hence, CTA! = CTX’ <0.

To find a balancing combination, recall from Proposition 8.15 that there exist

numbers yl > 0, y. ~ < 0 such that ~~h ~a,ac~ = Y8a. Hence, we choose & =
l-y_ J B, = 1. It is easy to verify that

8.3. BACK TO ZERO-CYCLES. We are now ready to give the deferred proof

from Section 4.

PROOF OF PROPOSITION 4.9. Observe that the weight of a minimum weight

cycle in a graph with the scalar weights a AT~ ( a > O) is linear in a. If the

graph G has a witness A, then either Ad = O or the vector (1/A~)A is a witness

as well. Therefore, we can restrict our search on the A-space to vectors A e Rd
where Ad c { – 1, 0, 1}. Denote

X8=27 n{y:y~=8} (7= {-1,0,1}.
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Run the parametric minimum cycle (respectively, parametric minimum cycle-

mean) algorithm on G as defined in Problem 8.7 (respectively, Problem 8.5)

three times with the following (d – I)-variable linear functions. For 8 =

– 1,0, 1, we associate with the edges the linear functions y T A ~ where A ~ =

(A,,..., Ad_,, 8 )~. If a witness for G exists, it must be found during at least

one of the three runs. Otherwise, the maximum of the function g in each of

the three subproblems in nonpositive. Thus, for all three instances, the corre-

sponding sets %3 (8 = { – 1,0, 1}) consist of vectors for which g = O. The

algorithm computes nonzero vectors Al @ rel int %a, 8 ● { – 1,0, 1} (if %5 + O),

along with collections %(8) (of size I‘%(~‘/ = O(d)) of cycles such that

L {f(c)lc e Y’(”} is a minimal weak approximation of g restricted to the hyper-

plane A,l = 6, and OLs are coefficients of balancing combinations of %6

relative to Ad = 8. To find the separating vector A we proceed as follows:

(i) If%, # 0 for 8 = { – 1, 1}, we choose A to be At, and then

A = At = rel int 88 c rel int %.

(ii) If % ~ =%1 = @ and %0 # {O}, we choose A to be a nonzero vector

At G rel int ~1, and so

A = A% G rel int %0 = rel int %.

(iii) The remaining case is W_, = ~ = @ and %0 = {O}. Here we conclude
that & = {O}, so there is no separating vector.

As done in the proof of Proposition 8.18, using 0(d3) operations, we can find a

set @ of cycles and a balancing combination for the cycle values {f(C)l C ● %},
such that the lower envelope of the set of cycle values is a minimal weak

approximation of the function g. To conclude the proof observe that the size of

a minimal weak approximation is at most 0(2d) (see Corollary 8.17), and that

cone $? Q ORTH(G) (see Corollary 4.11). ❑

9. Algorithm for Parnmet?ic Minimum Cycle-Mean

In this subsection, we sketch a strongly polynomial-time algorithm for the

parametric minimum cycle-mean problem. As mentioned before, this algorithm

is simpler than the parametric minimum cycle algorithm. However, its time

bounds are worse. The purpose of discussing it here is to give the reader some

intuition and explain some of the main ideas behind the strongly polynomial

bounds. Thus, only the ideas that are essential for strongly polynomial time

bounds are introduced. Two simplifications are made. First, the multi-dimen-

sional search technique is not discussed. It improves the time complexity, but is

not essential for strongly polynomial bounds. The second simplification is that

the algorithm only decides the existence of a zero-cycle. Therefore, the

collection % (see Problem 4.7) need not be computed, and it suffices to be able

to compute a witness or a separating vector.

Remark 9.1. The minimum cycle-mean relative to a set of scalar weights

can be found in 0( IEl “ IV 1) time by an algorithm due to Karp [15]. With n3

parallel processors, the minimum cycle-mean can be computed in 0(log5n)

time (see [20]).
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PROPOSITION 9.2. The l)alue of g( A ) can be described as

AND N. MEGIDDO

PROOF. Given A = R;, consider the following linear programming problem:

Minimize x(~Tct,)%
1.]

subjectto ~(.~,, -x,()=O i=l,..., n
(P)

~xt, = 1

l]

X>o.

Obviously, (P) has an optimal solution. Now, every feasible solution x of (P) is

a convex combination of feasible solutions x’, where Hx’ ) is a simple cycle.

Since Z.x~, = 1, the value of the objective function at each x’ is precisely the

mean weight of the cycle determined by x’. Hence, (P) has an optimal solution

of the form x’. In other words, the optimal value of (P) is equal to g(A).

Consider the dual of

Our claim follows

g(A). ❑

( P):

Maximize t
7r,t (D)

subject to n-, – w, + t s – Arc,,.

from the fact that the optimal value of (D) is equal to

COROLLARIr 9.3. Tile problem of lnaximizing g(A) can be formulated as a

linear progranmzing problem:

Maximize t
rr, I.A

(F)

subject to T, – n, + Arct, + t < 0.

