L)

Check for
updates

Editorial: Program and Algorithm
Visualization in Education

GUIDO ROSSLING

Technische Universitat Darmstadt
and

J. ANGEL VELAZQUEZ-ITURBIDE
Universidad Rey Juan Carlos

This special issue presents extended versions of six papers presented at the 5th Program Visual-
ization Workshop (PVW’08). The articles deal with many of the issues relevant to program and
algorithm visualization in education. This foreword introduces these issues to better understand
the challenges addressed by every article, and their relevance, as well as the articles featured.
These issues are evaluation of program and algorithm visualization, integration of visualization
and narratives into hypertextbooks, embedding of interactive quizzes into visualizations, and sev-
eral classes of program visualization.

Categories and Subject Descriptors: K.3.1 [Computers and Education]: Computer Uses in
Education; K.3.2 [Computers and Education]: Computer and Information Science Education—
computer science education

General Terms: Algorithms, Experimentation, Human Factors

Additional Key Words and Phrases: Program visualization, algorithm visualization, computer
science education

ACM Reference Format:

RoBling, G. and Angel Velazquez-Iturbide, J. 2009. Program and algorithm visualization in
education. ACM Trans. Comput. Educ. 9, 2, Article 8 (June 2009), 6 pages.

DOI = 10.1145.1538234.1538235. http://doi.acm.org/10.1145.1538234.1538235.

1. INTRODUCTION

The Program Visualization Workshop series has been organized in Europe
every second (even) year since 2000. The aim of this workshop series is to bring
together researchers who design and construct visualizations or animations,
as well as visualization or animation systems, for computer science, mainly for

Author’s address: G. RoBling, Technische Universitdt Darmstadt, CS Department Hochschulstr.
10, D-64289 Darmstadt, Germany; email: guido@tk.informatik.tu-darmstadt.de; J. A. Velazquez-
Iturbide, Universidad Rey Juan Carlo, Departamento de Lenguajes y Sistemas Informaticos 1,
¢/ Tulipan s/n, 28933 Moéstoles, Madrid, Spain; email: angel.velazquez@urjc.es.

Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists requires prior specific permission and/or a fee. Permission
may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.

(© 2009 ACM 1531-4278/2009/06-ART8 $10.00 DOI: 10.1145/1538234.1538235.
http://doi.acm.org/10.1145/1538234.1538235.

ACM Transactions on Computing Education, Vol. 9, No. 2, Article 8, Pub. date: June 2009.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1538234.1538235&domain=pdf&date_stamp=2009-06-01

8:2 . G. RoBling and J. Angel Velazquez-Iturbide

programs, data structures, and algorithms. Above all, the workshop attracts
educators who create, use, or evaluate visualizations and animations in their
teaching.

In this issue, we present extended versions of six papers presented at
the 5th Program Visualization Workshop (PVW’08) in Madrid, Spain. The ar-
ticles featured in this issue of TOCE are good representatives of the kinds
of issues that are currently subject to active research in the field of software
visualization.

Software visualization is a broad term that includes many different classes
of visualization. Price et al. [1998] made a distinction between program and
algorithm visualization that is broadly accepted. Program visualization refers
to graphical representations to enhance human understanding of the actual
implementation of programs. Algorithm visualization refers to graphical rep-
resentations of the higher descriptions of programs (algorithms) that are later
implemented as programs.

We find proposals to visualize software since the 1960s, but it is in the
early 1980s when algorithm animation as an educational resource comes to
the mainstream of scientific and technical research. Intuitively, most edu-
cators agree about the great potential of software visualization for computer
science education. However, adoption of software visualization is lower than
developers of program or algorithm visualization (PAV) systems would expect.

There are a number of reasons for this lack of acceptance by users, espe-
cially by educators. A survey conducted among educators by the ITiCSE 2002
Working Group on “Improving the Educational Impact of Algorithm Visualiza-
tion” [Naps et al. 2003] determined the following most frequently cited factors
that made educators reluctant or unable to use software visualizations:

—Lack of time for different tasks (e.g., to learn a new tool or to develop a
visualization).

—Technical issues of software visualization tools (e.g., lack of effective
development tools or lack of reliable software).

—Integration into the courses or the classroom (e.g., time to adapt visualiza-
tions to a course or visualizations may hide important details or concepts).

—Other factors (including lack of evidence of educational effectiveness).

The ultimate goal of educational PAV systems is to aid students to learn
more effectively. Therefore, the success of a particular system can only be
proved by evaluation. Many systems are available, but there have been fewer
evaluations of these systems than one might have expected. Some articles in
the literature have surveyed effectiveness of software visualization. Probably
the most important study was performed by Hundhausen et al. [2002], con-
cluding that the way students use visualizations is more important than the
visualizations themselves.

