

© ACM, 2009. This is the author's version of the work. It is posted here by permission of ACM

for your personal use. Not for redistribution. The definitive version was published in ACM

Transactions on Computing Education (TOCE), 9(2). ACM Press: New York, NY, Article 9, June

2009, EISSN:1946-6226, http://doi.acm.org/10.1145/1538234.1538236

A Survey of Successful Evaluations of Program Visualization and Algorithm Animation

Systems

Jaime Urquiza-Fuentes and J.Ángel Velázquez-Iturbide

ACM Transactions on Computing Education (TOCE), 9}(2). ACM Press: New York, NY,

Article 9.

DOI: http://doi.acm.org/10.1145/1538234.1538236

http://doi.acm.org/10.1145/1538234.1538236
http://doi.acm.org/10.1145/1538234.1538236

A Survey of Successful Evaluations of Program

Visualization and Algorithm Animation Systems∗

JAIME URQUIZA-FUENTES

J. ÁNGEL VELÁZQUEZ-ITURBIDE

Universidad Rey Juan Carlos

June 2, 2009

Abstract

This article reviews successful educational experiences in using pro-
gram and algorithm visualizations (PAVs). First, we survey a total of 18
PAV systems that were subject to 33 evaluations. We found that half of
the systems have only been tested for usability, them being shallow in-
spections. The rest have been evaluated with respect to their educational
effectiveness. Script-based systems seem to be well suited for the viewing,
responding and changing engagement levels, while compiler-based systems
do for the construction and presenting engagement levels. Finally, we an-
alyze additional PAV features of successful evaluations and hypothesize
that they are relevant.

1 Introduction

Intuition about the educational benefits of program and algorithm visualization
(PAV) systems Stasko et al. (1993) has contributed to their proliferation. How-
ever, the pedagogical benefits of PAVs are not clear. The relevant literature
contains a number of reasons that has prevented their universal use Naps et al.
(2003). We find in the literature a number of evaluations that report different
educational results. One of the most significant studies on PAV effectiveness
Hundhausen et al. (2002) concluded that the way students use visualizations is
more important than the visualizations themselves. Based on this finding, the
engagement levels taxonomy Naps et al. (2003) provides a framework to classify
the interaction between students and PAV systems.

In this article, we analyze successful evaluations of PAVs and make several
contributions. First, the study itself brings together a number of successful

∗ c©ACM, 2009. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution. The definitive version was published
in ACM Transactions on Computing Education (TOCE), 9 (2). ACM, New York, NY, USA,
Article 9. http://doi.acm.org/10.1145/1538234.1538236

1

evaluations that are spread in the literature. Second, we try to extract the
main features of successful evaluations. The main factor is the engagement level
achieved at the evaluation. After analyzing the evaluations, the authors felt that
educational improvements could also depend on system-specific features. As a
consequence, this survey also studies the educational effect of such features.

The rest of the article is organized as follows. In Section 2, we describe
systems that have been evaluated successfully with respect to usability or ed-
ucational effectiveness. Section 3 analyzes successful educational evaluations,
grouped by the engagement levels where learning improvement was detected,
and makes explicit additional features present in PAVs. Both sections conclude
with a discussion subsection that summarizes our findings. Finally, we draw our
conclusions and outline areas for future research.

2 A survey of successful PAV systems

There are two features that most PAV systems have in common. On the one
hand, they are highly interactive systems. On the other hand, most existing
PAV systems are intended for education. If the way students interact with PAV
systems is the key factor of their success Hundhausen et al. (2002), it is relevant
to evaluate both issues: usability and learning outcomes.

This section surveys PAV systems that have been successfully evaluated.
Information was extracted from system evaluations described in journals or
conferences of computer science education or learning technologies. We clas-
sify PAV systems and then review PAV systems that only were evaluated for
usability. Finally, we review PAV systems that were evaluated for educational
impact.

2.1 Classification of evaluated systems

We use two criteria to classify a system: abstraction level and implementation
approach. Notice that the aim of these criteria is to aid us in describing the
systems in the article, not to propose a system taxonomy. The criterion of
abstraction level is based on the software visualization taxonomy defined by
Price et al. (1998)’s software visualization taxonomy:

Algorithm visualizations (AV) The static or dynamic visualization of higher-
level abstractions which describe the software.

Program visualizations (PV) The visualization of actual program code or
data structures –low-level abstration– in either static or dynamic form.

The implementation criterion allows us to differentiate three kinds of sys-
tems:

Script-based systems The user first identifies the interesting events to dis-
play and then inserts calls to the visualization engine into the source code.

2

Afterwards, code execution produces a script that is rendered into a visual-
ization. The complexity of calls varies in the different scripting languages.

Interface systems These systems do not generate any visualization, they only
interact with users. Current interface systems generate visualizations us-
ing script-based systems, so some of them are hybrid systems including
both features.

Compiler-based systems In these systems the user does not need to mod-
ify the code, as visualization actions are automatically inserted by the
compiler or virtual machine at compile- or run-time. This simplifies user
interaction but limits the user’s control over the PAVs themselves.

2.2 Successfully evaluated systems with respect to usabil-

ity

As stated above, PAV systems are interactive systems, therefore usability is a
key property of those systems. There exist a number of aspects to evaluate
usability and a number of methodologies to carry out these evaluations Kulyk
et al. (2007). Usability of PAV systems has been evaluated using any of the
following methodologies:

Informal evaluations In this kind of evaluations, the students are typically
asked their opinion after using the system. Descriptions of these evalu-
ations often lack details of the process, materials or methodology used,
reporting their results as positive/negative values.