The dual of (P) is tile following zero -circu[atiotl problem:

Minimize ~d[,x,

subject to ~ ( x,, - x,, ) = O i=l . . . . . n

(D)~xt, = 1

11

~.Y,, c;, = o

1.1

X>o

}vhere c,] = (C;, +dt, ),c;, = Q-’.

Retrim-k 9.4. In view of Corollary 9.3, the problem of maximizing g(A) can

be solved by an extension of the algorithm for linear programming in fixed

dimension [22] and its improvements [1, 7]. Note that only the dimension of the
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h-space is fixed, whereas the number of W,’s varies. However, we work

recursively on the space of A’s where at the base of the recursion (d = 1) we

have a problem of the form of (D), that is, a problem with fixed scalar-weights

that is equivalent to the usual minimum cycle-mean problem (with no parame-

ters).
*

Before discussing the algorithm for Problem 8.5, we present the respective

“oracle” algorithm.

Problem 9.5. Given G = (V, E, f ) and a hyperplane H in the A-space,

solve Problem 8.8 for g relative to H.

Problem 9.5 (an oracle call) is solved by recursive calls to an algorithm for

Problem 8.5 on input graphs with vector weights of a lower dimension as we

argue below.

THEOREM 9.6. Problem 9.5 can be sokjed by three recursive calls to an

algorithnl for Problem 8.5 in dimension d – 1. The complexi~ of the additional

computation is dominated by the calls to Problem 8.5.

PROOF. Consider Problem 8.5 subject to aT A = a (and A = Rf). This is in

fact a (d – I)-dimensional version of the original problem restricted to H = {A

G Rf [a~ A = a). If g is unbounded on H, then this fact is detected; otherwise,

suppose A(”) is in the relative interior of the set of maximizers of g(A) subject

to A = H. Suppose we also have corresponding values m;, . . . . w~” and t(o) =

g( A((’)). We wish to recognize whether A(o) is also a relative interior point of the
set of global maxima (i.e., relative to R;). If not, we wish to decide whether for

all A* E R: such that g( A* ) > g( A(o)), necessarily aT A* > a, or whether for

all of them a7 A* < a; these are all the possible cases. Let ~“ denote the set

of edges (i, j) such that

–7TI0 + m-,o– (AO)TCLJ= t“.

Notice that the subgraph G() of G induced by EO contains all the cycles of G

whose cycle-mean is minimum relatively to the weights ( AO)TC,J, and only such

cycles. In order to determine whether AO is in the relative interior of the global

maxima (and if not determine which side of H contains it), we can consider the

behavior of g on two hyperplanes close to H. These hyperplanes are parallel to

H, one on each side. We consider the local maxima relative to these planes. In

order to avoid the problem of how close to get, we can consider just the pieces

of g which are active at AO. This is equivalent to considering only cycles whose

cycle-mean is minimum relative to ( AO)Tczj; namely, the cycles of subgraph G“.

We now solve two problems on Go of maximizing t subject to

m-—m-l+ATclJ+t<O (i, j) CE”,

where in one of the problems we also include the constraint a~ A = a – 1, and

in the other we include the constraint a~ A = a + 1. Both problems can be

solved as ( d – I)-dimensional problems since one of the Az’s can be elimi-
nated. Denote the optimal values of these problems by t”)and t(–‘’.Only one

of the optimal values can be greater than t(o).If this is the case, or if one of

t(l),t(-‘) equals t(()) and the other is smaller, then the side of the hyperplane

that contains rel int A is determined. Otherwise, if either both are less than, or
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both are equal to dO), then d“) is the global optimal value. The base of the

recursion is the l-dimensional problem (with no parameters at all.) ❑

A sketch of the algorithm for Problem 8.5 is given below.

Algorithm 9.7. Consider a minimum cycle-mean algorithm that uses only

comparisons, additions, and divisions (multiplications) by scalars as primitive

operations. Define the corresponding lifted algorithm to operate on edge

weights that are linear functions, defined by ~(e) ( e E ~). The lifted algorithm

maintains a collection % of open halfspaces that is initialized as the empty set.

Additions and divisions by scalars are naturally “lifted” to additions and scalar

divisions of linear functions. Comparisons are more intricate. To “compare”

two linear functions, we compute the hyperplane H such that the result of a

comparison is uniform throughout each of the halfspaces defines by H. We

then perform an oracle call on H. If the oracle call did not result in a global

solution, a halfspace h is found (one of the sides of H ) which contains the

maxima of g. The result of the comparison is the relation between the linear

functions that holds throughout h. The halfspace h is then added to W and the

algorithm continues. If the algorithm terminates and no oracle call resulted in

a solution, a separating vector (or a witness) is found by considering a point in

the intersection of all the open halfspaces in %

10. Algorithm for Parametric Minimllnl Cycle

This section introduces an algorithm for the parametric minimum cycle prob-

lem. This problem is essentially an instance of Problem 8.3 for a particular

family of functions. The general lines of this algorithm can be used to solve

Problem 8.3 for any concave function g given by a piecewise affine algorithm.