Partly based on the conclusions of Hundhausen et al. [2002], the ITiCSE
2002 Working Group cited above proposed a taxonomy of learner engagement
[Naps et al. 2003]. The taxonomy differentiates six levels, which from lower
to higher are: no viewing, viewing, responding, changing, constructing, and

ACM Transactions on Computing Education, Vol. 9, No. 2, Article 8, Pub. date: June 2009.

Program Visualization and Algorithm Animation in Education . 8:3

presenting. It also assumes that the higher the level of engagement with a
visualization, the higher the learning.

The articles contained in this issue deal with many of these issues. We
provide a brief overview of the articles in the next section.

2. AN OVERVIEW OF THE ARTICLES

The first article, “A Survey of Successful Evaluations of Program Visualization
and Algorithm Animation Systems,” reviews and analyzes the literature on ed-
ucational uses of software visualization. Many articles that describe program
or algorithm visualization systems focus on technical issues. Being an impor-
tant issue, we have explained above how important other issues are to pro-
mote software visualization in education. The authors Urquiza-Fuentes and
Velazquez-Iturbide focus on evaluations that yielded positive results, consider-
ing 18 PAV systems that were subject to a total of 33 evaluations. To facilitate
the analysis, PAV systems are first classified according to two general criteria:
abstraction level—either program or algorithm visualization—and implemen-
tation approach.

This article surveys two kinds of evaluations. The first class of evalua-
tions is applicable to any interactive software system, namely usability. The
authors find that usability evaluations are shallow in almost all the cases, and
are hardly integrated into the system development process. The second class
of evaluations is applicable to any educational system, namely educational
success. The article also identifies the engagement levels achieved in each
evaluation and additional system features present in each evaluation. Specific
features present in positive evaluations are identified and it is suggested to
make more use of them. As future work, an analysis of the evaluations which
did not yield educational success is necessary to extrapolate these results to a
conclusive meta-study on the educational success of PAV systems.

Three articles in this issue deal with pedagogical features of PAV systems.
The article “Seamless Integration of Hypertext and Algorithm Animations” by
Karavirta deals with the issue of integrating animations and narratives, or
more generally with hypertext. Given the universal role of the Web, the au-
thor proposes to integrate animations into dynamic Web pages. He first states
requirements for an algorithm animation system based on experience accumu-
lated in past years and made explicit in the literature. These requirements are
used by Karavirta to design an algorithm animation viewer. The viewer im-
plements most of these requirements, resulting in a versatile tool for learning.
In particular, it supports customizing and changing animations, responding to
quizzes, interplay of hypertext and animations, and other features.

This article illustrates how educational requirements are used to guide the
design of an animation tool and also as a checklist for the interested user. The
article is also interesting for technical developers. The viewer was developed
with simple but powerful technology, namely HTML and JavaScript, and is
capable of viewing animations in the XAAL algorithm animation language.
The interplay of the different parts of the system are explained in several parts

ACM Transactions on Computing Education, Vol. 9, No. 2, Article 8, Pub. date: June 2009.

8: 4 . G. RoBling and J. Angel Velazquez-Iturbide

of the article. The article also gives JavaScript code details to better illustrate
the system functionality.

The article “A Visualization-Based Computer Science Hypertextbook
Prototype” by RoBling and Vellaramkalayil is related, but addresses the in-
tegration with hypertext within the context of the course management system
Moodle. As with the previous article, the authors first state the requirements
for their integration, here based on an ITiCSE Working Group report. As a
consequence of adopting Moodle, the hypertextbook is modeled as a Moodle ac-
tivity. The working prototype illustrates many of the features of visualization-
based hypertextbooks.

The article is of interest to the same audience as the previous one. In
particular, it is very interesting to instructors on showing the features a future
hypertextbook may exhibit. This interest is current given the great acceptance
of Moodle. It is also interesting to the technical developer, as it describes
the different elements involved and the process necessary to make it work. It
shows details of dialogs and configuration files, so that even the non-initiated
can understand them.

Bruce-Lockhart, Pierluigi, and Norvell are the authors of “Adding Test Gen-
eration to the Teaching Machine.” Their article presents a contribution at the
engagement level of responding. The authors present a new extension of the
Teaching Machine environment, called the Quiz Generator. The extension al-
lows generating multiple-choice quizzes of five types. The quizzes make use
of the visualization capabilities of the Teaching Machine to aid the student in
understanding the questions.

The article is interesting to two audiences. First, it contains a categorization
of quizzes that will be of interest to educators. The authors propose a defini-
tion for a “testable algorithm” that provides a model where different types of
quizzes can be defined. As a consequence, it is easy to recognize the constituent
elements of each type of quiz and the functionality that has to be added to a sys-
tem (here, the Teaching Machine) to implement it. Second, the article outlines
the implementation of the Quiz Generator that will be of interest to developers
of visualization systems. The implementation is described in general terms as
flow of information or functionalities needed, although details are also given,
for example, scripting commands.