Heuristic evaluations These evaluations are performed by an expert, check-
ing basic interactive features and also features specific to visualization
systems.

Query techniques This kind of evaluations consist in asking students, using
questionnaires, about their opinion on different aspects of the system. The
environment and the tasks performed by students are partially controlled
by evaluators.

Observational studies These evaluations differ from query techniques in the
way information is collected. In this case, the evaluators observe how stu-
dents use the system and write down everything they consider important
for the evaluation.

Controlled experiments In this evaluation type, the environment, the stu-
dents and the tasks performed are highly controlled by evaluators. In
addition to the students’ opinion, controlled experiments can provide in-
formation about effectiveness, ease of use, efficiency and other interesting
issues.

We have found nine PAV systems, which are grouped by their implemen-
tation approach. For each system, we identify its corresponding abstraction

3

level –either AV or PV– and we describe the methodology used to evaluate its
usability. Table 1 summarizes this information.

2.2.1 Script-based systems

We have identified three script-based systems reporting successful usability eval-
uations: Animal, Jawaa and LJV.

Animal1 Rößling et al. (2000) is a powerful AV system that allows the user
to control most of the details in the visualization using the scripting language
AnimalScript. It allows generating narrative contents and stop-and-think
questions with explicit feedback. Animal was subject to an expert evaluation
Rößling & Naps (2002). The construction of animations is not easy because
of the complexity of the scripting notation. Consequently, it provides different
approaches to simplify animation construction, such as support for editing An-

imalScript code Rößling & Ackermann (2007); Rößling & Schroeder (2009).
Jawaa2 Pierson & Rodger (1998) is another AV system with its own scripting

language. It passed an informal evaluation Akingbade et al. (2003) with positive
results in the animations generated and negative results in the construction
process. The authors also report that they have constructed a graphical editor
that allows inserting graphical objects without writing their corresponding script
code. Although Jawaa was included in the above mentioned study by Rößling
& Naps (2002) –an expert evaluation of Animal–, it was just for comparative
purposes rather than a planned evaluation of Jawaa. Therefore, we have not
considered this study as an expert evaluation of Jawaa.

LJV 3 Hamer (2004) is an AV system for data structures in Java. Students
place visualization calls where they want to visualize the current state of an
object. The system uses type information during execution to automatically
produce the visualization of an object. Visualizers are implemented for trees
and lists. Although students have limited control over graphical representations,
the construction approach is less complex than in other script-based systems.
LJV passed an informal evaluation Hamer (2004).

2.2.2 Script-based + interface systems

We have found three script-based systems with their own built-in interface:
Alvie, Leonardo and Swan.

Alvie4 Crescenzi & Nocentini (2007) is an AV system with an XML-based
scripting language. It has a simple interface to view animations that has also
been integrated with a textbook on algorithms. It was successfully evaluated
with query techniques in three different scenarios: students viewing animations,
students constructing their own animations, and students presenting animations
to an audience.

1http://www.algoanim.info/Animal2/
2http://www.cs.duke.edu/csed/jawaa2/
3Lightweight Visualizer for Java, http://www.cs.auckland.ac.nz/∼j-hamer/LJV.html
4http://www.algoritmica.org

4

Leonardo5 Crescenzi et al. (2000) is actually an IDE for the C language,
whose virtual machine supports reverse execution. It has visualization capa-
bilities aimed at the algorithmic level using the logic language ALPHA as a
scripting language. It was subject to informal evaluations for both viewing and
constructing animations with the ALPHA language. The latest efforts were
dedicated to develop an interface for web-based animation construction Boni-
faci et al. (2006).

Swan6 Shaffer et al. (1996) is an AV system that allows including textual
explanations and changing the contents of data structures during algorithm
execution. It provides algorithms for drawing arrays, lists and graphs, thus
facilitating animation construction. Usability was evaluated in a controlled
experiment that reported the notation was easy to learn and animations were
successfully built.

2.2.3 Compiler-based systems

We have found three compiler-based systems: MAVIS, SRec and the Teaching
Machine.

MAVIS 7 Koifman et al. (2008) is an AV system where graphical representa-
tions must be developed in Java by the users. It provides the user with a API
to control different abstraction levels. The evaluation focused on programming
algorithms and constructing animations. A single evaluation session was con-
ducted, including observational study and query techniques. Positive opinions
were obtained regarding usefulness and manipulation of abstraction levels.

SRec8 Velázquez-Iturbide et al. (2008) is an AV system for recursion in Java.
Recursion instrumentation is automatic since the system inserts calls to gather
information of method entry or exit at compile-time. When the user launches
an algorithm execution, a trail of method entries and exits is produced. At that
moment, the user may play the animation with a wide range of visualization and
animation controls. The system provides several synchronized views, including
recursion trees. SRec has successfully passed a strict usability inspection pro-
cess consisting of a heuristic evaluation, a query technique, an observational
study and a controlled experiment. Results were very positive and were used to
enhance the system.