We suggest an oracle algorithm that relies on making recursive calls to

instances of Problem 8.7, where there are fewer parameters, but the weights

are more complex.

In order to facilitate the recursion, the problem is generalized to the

extended parametric minimum cycle problem (EPMC). The algorithm pre-

sented here solves the EPMC problem. Let us start with a definition of this

problem.

Extended paranletric minimum cycle, Let G = (V, E,w, f) be a graph with

two sets of vectors associated with the edges, that is, for every e = E, f(e) = R(l

and w(e) ● l?’. We identify ~(e) with the (d – 1)-dimensional linear function:

~(e) =f,(e)A1 + ~~~+f~_l(e)AC[_l +ftl(e).

The weig)zt of an edge e is the (1 + 1)-tuple (w,(e),. . . . ]vl(e), ~(e)). The
definitions given in 8.6 are extended as follows:

Dej?litioll 10.1. Consider a graph G = (V, E, w. f ), where for e E E, f(e)

= CC,E R’i.

(i) A cycle C (not necessarily simple) is called w-minimal if the value w(C) =

Z,.’ w(e) (where edges are counted as many times as they occur on the
cycle) is minimal relative to the lexicographic order on R’.

(ii) Let C = C’(A) denote a w-minimal cycle of at most n edges that minimizes

the weight Z.. ~ ATC,,. Denote g(A) = ~( C)r A. Note that the first 1 coordi-

nates of the vector weight of a minimum cycle (i.e., the values given by w)

are independent of A; g(A) gives only the (1 + l)st coordinate.
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Remark 10.2. For a graph with vector weights in R1, the minimum, relative

to the lexicographic order, among cycles of length less than or equal to n can

be computed in one application of an all-pairs shortest path algorithm. This

takes 0(1 1~1 oIV 1) time sequentially, or O(log2rz) time using ln3 processors in

parallel. Therefore, the function g(A) can be evaluated by a~iecewise affine

algorithm (see Definition 8.2). Note that g(A) = L&, where % = {~(C)l C is a

w-minimal cycle}.

Problem 10.3 [Extended Parametric Minimum Cycle]. Given is G =

(V, E, w, f) as above. If g(X) >0 for some h, then output any such A;
otherwise, find A = rel int A and a collection 57 = {Cl, ..., C,) (r s 2d) of

w-minimal cycles, where each consists of at most n edges, such that the lower

envelope L{ f(c)lc ● ~} of their cycle values is a minimal weak approximation of
g, and find a balancing combination of the cycle values ~(Cl ),..., ~(C, )

relative to R?.

The EPMC algorithm presented below performs “oracle” calls. The oracle

algorithm recursively solves instances of the EPMC problem on G with sets of

vector weights w’: E - R~+ 1 and ~’: E ~ Rd - 1. The dimension of the ~

weights, which corresponds to the number of parameters, decreases in the

recursive calls. In order to solve an instance of the parametric minimum cycle

problem (Problem 8.7), we start with an instance of EPMC where ~ gives the

vector edge weights and w is a set of null vectors. At the base of the recursion,

the weights ~ are null vectors, and the problem is reduced to the nonparamet-

ric problem of computing minimum cycle relative to the lexicographic order on

d-tuples.

In Section 10.3, we propose Algorithm 10.14 for Problem 10.3. The algorithm

executes calls to the oracle problem (Problem 8.8) relative to g. An algorithm

for the oracle problem is given in Section 10.1. A call to the oracle is a costly

operation. Therefore, one wishes to solve many hyperplane queries with a

small number of oracle calls. In Section 10.2, we discuss the multi-dimensional

search technique (introduced in [22]). By applying it, we are able to reduce the

number of oracle calls performed to a polylog in the number of hyperplane

queries.

10,1. HYPERPLANE QUERIES. For a given a hyperplane 1? of R;, we wish to

solve Problem 8.8 for g relative to H. If H n rel int A # 0, we solve Problem

10.3, that is, we find A c rel int A, the collection %’, and a balancing combina-

tion of %’.

Problem 10.4. Given is G = (V, E, w, f) and a hyperplane H =’ {A G R~la A

= a} in the A-space. Solve Problem 8.8 for g relative to H.