Finally, two articles deal with program visualization. The article “Robust
Generation of Dynamic Data Structure Visualizations with Multiple Interac-
tion Approaches” by Cross et al. is an interesting effort to produce program
animations close to the algorithmic level. They introduce visualizations of data
structures delivered by the jGRASP IDE, called “dynamic viewers.” The user
can interact with the visualizations in three ways: the debugger, the work-
bench, and a text-based interaction tab. The three approaches are comple-
mentary and can be used together at the user’s convenience. An interesting
contribution of their dynamic viewers is the fact that, although they produce
program visualizations automatically, the IDE uses a “structure identifier” in
an attempt to identify the traditional visualization that best fits the actual
data structure, for example, a stack or a queue. As a consequence, the abstrac-
tion level of the program visualization is close to the algorithmic level.

ACM Transactions on Computing Education, Vol. 9, No. 2, Article 8, Pub. date: June 2009.

Program Visualization and Algorithm Animation in Education . 8:5

The authors give a brief description of the implementation of the three inter-
action approaches. However, they do not emphasize the technical details but
rather the adequacy of their development. For this end, they provide two eval-
uations. The first one measured the accuracy with which the structure identi-
fier correctly identified the adequate visualizations. Notice that such accuracy
is critical to their approach to more abstract visualizations. As students are
often trained with examples extracted from textbooks, the structure identifier
was subject to code extracted from 20 textbooks. The second evaluation was
composed of four controlled experiments with students in lab sessions. They
were aimed at measuring the effect of using the dynamic viewers on students’
performance. Two of the experiments focused on whether students wrote new
code for a given problem more accurately and in less time. The other two exper-
iments focused on whether students would be able to detect and correct logical
errors (as well as introducing fewer new logical errors) more accurately and in
less time. Their results are very positive in both evaluations.

The article “Compiler Optimization Pass Visualization: The Procedural
Abstraction Case” shows a less common usage of program visualization. The
abstraction level at which its visualizations are aimed is much lower, as they
display optimization in machine language code. In particular, a program map
visualization highlights the pieces of code where instructions have been ab-
stracted as a subroutine call. This visualization consists in a sequence of pix-
els, each one representing either an instruction or a memory byte. Using a
coloring convention, the user may visually detect in the visualization the frag-
ments of code abstracted.

The article provides an example of a simple but non-intuitive visualization,
that must be explicitly taught to its users (here, students). The authors’ pro-
posal was evaluated by means of an opinion questionnaire given at the end of
a class session. The students’ answers show that they found the visualizations
useful and motivating.

The papers by Cross et al. and Roflling and Vellaramkalayil shared the
PVW 2008 Best Paper Award.

ACKNOWLEDGMENT

We want to thank our reviewers for PVW 2008 and for this issue for their
excellent work:

—Mordechai Ben-Ari (Weizmann Institute of Science, Israel)
—Pierluigi Crescenzi (University of Florence, Italy)

—Camil Demetrescu (University of Rome “La Sapienza”, Italy)
—Ari Korhonen (Helsinki University of Technology, Finland)
—Lauri Malmi (Helsinki University of Technology, Finland)
—Thomas L. Naps (University of Wisconsin Oshkosh, USA)
—Rockford J. Ross (Montana State University, USA)

—dJaime Urquiza-Fuentes (Universidad Rey Juan Carlos, Spain)

ACM Transactions on Computing Education, Vol. 9, No. 2, Article 8, Pub. date: June 2009.

8:6 . G. RoBling and J. Angel Velazquez-Iturbide

REFERENCES

HUNDHAUSEN, C., DOUGLAS, S., AND STASKO, J. 2002. A meta-study of algorithm visualization
effectiveness. J. Vis. Lang. Comput. 13, 3, 259-290.

NaPs, T., ROSSLING, G., ALMSTRUM, V., DANN, W., FLEISCHER, R., HUNDHAUSEN, C.,
KORHONEN, A., MALMI, L., MCNALLY, M., RODGER, S., AND VELAZQUEZ-ITURBIDE, J. 2003.
Exploring the role of visualization and engagement in computer science education. SIGCSE
Bull. 35,2, 131-152.

PRICE, B., BAECKER, R., AND SMALL, I. 1998. An introduction to software visualization. In
Software Visualization, J. Stasko, J. Domingue, M. Brown, and B. Price, Eds. Cambridge, MA:
MIT Press. 3-27.

Received April 2009; accepted April 2009

ACM Transactions on Computing Education, Vol. 9, No. 2, Article 8, Pub. date: June 2009.