The Teaching Machine9 Norvell & Bruce-Lockhart (2000) is a PV system
that visualizes the symbol table, the heap with the contents of variables and
pointers and other typical facilities, such as source code, the execution point,
the stack and evaluation of expressions. It has passed an evaluation with query
techniques Bruce-Lockhart et al. (2007). The authors have developed Web-
Writer++ Bruce-Lockhart & Norvell (2006), which is an authoring tool for

5http://www.dis.uniroma1.it/∼demetres/Leonardo/
6http://research.cs.vt.edu/algoviz/Swan/
7http://www.ee.technion.ac.il/∼ayellet/MAVIS-movies/
8http://www.lite.etsii.urjc.es/srec/
9http://www.engr.mun.ca/∼mpbl/content/research/teachingMachine.htm

5

Figure 1: A general usability evaluation process, with the users and environment
involved.

web-based learning materials including textual contents and visualizations gen-
erated with the Teaching Machine.

2.2.4 Discussion

Usability evaluations should not be performed after the implementation of the
system is complete, but they should be an integral part of the design and im-
plementation process Kulyk et al. (2007). A general usability evaluation can
consist of three phases (see Figure 1). First, early designs and prototypes are
evaluated with heuristic inspections. Feedback of these evaluations is used to
enhance the system. Second, the improved version of the system can be eval-
uated with query techniques, controlled experiments and observational studies.
Again, the results of the evaluation assist in fixing errors and enhancing the
system. Finally, observational and field studies allow evaluating the system in
real use.

Unfortunately, only one10 out of the nine considered systems (namely, SRec)
has passed more than one phase in its usability evaluations. Informal evaluations
were significantly used –three out of nine– but they neither provided useful
information for developers or users different from the development team nor
contributed to future improvements of the evaluated system.

2.3 Successfully evaluated systems with respect to learn-

ing outcomes

The main aim of PAV systems is to improve the learning of concepts visualized.
In this subsection, we survey those PAV systems that have reported successful
pedagogical evaluations.

10Note that the evaluation of MAVIS used two methodologies in the same session.

6

Abstraction/Implementation
PAV system approach Usability evaluation methodology

Animal AV/Script Heuristic
Jawaa AV/Script Informal
LJV AV/Script Informal

Alvie AV/Script+Interface Query
LEONARDO AV/Script+Interface Informal
Swan AV/Script+Interface Controlled

MAVIS AV/Compiler Observation, Query
SRec AV/Compiler Heuristic, Observation, Query, Controlled
Teaching Machine PV/Compiler Query

Table 1: Summary of usability evaluations.

Hundhausen et al. (2002) stated that the effort devoted by students to
visualization-related tasks is more important than the visual contents shown
by PAVs. Going beyond passive viewing of PAVs, Naps et al. (2003) developed
a taxonomy of different ways of interacting with PAVs. They called it the en-
gagement levels taxonomy, suggesting a hierarchical structure where a higher
engagement level leads to higher educational benefits. The following definitions
of engagement levels are quotations extracted from Naps et al. (2003):

Viewing This level can be considered the core form of engagement, (...) a
learner can view an animation passively, but can also exercise control
over the direction and pace of the animation, use different windows (each
presenting a different view), or use accompanying textual or aural expla-
nations. (...) The remaining four categories all include viewing.

Responding The key activity in this category is answering questions concern-
ing the visualization presented by the system. (...) In the responding
form of engagement, the learner uses the visualization as a resource for
answering questions.

Changing It entails modifying the visualization. The most common example
of such modification is allowing the learner to change the input of the
algorithm under study in order to explore the algorithm’s behavior in
different cases.

Constructing In this form of engagement, learners construct their own visu-
alizations of the algorithms under study. Hundhausen and Douglas [27]
have identified two main ways in which learners may construct visualiza-
tions: direct generation and hand construction. (...) It is important to
note that the constructing form of engagement does not necessarily entail
coding the algorithm.

Presenting It entails presenting a visualization to an audience for feedback
and discussion.

7

We use this taxonomy to describe possible uses11 of each PAV system to-
gether with successful results reported in their evaluations. We have found
nine systems of two types: script-based + interface systems and compiler-based
systems. Table 2 summarizes this information.

2.3.1 Script-based + interface systems

We have identified three script-based + interface systems with successful peda-
gogical evaluations.

JHAVÉ 12 Naps (2005) is an AV interface that allows including narrative
contents and stop-and-think questions to animations. Currently, it can be used
with three scripting languages Naps & Rößling (2007): GAIGS-XML, Animal

and JSamba. It has been evaluated at the responding engagement level Grissom
et al. (2003), but it can also be used at the viewing and changing levels.

The family of AV systems Polka/XTango/Samba/JSamba13 Stasko (1992) is
the most versatile up to day. They have been evaluated in all but one engage-
ment level: viewing Lawrence (1993), responding Byrne et al. (1999), changing
Lawrence (1993); Lawrence et al. (1994) and constructing Stasko (1997). Pre-
senting is another possible use of these systems. A main contribution of these
systems is a powerful scripting language that allows users to specify graphical
representations of data structures –including textual contents– and animation
effects.

Finally, TRAKLA2 14 Malmi et al. (2004) is another AV interface, designed
to visualize animations generated with Matrix Korhonen et al. (2004). Students
interact with visualizations simulating the behavior of algorithms. Their visu-
alizations are enhanced with additional explanations plus automatic assessment
of students’ simulations. Students’ generated simulations seem to correspond to
the construction engagement level. However, we have classified their evaluation
at the responding engagement level Laakso et al. (2005) because the main aim
of students is to correctly determine each step of the algorithm, rather than con-
struct an expressive animation that illustrates the behavior of the algorithm. In
other words, cognitive effort is dedicated to answer the implicit question what
is the effect of the next step?, rather than designing an animation for better
understanding of the algorithm. Other possible uses of this system lie at the
viewing and changing engagement levels.