THEOREM 10.5. Problem 10.4 can be solued by an algorithm that pe~orms

three calls to instances of Problem 10.3 where f is (d – 1)-dimensional. The time

complexity of the additional computation is dominated by these calls: It can be

done sequential in C/El i- D time for some constants C = O(d) and D = 0(d3).
In parallel, it can be done in constant B = 0(d3) time using O(m +- n3 ) proces-

sors.

PROOF. Consider Problem 10.3 subject to aT A = a and A = R~. This is in

fact a (d – I)-dimensional version of the original problem restricted to the
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hyperplane H = {h ● l?~la~k = a}. If g is unbounded on H, then this fact is

detected; otherwise, suppose A(’)) is in the relative interior of the set of

maximizers of g(A) subject to A c H, and we get the collection g’(’)) and a

balancing combination of %(()) relative to H. Suppose d(’) = g( A(’))). We wish to

recognize whether A(o) is also a relative interior point of the set of global

maxima (i.e.. relative to Rf). If not, then we wish to decide whether for all

A* = R; such that g( h“ ) > g( A((’)), necessarily a7 A* > a, or whether for all of

them aT A’ < a. These are all the possible cases. consider G’ = (V, ~, w’, f),

where w’ = (w, ~~h(())). Note that all the minimum cycles of G’ correspond to

minimum cycles with value t(o) at h of G. We solve Problem 10.3 twice on G’,

where in one of the problems we also include the constraint aTA = a – 1. and

in the other we include the constraint a~ A = a + 1. Both problems can be

solved as (d – 1)-dimensional problems since one of the At’s can be elimi-

nated. Denote the optimal values of these problems by t(d’, the corresponding

collections of cycles by g”, and let a ‘t be coefficients of a balancing combina-

tion of ~~ ( 8 ● { – 1, l}). Only one of the optimal values can be greater than

t(o) If this is the case, or if one of t(l), t( -1) equals t(()’ and the other is smaller,

then the side of the hyperplane that contains rel int A is determined. Other-

wise, if either both are less than, or both are equal to dO), then t(’)) is the global

’01 E rel int A. It follows from Proposition 8.9optimal value. In the latter case A

that the pieces of g which are active in a minimal weak approximation have

the value do) at A(o). Thus, a minimal weak approximation of the function g’

(see Definition 10.1) which corresponds to G’ is a minimal weak approximation
of the “original” g which corresponds to the graph G. The conditions of

Proposition 8.18 and Corolla~ 8.17 hold for the function g’. Hence, in O(d’)

operations, we can construct a minimal weak approximation of g, and find a

corresponding balancing combination. The base of the recursion is the one-di-

mensional problem (with no parameters at all) where C consists of a single

cycle with minimal value, and the balancing combination is the value of this

cycle. ❑

10.2. EMPLOYING MULTI-DIMENSIONAL SEARCH. The multi-dimensional

search problem was defined and used in [22] for solving linear programming

problems in fixed dimension.

Problem 10.6 [multi-dimensional search]. Suppose there exists an unknown

convex set X ~ R~, and an oracle is available such that for any query hyper-

plane H in R~, the oracle tells whether X n H = @; if so, then the oracle tells

which of the open halfspaces determined by H contains X. For nz given query

hyperplanes,determine the location of X relative to each of the hyperplanes,
or find any hyperplane (not necessarily one of the given ones) which intersects

x.
The following theorem was proven in [22]:

THEOREM 10.7. The solution of Problem 10.6 relatil)e to some nl/2 of the

gilen ~lyperplanes ca?l be found by using y G y(d) oracle calls. The additional

computation can be done sequentially in 0( y( d )m) time, and on qz parallel

processors in O(y(d)logm) time. From [1] and [7], y(d) = 0((5/9)3[’”).

COROLLARY 10.8. Problem 10.6 can be ,soked by using O(y(d)log m) oracle

calls and 0( y( d)m) additional time (see [22]).
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Remark 10.9. The procedure described in [22] can be parallelized so that

the additional computation (besides the O(y(d)log m) oracle calls) is done by

m parallel processors in 0( y(d)log2 m) time.

Definition 10.10. We define a partial order on Rd \ {O} as follows. For any

pair of distinct vectors al, a2 ● Rd, denote

H= H(al, a2) = {A =R~:a~A =a~h}.

If g is unbounded on H(al, a2) or if H(al, a2) n rel int A + 0, then we write

al 5A a2. Otherwise, g can be unbounded on at most one of the open

subspaces determined by H, and also rel int A can intersect at most one of

these open halfspaces. We denote al <A a? (respectively, al >A a2) if there

exists a A = rel int A such that a: A < a; A (respectively, a: A > al A ), in

which case the same holds for all these A’s, or if g is unbounded on the

halfspace determined by the inequality a; A < a~A (respectively, a~A < a~ A).

We also use the notation <P for a similar partial order relative to any set P.

Problem 10.11. Given are finite sets A ~,. ... A, of nonzero vectors, where

A, = {a;,..., a;,} (aj e Rd) and s = Zs,. We wish either to find a minimal

element, with respect to the partial order <L , in each of the sets A,, or (if we

encounter two incomparable elements) to reduce the problem to a lower

dimension. More specifically, we need to find either one of the following:

(i)

(ii)

A collection of closed halfspaces whose intersection P contains rel int A,

and indices l<m, <sl (i= l,..., r) such that for every 1 < i < r and

every 1 <j s s,, j # m,, we have a>, <A a; and a~l <p a;.

A hyperplane H such that either g is’ unbounded on H or H n rel int A #

0.

PROPOSITION 10.12. Problem 10.11 can be solued using O(y(d – l)logs)

oracle calls plus either

(i) O(y(d – l)log2s) parallel time on 0(s) processors, or
(ii) O(y(d – 1)s logs) sequential time,

where y(d – 1) is as in Theorem 10.7.

PROOF. The underlying algorithm is an extension of the multi-dimensional

search procedure for Problem 10.6 mentioned in Theorem 10.7. Here the set X

is either rel int A or (if the latter is empty) a domain where the function g is

unbounded. Thus, the case where X intersects the query hyperplane corre-

sponds to the case where either g is unbounded on the query hyperplane, or

the latter intersects rel int A; the case where X is contained in one of the open

halfspaces corresponds to the case where either rel int A is contained in the

halfspace, or g is unbounded on halfspace (but bounded on the hyperplane).

Also, note that the flat R? on which the multi-dimensional search is done, is of

dimension d – 1.

We first explain how to recognize for a given pair of distinct vectors a,, a,
whether al <A a2, a2 <A al Or al 5A a2. Consider the hyperplane H =

H(a,, al) c R: (see Definition 10.10). Suppose H is the query hyperplane

presented to an oracle that recognizes the location of the set rel int A relative

to H (in the sense of Problem 10.4). In particular, if H n rel int A + 0, then
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the oracle discovers this fact and returns a k G L? n rel int A. Similarly, if g is

unbounded on ~, then the oracle reports this fact and provides a A such that

g(A) > 0. In the remaining cases the oracle reports either al <,1 a2 or a? <,

a,.

The multi-dimensional search algorithm computes, adaptively, 0( y(d – 1)

log s) hyperplane queries. If any of these hyperplanes either intersects rel int A

or has g unbounded on it, then this fact is reported, and the present problem

is considered solved. Otherwise, each of the hyperplanes determines a closed

halfspace such that the intersection P of all these halfspaces has the following

property: either g is unbounded on the interior of P, or rel int A is nonempty

and contained in the interior of P. Moreover, vectors a,n,, . . . . a,,, are found,

such that for every i, a~n, <pa:, for all 1 <j < s,, j # nz,.
,

We implement the algorithm as follows: View the dimension d as fixed. It

was shown in [1] and [7] that by using a constant number of oracle calls (which,

however, grows exponentially with the dimension) one can locate X relative to

at least half of the hyperplanes. A similar scheme can be applied here. We

apply O(log s) phases. First. for each i ( 1 < i s r) we match the members of

A, into s,/2 arbitrary pairs. This is done with at most s/2 processors. We then

calculate the corresponding (at most s\2) hyperplanes II( a,, a,) (see Defini-

tion 10.1 O). In a constant number y( d – 1) of oracle calls and O(logs) time,

we can locate rel int A relative to half of these s/2 hyperplanes; unless one of

these hyperplanes turns out to be a valid output (in the sense of (ii) in Problem

10. 11). We now drop one vector from every pair for which the location relative

to rel int A has been found. The same is repeated with the remaining 3s/4

vectors, and so on. Altogether, we run in O(log s) phases, each of which takes

0( Y(C1 – l)logs) time on 0(s) processors, and 0( Y(C1 – 1)) oracle calls. The

sequential time bound is 0(-y(d – 1)s log s) plus 0( Y( d – l)log s) oracle

calls. In parallel, using 0(s) processors, the time is 0(-y(d – l)logzs) plus

0( y(d – 1)logs) oracle calls. ❑

10.3. ALGORITHM FOR 13XTENDED PARAMETRIC MINIMUM CYCLE. The algo-

rithm described below solves Problem 10.3. It finds a vector A E rel int .4,

unless g(A) > 0 for some k, in which case the algorithm outputs such a A. It

also returns a collection % of w-minimal cycles such that the lower envelope

L ~f(c)l( . ~ ~ of the linear functions defined by j(%) is a minimal weak approxi-

mation of g. The number of cycles in % is at most 2d.