2.3.2 Compiler-based systems

The remaining six systems follow a compiler-based approach.
Alice15 Moskal et al. (2004) is an AV system for object-oriented program-

ming. Algorithms are written in a specific pseudo-code and objects are cor-

11where possible use means an unsuccessful reported use or an unreported use, in both cases
immediately applicable.

12http://jhave.org/
13http://www.cc.gatech.edu/gvu/softviz/algoanim/samba.html
14http://www.cs.hut.fi/Research/TRAKLA2/
15http://www.alice.org/

8

respondingly visualized in a 3D virtual world. It has been evaluated at the
changing engagement level, but animations may also be used at the viewing,
constructing and presenting engagement levels.

Alvis Live! 16 Hundhausen & Brown (2005) is an AV system, where algo-
rithms written in the SALSA pseudo-code language are immediately visualized,
i.e. at editing time. Its visualizations have a low-fidelity look, making use of the
conventions students would informally use rather than what an expert would
do. It allows dragging graphical objects, which are then transformed in their
corresponding pseudo-code sentences. Alvis Live! has been evaluated at a con-
structing+presenting Hundhausen & Brown (2008) engagement level, but it can
also be used at the viewing and changing engagement levels.

Jeliot17 Moreno et al. (2004) is a PV system designed to visualize basic
features of the Java language in introductory programming courses. It allows
students to immediately visualize their own programs. Recent efforts were ded-
icated to the integration with BlueJ and the automatic generation of stop-and-
think questions Myller (2007). Jeliot can be used at all engagement levels, but
it has only been evaluated at the changing engagement level Ben-Bassat et al.
(2003).

jGRASP18 Hendrix et al. (2004) is actually a programming environment
for Java with visualization capabilities. Its visualizations are powerful because
jGRASP provides multiple views of source code, low-level objects and high-level
visualizations. The latter have to be developed by teachers from a template
provided by the system. These visualizations are called external visualizers and
provide students with multiple views of the same object. jGRASP supports
program visualization but has been evaluated as an AV system at the changing
engagement level Cross et al. (2007); Jain et al. (2006). However, it can also be
used at the viewing, constructing and presenting engagement levels.

VIP19 Virtanen et al. (2005) is a PV system that supports a subset of C++
without object-oriented features. It allows associating textual explanations to
locations of the source code. The user can use non-standard conditions to
generate animations, such as execution conditions (e.g. the first time a sentence
is executed), or variable usage (e.g. input/output). It was evaluated at the
changing engagement level Ahoniemi & Lahtinen (2007), but it can also be used
at the viewing, constructing and presenting levels. Recent efforts are devoted
to including program assessment results as contents.

Finally, WinHIPE 20 Pareja-Flores et al. (2007) is a functional programming
environment with visualization capabilities. It visualizes functional expressions,
which contain both data structures –trees or lists– and language constructions;
therefore, it is an AV system as well as a PV system. Visualizations generated
by WinHIPE include textual explanations and are constructed using an effort-
less approach that has been evaluated for effectiveness and efficacy Velázquez-

16http://eecs.wsu.edu/∼veupl/soft/alvis/index.htm
17http://cs.joensuu.fi/∼jeliot/
18http://www.jgrasp.org
19http://www.cs.tut.fi/∼vip/en/
20http://www.lite.etsii.urjc.es/winhipe/

9

PAV Abstraction/Implementation Engagement levels
system approach V R Ch C P

JHAVE AV/Script+Interface •
√

•
JSamba AV/Script+Interface

√ √ √ √
•

TRAKLA2 AV/Script+Interface •
√

•

Alice AV/Compiler •
√

• •
Alvis Live! AV/Compiler • •

√

Jeliot PV/Compiler • •
√

• •
JGrasp AV/Compiler •

√
• •

VIP PV/Compiler •
√

• •
WinHIPE AV/PV/Compiler

√
•

√
•

Table 2: Summary of educational evaluations. Columns grouped under the “En-
gagement levels” label correspond to the (V)iewing, (R)esponding, (Ch)anging,
(C)onstructing and (P)resenting engagement levels. A bullet • means that the
system can be used at that engagement level, and a check

√
means that the

system has been successfully evaluated at that engagement level.

Iturbide et al. (2008). WinHIPE was evaluated at two engagement levels: view-
ing Urquiza-Fuentes (2008) and constructing Urquiza-Fuentes (2008); Urquiza-
Fuentes & Velázquez-Iturbide (2007), but it can also be used at the changing
and presenting levels.

2.3.3 Discussion

Hundhausen et al. (2002) suggested that highly engaging tasks (i.e. placed at the
constructing or presenting engagement levels) can be beneficial for the learning
process. Therefore, it can be worthwhile to compare both kinds of systems with
respect to their coverage of different engagement levels, as shown in Table 2.

At a first glance, compiler-based systems seem to support better higher lev-
els of the engagement taxonomy. One plausible reason is that these systems
foster students to focus on building expressive animations rather than on more
mundane activities such as using a scripting API, compute locations or defining
object movements. A similar conclusion was reached by Hundhausen (2002)
when comparing the script-based+interface system SAMBA with a set of tools
chosen by students. This conclusion is consistent with efforts aimed at simpli-
fying the construction process in several script-based systems, e.g. the editing
facilities for AnimalScript language Rößling & Ackermann (2007); Rößling &
Schroeder (2009), or the materials for developers published at the JHAVÉ web
site21.