Definition 10.13. Consider a scalar minimum cycle algorithm, where the

only primitive operations on expressions that depend on the edge weights are

additions. multiplications by scalars, and comparisons. We define the corre-
sponding lifted algorithm for input graphs of the form G = (V, E, f, w). The

weight of an edge c E E on these input graphs is an (1 + 1)-tuple

(w,(e), . . . . w,(e), f’(e)), where f(e) E R~ is viewed as a (d – 1)-dimensional

linear function and w(e) - (wl(e), . . . . w,(e)). The lifted algorithm is an exten-

sion of the scalar minimum cycle algorithm that operates on such (1 + 1)-tuples
instead of scalars. The extension of the operations of addition and multiplica-

tion by a scalar is straightforward, namely, given types (w ~, f ~), ( W2, f ~) their

sum is (w, + W2, f, + ,f2), and the multiplication by a scalar a is ( a w,, af, ).

Comparisons are made with respect to a lexicographic partial order on the

(1 + 1)-tuples. It is only a partial order since in the (1 + I)st coordinate we
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have the partial order <A (see Definition 10.10). To compare two (1 + l)-

tuples (w 1, Y,) and ( Wz, jz), we first compare lexicographically the first 1 scalar
coordinates. If the comparison is not resolved there, we need to compare the

linear functions ~1 and ~z. For this purpose, the lifted algorithm computes the

hyperplane H(~l, ~z) and solves Problem 10.4 (hyperplane query) relative to

H. A set of hyperplane queries is resolved by performing “oracle” calls (see

Section 10.2). The lifted algorithm maintains a set% of closed halfspaces which

initially is empty. The hyperplane query decides whether or not the vectors are

comparable. If they are, it decides whether ~1 <A f2. If f 1 5 i f z, then the

lifted algorithm halts since an oracle call resulted in a solution to Problem 10.3.

Otherwise, the resolved hyperplane query tells us which of the halfspaces

defined by H( f ~, f ~) (see Definition 10.10) contains the set rel int A, so this
hyperplane is added to E

Algorithm 10.14 [Extended parametric minimum cycle].

Step 1. Run the lifted minimum cycle algorithm, collecting into %’ all the

halfspaces resulting from oracle calls where comparisons are resolved. Either

some oracle call resulted in a global solution, or otherwise, the algorithm

terminates normally. Denote by CM the minimum cycle found.

Step 2. Denote by P the intersection of the halfspaces in%

(i) Compute A’ ● rel int P. This amounts to a linear programming problem
with d — 1 variables and IW I constraints, and hence it can be solved in

0(/ %1) sequential time [22]. Note that the size of% is bounded by the

number of oracle calls.

(ii) If the function Lf(c,,j is ‘not constant on R;, that is, not all the coeffi-

cients ~l(C~ ), ~z( CM), ..., f~. I(CM) equal zero, then g is unbounded.
Otherwise,

(iii) consider g(k” ) = f,(CM).

—If g( A* ) >0, then output A* and stop. Otherwise,

—the function L~ ~cl, ~ is a weak approximation of g, and P = A. Hence,

A* G rel int A. Output A* and ‘%’ = {CM}.

10.4. CORRECTNESS. If an oracle call results in a solution in Step 1 of

Algorithm 10.14, then correctness follows by induction on the dimension (see

also the discussion under Hyperplane Queries). We now assume that no oracle

call resulted in a solution in Step 1. In this case, a collection %’ of closed

halfspaces is obtained. Recall that if an oracle call on a hyperplane H did not

result in a solution then the returned halfspace h has the following properties:

(i) if the function g is bounded then A c h but A @ H, (ii) if the function g is
unbounded, then it must be bounded on the hyperplane H, and unbounded on

the halfspace h. Let P be the polyhedron P = (1 h. z h. It follows that, if g is

bounded, then P o A, and if g is unbounded, then it must be bounded outside

and on the boundary of P. Note that P must be full dimensional (dim P = d
— 1), for, if not, then it must be contained in one of the query hyperplanes,

which contradicts the previous statement.

Observe that for all pairs al, a2 of vectors compared by the lifted minimum

cycle algorithm, one of the following must hold: either al ‘A az and al < P U2,

or a2 <4 al and a2 <p al. The latter is obvious when we perform an oracle

call for each hyperplane query, and it is easy to see that it still holds when we
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employ the multi-dimensional search technique (see Problem 10.11 and Propo-

sition 10. 12) and solve these hyperplane queries by a smaller number of oracle

calls. Thus, the vector value ~(C~ ) of the minimum cycle found by the

algorithm must be such that j(C~) <A ~(C) and hence ~(C~) <P ~(C) for

any w-minimal cycle C. It follows that g(A) = ~( CJ1 )~ A for all A ● P. Thus, g

is unbounded if and only if Y( CJf ) is not a constant, and the correctness of step

(ii) follows. To show the correctness of step (iii) assume that jlCJf ) is a

constant, and thus g = ~~( A) for all A = P. Since P > A we have P = A. It

follows that A* E rel int A, aff A = R;, and Lf ~c~j is a minimal weak approxi-

mation of g.