On the other hand, script-based systems have strengths on their own. They
were the most successful systems in percentage at the viewing engagement level:
33%(1/3) against 16.7%(1/6). Moreover, this is the only kind of systems that

21http://jhave.org/developer/

10

obtained successful results at the responding engagement level. As Table 2
shows, Jeliot represents an attempt of a compiler-based system to cover this
engagement level.

Frequently, the border between PV and AV systems is blurred in an attempt
of a system in a category to have advantages of the other category. We have
seen three examples in subsection 2.2 of systems that try to combine highly
expressive animations and less user effort:

Swan Students have to code graphical representations, but they can use built-
in algorithms for drawing graphs, lists and trees.

LJV Students only have to identify locations in the source code where the state
of objects are to be visualized and insert simple API calls.

SRec The system locates methods and parameters to visualize recursion. Con-
sequently, students do not have to change source code, but they may
interactively select the methods or parameters to visualize to enhance
comprehensibility.

Notice that there is no technical restriction to use any specific scripting tech-
nology. In these three cases, graphical representations were generated with dif-
ferent scripting technologies –SAIL Shaffer et al. (1996) for Swan, GraphViz22

for LJV, and JGraph23 for SRec– but they could have been generated with the
same technology. In any case, students need not know much about it.

Looking information surveyed in Table 2, the hypothetical hierarchical struc-
ture of engagement levels –the more engagement, the better learning– is not
clear. We could expect to find more successful experiments in the literature
aimed at the higher engagement levels, given that they would provide higher
educational benefits. In addition, some systems offer special animation features
or have been evaluated in particular situations that may have contributed to
their educational success. In the following section, we move from systems to
individual experiments carried out with them. As a consequence, we make ex-
plicit the engagement level in every evaluation, but also the special features or
particular situations present.

3 A survey of successful PAV educational eval-

uations

In this section, we focus on successful educational evaluations of PAVs. We
change our terminology from “evaluation” to “experiment”, as one evaluated
system may be subject to several experiments. Notice that evaluating PAVs
is not the same as evaluating PAV systems, although both evaluations are ob-
viously related. In addition to evaluations cited in the previous section, we
have found five additional publications reporting PAV educational evaluations.

22http://www.graphviz.org/
23http://www.jgraph.com/

11

However, they are not tied to a particular system, but they use ad-hoc visual-
izations Crosby & Stelovsky (1995); Kann et al. (1997); Hansen et al. (2000);
Hübscher-Younger & Narayanan (2003) or represent an auxiliary use of PAVs
in other educational tools Kumar (2005).

We have considered 24 experiments. Having a look at them, one suspects
that just delivering visualizations is not enough to obtain educational improve-
ments, as Hundhausen et al. (2002) stated. Successful experiments report a wide
variety of visualization features: high quality contents Hansen et al. (2000), ad-
vanced manipulation interfaces Cross et al. (2007); Jain et al. (2006), or adding
visualization sessions to regular classes Moskal et al. (2004).

Our aim is to deepen in the effect that additional features have on edu-
cational improvement. After a first review of experiments, we identified four
features to consider:

Narrative contents and textual explanations These may assist students
in understanding graphical depictions generated by a PAV system. In ad-
dition, when students build their own animations, adding narrative con-
tents engage students in a reflection exercise that may enhance learning
outcomes.

Feedback on student’s actions When an animation is played, students may
be asked to predict future steps of the algorithm. Feedback to their an-
swers could reinforce right answers or correct wrong ones. As animations
inherently provide feedback on the next step, we only take into account
explicit feedback, for either right or wrong answers.

Extra time using PAV Many tasks in typical learning environments cannot
be replaced with animation-based tasks. Therefore, extra time is often
needed to use animations.

Advanced features Some systems deliver advanced contents showing different
behaviors of the algorithm, advanced interfaces to manipulate visualiza-
tions, or advanced integration with an IDE.

In our analysis of experiments, we have used the educational improvements re-
ported and their engagement levels. With respect to educational improvements,
they can be classified into knowledge acquisition, student’s performance in pro-
gramming, or student’s attitude towards subjects or materials. With respect
to engagement levels, we have identified two experimental designs: experiments
studying improvements at one or two engagement levels, and comparative stud-
ies. In this section, we describe experiments grouped by the engagement level
where the educational improvement was detected. Table 3 summarizes these
experiments.

3.1 Viewing

The six experiments placed at this level detected educational improvements in
terms of knowledge acquisition. Chapter 7 of Lawrence’s dissertation Lawrence

12

(1993) detected improvements when using PAVs with textual labels. Crosby &
Stelovsky (1995) detected improvements when using multimedia materials made
up of visualizations and narrative contents, comparing it with the no viewing
level.

Kann et al. (1997) made a comparative study among no viewing, viewing,
constructing and viewing and constructing. They only detected significant im-
provements between viewing and no viewing students. It is the only viewing
experiment without textual or narrative contents.

Kehoe et al. (2001) studied the use of PAV in an environment that simulated
homework. Thus, students used animations to complete assignments without
time limit.

Kumar’s experiment Kumar (2005) represents an auxiliary use of visualiza-
tion. The main role of Kumar’s system is tutoring students, providing them with
automatically generated problems. His experiment found that using visualiza-
tions within the feedback provided by the tutor improves knowledge acquisition.