10.5. COMPLEXITY. The complexity of the algorithm is related to the num-

ber of oracle calls. We would like to resolve many hyperplane queries by

performing only a polylogarithmic number of oracle calls. Thus, it is advanta-

geous to group together many comparisons that could be done “in parallel”

and employ the multi-dimensional search techniques discussed in Proposition

10.12.

THEOREM 10.15. Algorithm 10.14 can be implemented with complexity as

follows (where m = IEI and n = IVI).

(i) 0(log2~n + logdrn) parallel time on 0(n3 + m) processors.

(ii) O(m(logzdn + logdm)) sequential time, when m = Wn310gn).

(iii) 0(logzdn(n3 + m)) sequential time, when m = 0(n310gn ) and m = Wnz).
(it) 0(n310g2t~-2J~~ + nnl ~ogz(~- 1)n) sequential time, when m = 0(n2 ).

PROOF. The problem of all-pairs shortest path can be solved in 0(log2n)

time using n 3 processors by the Floyd–Warshall algorithm [6]. The algorithm

for this problem runs in O(log n) phases. During the first phase, the minimal

among all the parallel edges is determined for each pair of vertices that are

linked with at least one edge. In general, the minimal value in a set is

computed for 0( nz ) sets, each with O(n) elements. More precisely, during

phase 1, for each ordered pair (i, j) of vertices we find d~j, the length of

shortest path from i to j consisting of at most 21 edges. We use the relation

d~~+1 = min{d~,, min~{d~~ + d~l}}. To find a minimum cycle, we run one more

phase, where we compute a minimum of the diagonal elements in the distance
matrix. The complexity of this last phase is dominated by the other phases.

Each phase can be implemented in one application of Problem 10.11, with

s = m for the first phase, and s = n3 for the remaining O(log n) phases. The
complexity is analyzed in Proposition 10.12.

Denote by Td and Rd, respectively, the sequential time complexity and the

parallel time complexity with n3 + m processors, of the d-dimensional prob-

lem. Recall from Theorem 10.5 and Remark 10.9 that the time complexity of

‘ne ‘racle call’s 3Td - 1 = ‘( Td - 1) on a Si@e prOCeSSOr and 3Rd - 1 = O(Rd_ ~)
on O(n3 + m) processors. When d = 1, an oracle call can be implemented

simply by a scalar minimum cycle algorithm. We derive recursion formulas for

R, and ~. The oracle calls are executed sequentially. First, we derive an

expression for the parallel complexity when d = 1. Note that the problem can

be solved by employing n3 processors for O(log2n) time plus m processors for

O(log m) time. Thus, on 0(n3 + min{rn, m log m/logzn}) processors, we have
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RI = 0(log2n + log m). It follows that

R~ = 0(log3n + logzm(logzrz + log m) R~_l),

which proves (i).

The sequential complexity for c1 = 1 is TI = O(min{nm, m + rz3}). Parts

(ii) -(iv) proposition follow from the recursion:

T~ = 0(n310g n + m + (logzrz + log m) T~_l).

The above analysis applies only to the complexity of Step (1) of the algorithm.

In Step (2), we compute A = rel int P. This is done by solving a linear program

with 0(%? ) equations and O(d) variables. The size of%? is at most the number

of oracle calls performed, that is, 17 I = O(logzrz + log m). Therefore the

complexity of Step (2) is dominated by that of Step (l). ❑

Remark 10.16. There are hidden constant factors in the complexities stated

in Theorem 10.15, which depend on the dimension d. First, there is an extra

factor of d on the serial time complexity and the number of parallel processors,

since most “operations” are done on vectors in R~ and take d time units.

Second, there is an O(3dy(d – 1)) factor on the time complexities. The factor

y(d – 1) = 0((5/9)d3(d - 1)2) is due to the multi-dimensional search (see Sub-
section 10.2), and the factor of 0(3d ) is due to the fact that an oracle call

involves three calls to a problem of lower dimension. It follows that the

constant factor in the serial time complexity is 0( d3dy(d – l)). In the parallel

case, there is a factor of 0(3dy(d – 1)) for the time complexity, and a factor of

O(d) on the number of processors.

11. Parametric Extensions of Problems

The technique introduced here to obtain strongly polynomial algorithms for

the parametric extensions of the minimum cycle and the minimum cycle-mean

problems is a general tool. It is applicable to a variety of other problems, where

we are given a strongly polynomial algorithm for a problem and want to obtain

a strongly polynomial algorithm for a parametric extension of the problem

(when the number of parameters is fixed). We state the conditions where this
technique is applicable and present applications.