Finally, Urquiza-Fuentes (2008) investigates the effect of replacing a part
of exercises sessions with program visualization sessions during a long term
evaluation. The animations had additional textual explanations.

3.2 Responding

The three studies placed at this level compare responding with no viewing. The
first two experiments detected improvements in knowledge acquisition and were
supported by additional narrative contents. Although Byrne et al. (1999) used
a plain algorithm animation, the instructor posed questions to students that
had to be answered during the animation. Grissom et al. (2003) used a system
that automatically integrated the questions within the animation.

Finally, Laakso et al. (2005) went beyond simple questions, engaging stu-
dents in simulation tasks. Here, students manipulate a data structure, simu-
lating the behavior of a given algorithm and receiving explicit feedback about
their simulations. They also used the viewing level, as students were allowed to
see animations of the algorithm they had to simulate.

3.3 Changing

The first two experiments mixed the responding and changing levels, and com-
pared them to viewing and no viewing. They are described in the same publica-
tion Hansen et al. (2000) –studies I, II, IV and V–. They use high-quality edu-
cational materials consisting of three different animations –conceptual/abstract,
detailed and populated– of the same algorithm, questions and explicit feedback
on their answers.

Lawrence compared the effect of changing input data in animations with
respect to the no viewing and viewing levels. In the comparative study with the
no viewing level Lawrence et al. (1994), she found improvements in knowledge
acquisition; the animations had narrative contents and students who worked
with them had an additional lab session. She also compared the changing and

13

viewing levels Lawrence (1993) without additional features, again obtaining im-
provements in knowledge acquisition.

Ben-Bassat et al. (2003) studied the use of a visualization tool for teaching
Java to novices. They found that only average students improved their knowl-
edge. Moskal et al. (2004) focused on novice students “at risk” of not succeeding
in their first programing course. They detected improvements in knowledge ac-
quisition. These students were enrolled in an extra course where they worked
with an advanced tool to learn OO programming basics.

Ahoniemi & Lahtinen (2007) compared the changing level with the no view-
ing level. They used animations with additional narrative contents. This ex-
periment used homework assignments, so working time was not limited.

In the last experiment Cross et al. (2007); Jain et al. (2006), the instructors
provided students with an advanced tool integrated in a Java IDE, while stu-
dents in the no viewing group used the same environment without visualization
features. The students completed programming and debugging tasks with the
environment.

3.4 Constructing

Stasko (1997) designed assignments where students had to construct their own
animations. They also included some changing activities. He detected that stu-
dents dedicated more time to study algorithms for which they had constructed
animations.

Urquiza-Fuentes & Velázquez-Iturbide (2007) made a short term compar-
ative study with the viewing level. Students within the constructing group
generated animations with textual explanations using an effortless approach,
while the others just viewed the same kind of animations, previously generated
by the instructors. They detected improvements in students’ attitude. Besides,
constructing students were longer involved with the algorithm, improving their
knowledge acquisition.

Finally, Urquiza-Fuentes (2008) studied the effect of the same construction
approach in a long term evaluation. He compared the constructing level with
respect to the viewing and no viewing levels. He detected improvements in
attitude on both comparisons; he also detected improvements in knowledge
acquisition when compared to the no viewing level.

3.5 Presenting

The three experiments studying the presenting level include construction tasks
with additional narrative contents. Two of them focused just on this mixture
of tasks Hundhausen (2002); Hundhausen & Brown (2008), while the other
compared it with the viewing level.

Hundhausen (2002) compared constructing and presenting tasks using two
different tools: a well-known algorithm visualization tool, and artifacts selected
by the students, ranging from slides to crafts. This observational study detected
improvements in attitude of students who used their own artifacts. Based on

14

these results, a tool to construct algorithm animations was developed and com-
pared again with construction artifacts selected by students Hundhausen &
Brown (2008). In this experiment, improvements in programming performance
were detected on students who worked with the new tool.

Hübscher-Younger & Narayanan (2003) compared the presenting and con-
structing levels with the viewing level. They encouraged students –as a volun-
tary task– to generate animations and asked them to evaluate –as a compulsory
task– those generated by the rest of the students. The construction utilities were
chosen by the students. They detected improvements in knowledge acquisition
of students who constructed the animations.

3.6 Discussion

This subsection analyzes the results obtained by the experiments previously
mentioned. First, we give a global view. Then, we give recommendations for
each engagement level regarding the visualization system and design of the
experiment. Finally, we suggest possible changes between engagement levels,
the related recommendations and the possible learning improvements.

3.6.1 A global view

Results show that learning can be enhanced with PAVs in several ways. Im-
provements in knowledge acquisition were detected in 75% (18/24) of the exper-
iments. This improvement is found at any engagement level. Over 20% (5/24)
of the experiments detected improvements in attitude towards either materials
or subject matters. Finally, programming skills can also be improved, as was
found in more than 8% (2/24) of the experiments.

Focusing on engagement levels, there are two ends. Changing is the most fre-
quently investigated level with 37.5%(9/24) of the experiments, while presenting
is at the opposite with 12.5%(3/24). Responding is present in 20.8%(5/24) of
the experiments, and both viewing and constructing are present in 27.2%(7/24)
of the experiments.

Not all the experiments compare two levels: 20.8%(5/24) of them explore im-
provements within a particular level. Within comparative experiments, 73.7%(14/19)
of them studied effectiveness of PAVs with respect to no use; the rest –26.3%(5/19)–
compared to the viewing engagement level.

The use of narrative and textual contents is present in 75%(18/24) of the
experiments. This means that they are an important factor to take into account
when designing learning experiments with PAV. Explicit feedback, extra working
time or advanced features, such as high quality contents or advanced interfaces,
are present in more than 20% of the experiments.

15

Experiment EI EL N F T A

Lawrence (1993) Ch.7 K (V) ⋆

Crosby & Stelovsky (1995) K (V) ⇒ NV ⋆

Kann et al. (1997) K (V) ⇒ NV
Kehoe et al. (2001) K (V) ⇒ NV ⋆ ⋆

Kumar (2005) (Feedback of tutoring system) K (V) ⇒ NV ⋆

Urquiza-Fuentes (2008) K (V) ⇒ NV ⋆

Byrne et al. (1999) K (R) ⇒ NV ⋆

Grissom et al. (2003) K (R) ⇒ NV ⋆

Laakso et al. (2005) A (R,V) ⇒ NV ⋆

Hansen et al. (2000) Studies I-II-IV K (CH,R) ⇒ NV ⋆ ⋆ C
Hansen et al. (2000) Study V K (CH,R) ⇒ V ⋆ ⋆ C
Lawrence (1993) Ch.6 K (CH) ⇒ V ⋆

Lawrence et al. (1994) K (CH) ⇒ NV ⋆ ⋆

Ben-Bassat et al. (2003) K (CH)
Moskal et al. (2004) K (CH) ⇒ NV ⋆ V
Ahoniemi & Lahtinen (2007) A/K (CH) ⇒ NV ⋆ ⋆

Cross et al. (2007); Jain et al. (2006) P (CH) ⇒ NV I

Stasko (1997) A (C,CH)
Urquiza-Fuentes & Velázquez-Iturbide (2007) A/K (C) ⇒ V ⋆ ⋆ V
Urquiza-Fuentes (2008) A&K (C) ⇒ NV ⋆ V
Urquiza-Fuentes (2008) A (C) ⇒ V ⋆ V

Hundhausen (2002) A (P,C) ⋆

Hübscher-Younger & Narayanan (2003) K (P,C) ⇒ V ⋆

Hundhausen & Brown (2008) P (P,C) ⋆ V

Table 3: Summary of successful experiments grouped by engagement levels. The
column labeled with EI encodes the kind of educational improvement, where K,
A and P stand for knowledge acquisition, attitude and programming perfor-
mance, respectively. If more than one kind of educational improvement is de-
tected we use the “X&Y” notation if both are directly caused by the treatment,
and the “X/Y” notation if it is not clear which one is directly caused by the treat-
ment. The column labeled with EL indicates the engagement levels involved in
the experiment. It also differentiates between comparative studies, encoded as
“(X) ⇒ Y” where X obtained better results than Y, and non-comparative stud-
ies. The columns labeled with N, F and T indicate respectively if narratives,
explicit feedback or extra time were used in the experiment. Finally, the column
labeled A indicates advanced features, where C, I and V stand for contents, IDE
interface and visualization interface.

16

3.6.2 Recommendations for designing visualization-based learning
experiences

We must first note that this is not a meta-study like Hundhausen et al. (2002),
since only successful evaluatinos are studied. As a consequence, we cannot give
formal and scientific evidence of correlations among the different engagement
levels and educational improvements. However, all of these experiments give em-
pirical evidence on successful uses of different engagement levels. Consequently,
we extract a number of recommendations for each engagement level.

Just viewing animations can improve knowledge acquisition. Animations
should have additional text or narrative contents.

When students answer questions during an animation, they should also
be provided with additional narrative or textual contents. Explicit feedback is
also important (although it is not present in two of the experiments). The
questions made in these experiments were predictive, so their answers were
contained in subsequent steps of their animations.

Allowing the students to change input data is a more active task. Here,
narratives and textual contents seem to be less important (62.5%, 5 out of
8). This is probably due to the fact that researchers were more interested
in cognitive work performed by students when choosing input data, than in
enhancing the contents shown to the students. As it is an exploratory task, fixing
a rigid time limit should be avoided. In addition, some advanced features may
produce learning outcomes, for instance high-quality contents –such as different
execution scenarios Hansen et al. (2000)–, integration with an IDE Moskal et al.
(2004), or an interface to manipulate animations Cross et al. (2007); Jain et al.
(2006).

When students construct their own animations, the construction inter-
face is very important. Six out of seven studies involving construction tasks
provided the students with carefully designed interfaces, or allowed them to
choose their own construction kits24. Its corresponding construction process
should be effortless. Encouraging students to produce their own textual or nar-
rative contents is also positive. Most improvements have also been detected in
attitude towards materials and subjects.

Finally, students are typically asked to present animations constructed
by themselves. Therefore, recommendations of the previous paragraph also are
applicable.

3.6.3 Suggestions for moving through engagement levels

We can analyze experiments to determine what engagement levels were the most
effective, and why. Most of the experiments reported on improvements when
comparing with the no viewing or viewing engagement levels. We analyze them
in detail.

24Both represent a student-centered approach rather than a high-technology-centered ap-
proach.

17

Moving from the no viewing engagement level The no viewing level
means that no PAVs are being used. Therefore, the simplest change consists in
moving to the viewing level, where knowledge acquisition is improved. There
exist a number of PAV collections, but if one wants to generate one’s own PAVs,
narrative and textual contents should be included.