Definition 11.1 [Parametric extensions]

(i) A problem S: ~ ~ R is a mapping from a set @ of instances into the set
of real numbers. We say that ,S(P) is the solution of the problem for the

instance P =9. Suppose that every instance P = @ has a size IIP II

associated with it. The size of an instance is not necessarily defined to be

the number of bits in its representation. It may be any natural parameter

(for example, the number of edges in a weighted graph).

(ii) Let @be an algorithm that computes S(P). Denote by ~W(P) the number
of elementary operations the algorithm performs on the instance P. The
algorithm @ is polynomial if ~ti( f’) = 0( p( IIP Il)) for some polynomial

p(”).
(iii) A d-parametric extension P~(z%, &?’) of ~ is defined as follows, where

@ c Rd is a polyhedron given as an intersection of k halfspaces, and

AZ: &? ~ 9 is a mapping from points A = & to instances of 9. The
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extension P~ corresponds to a subset of instances {. 4’( k )1A = &} c=. We

refer to .Z2( k ) = ~ as the instance of 9 induced by A. For an extension

P’i, we define g: & ~ R as a mapping from vectors A E & to the solution

of the corresponding induced instance g(A) = S(. #’(A )). A solution of the

parametric extension P~ is defined as follows: Consider the maximum of

g(A). If it is finite, a solution consists of the maximum and a vector

A = R~ that belongs to the relative interior of the set of vectors which

maximize S. Formally, if @ is empty or if S(. %’( A)) is unbounded on @’,

these facts are recognized. Otherwise, a pair (m, A*) G R X R~, where

m = max A.. g( A), and A* e rel int{Alg(A) = m} is computed. We de-

- T (.#(A)).note T = max~c ~, ,,

THEOREM 11.2. Let S: 9 ~ R be a problem in the sense of Definition 11.1.

Let & be an algorithm that elaluates S, and let P~ = (X’, d) (where IPI = k) be

a corresponding parametric extension. We assume that

(i) the function g is concale,

(ii ) the mapping t? is computable by a piece~vise affine algorithm w?,, (see
Definition 8.2) in less than T operations, and

(iii) the combined algorithm that computes an instance .ti<( A ) G P and applies
M to d~ ( A ), is piecewise affine.

Denote by C the rnaximunl ( oLer A E @) number of comparisons petformed by

the combined algorithm, Suppose the comparisons can be dil ided into r sets of

sizes Cl, ..., C,(.C = Z:= ~C, ) such that the algorithm runs in r phases, where C,

independent comparisons are performed in phase i.

Under these conditions, the d-parametric extension Pd can be sol[ed using

~(d)kT(:l’lOgcJldOperatiOnL’

where ~(d) = 3°(d’).

Rentark 11.3. In the above formulation, we defined a problem as a mapping

into the set of real numbers S: @ - R. The results generalize to cases where

the range of S is R1 for 1> 1 and the notions of maximum and concavity are

defined with respect to the lexicographic order as follows: We say that a

function g: & c Rd ~ R~ is concate with respect to the lexicographic order

S1,, if for every a G [0, 1] and x, y ● ~,

ag(x) + (1 – cl)g(y) <,’, g(ax + (1 – a)y).

Applications where the range of S is R2 were given in [4].

In 11.1 and 11.2, we present some applications of Theorem 11.2. Norton

et al. [23] applied a similar scheme and presented additional applications.

11.1. ADDING VARIABLES TO LPs WITH Two VARIABLES PER INEQUALITY.

Linear programming problems with at most two variables in each constraint

and in the objective function were shown to have a strongly polynomial-time

algorithm by Megiddo [21]. Lueker et al [18] gave a polylogarithmic-time

parallel algorithm for the problem, which uses a quasipolynomial number of

processors. The best known time bounds for the problem are given in [2].

Cosares [6a], using nested parametrization, extended Megiddo’s strong polyno-
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miality result to allow objective functions that have a fixed number of nonzero

coefficients. This result can be further extended to include the following. For a

fixed d, we consider linear programming problems as above, but we allow

certain d additional variables to appear anywhere in the constraints and in the

objective function without being “counted.” This problem is a d-parameter

extension of the two variables per constraint problem, where the “parameters”

are the d additional variables. For each choice of values for the parameters, we

have a corresponding induced system with two variables per constraint. It is

easy to verify that the conditions of Theorem 11.2 hold. Hence, this class of

problems also has a strongly polynomial-time algorithm, and a polylogarithmic-

time parallel algorithm that uses a quasipolynomial number of processors.

11.2. PARAMETRIC FLOW PROBLEMS. Theorem 11.2 was applied in [4] to

generate strongly polynomial algorithms for parametric flow problems with a

fixed number of parameters and to some constrained flow problems with a

fixed number of additional constraints. Complementing results showing the

P-completeness of these problems when the number of parameters is not fixed,

were also given.
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