Moving to the responding level is also possible due to PAV collections. This
change can improve attitude and knowledge acquisition. When designing your
own responding experiments, the use of narrative contents and explicit feedback
is important.

Attitude, knowledge acquisition and programming skills can be improved
by moving to the changing level. Probably, it will demand more time from
students, because this level is often used in homework assignments. Again, nar-
rative contents and explicit feedback –just in case of using this level together
with responding– are suggested. Building one’s own system requires non-trivial
development effort to develop advanced features (such as high-quality contents,
good integration with an IDE, or advanced programming or visualization inter-
faces).

Finally, moving to the constructing level can improve attitude and knowl-
edge acquisition. The construction process should be effortless, and narrative
contents should also be added.

Moving from the viewing engagement level This level typically provides
poor interaction experiences. A simple change is moving to the changing level,
where knowledge acquisition is improved. In addition to narrative contents and
explicit feedback, high-quality contents have proved to be effective.

Moving to the constructing level may improve attitude and, as a side effect,
knowledge acquisition. The construction process should be effortless, and nar-
rative contents should be integrated into the animations. It can be used with
the presenting level, improving knowledge acquisition, but students should be
free to choose their own construction kits.

4 Conclusions and future work

Engaging students with PAVs is a plausible way to make them effective educa-
tional tools. In this article, we have reviewed successful evaluations of either
PAV systems or pedagogical experiences.

Regarding the PAV systems evaluated, about half of them have only been
subject to usability tests. Unfortunately, most of the published usability tests
do not appear to be integrated in a standard feedback-based development cycle.
Furthermore, 33% of them are informal evaluations with little contribution to
future improvements of the evaluated system and useless information for users
outside the development team. Usability is a requirement to accomplish in
educational software due to the fact it is highly interactive, in particular in
PAV systems. In addition, usability is an important factor to allow a system to

18

go beyond the undesired scenario of “a PAV system developed by ’me’ and only
used by ’me’”.

The other half of the systems have been subject to educational evaluations.
We have found that in general script-based systems are more suitable for the
viewing or responding levels. In effect, this kind of systems provides power-
ful scripting languages that produce visualizations with narrative contents and
stop-and-think questions. Such scripting languages are expressive but also are
complex, therefore their use to construct PAVs hardly produces learning im-
provements. Compiler-based systems are more suitable for the changing, con-
struction and presenting engagement levels. This is because they liberate stu-
dents from details of the scripting language and allow to focus their attention
on the animation contents.

There exist attempts from both approaches to reach a midpoint. On the
one hand, scripting languages can be less complex (e.g. LJV requests students
only to mark in source code the locations where the current state of an object
must be visualized, and Swan provides an API with graph, lists and trees draw-
ing algorithms, alleviating students from implementing such low-level details).
Scripting notations could even have two versions, one for experts and the other
for novices. On the other hand, compiler-based systems may provide facilities to
change the look of visualizations or animations (e.g. SRec provides with a wide
range of customization and interaction facilities), to include narrative contents
(e.g. in WinHIPE), and to generate stop-and-think questions (e.g. in Jeliot).

Regarding the pedagogical effectiveness of the engagement levels, this is not
a meta-study, as we have not included unsuccessful experiments. Therefore, we
can not claim that the features under study are statistically significant factors
of educational improvement. However, we can give some recommendations, as
many features were present in such experiments: narrative and textual contents,
feedback to students’ answers, and a student-centered approach in the design of
PAV construction kits.

Future work will consider unsuccessful experiments and the research method-
ologies used. Hopefully, we will then be able to establish correlations between
engagement levels, research methodologies, educational improvements, PAV sys-
tems and usability evaluations.

5 Acknowledgements

The authors thank the anonymous TOCE reviewers for their suggestions on
how to improve the article, and specially Dr. Rößling for his help in producing
its final version. This work is supported by project TIN2008-04103/TSI of the
Spanish Ministry of Science and Innovation.

19

References

Ahoniemi, T., & Lahtinen, E. (2007). Visualizations in preparing for program-
ming exercise sessions. Electronic Notes in Theoretical Computer Science,
178 , 137–144.

Akingbade, A., Finley, T., Jackson, D., Patel, P., & Rodger, S. (2003). JAWAA:
easy web-based animation from CS 0 to advanced CS courses. In SIGCSE ’03:
Proceedings of the 34th SIGCSE Technical Symposium on Computer Science
Education, (pp. 162–166). New York, NY, USA: ACM Press.

Ben-Bassat, R., Ben-Ari, M., & Uronen, P. (2003). The Jeliot 2000 program
animation system. Computers & Education, 40 (1), 1–15.

Bonifaci, V., Demetrescu, C., Finocchi, I., & Laura, L. (2006). Visual editing of
animated algorithms: the Leonardo Web Builder. In AVI ’06: Proceedings of
the Working Conference on Advanced Visual Interfaces, (pp. 476–479). New
York, NY, USA: ACM Press.

Bruce-Lockhart, M., Norvell, T., & Cotronis, Y. (2007). Program and algorithm
visualization in engineering and physics. Electronic Notes in Theoretical Com-
puter Science, 178 , 111–119.

Bruce-Lockhart, M., & Norvell, T. S. (2006). Interactive embedded examples: a
demonstration. In ITiCSE ’06: Proceedings of the 11th Annual Conference on
Innovation and Technology in Computer Science Education, (pp. 357–357).
New York, NY, USA: ACM Press.

Byrne, M., Catrambone, R., & Stasko, J. (1999). Evaluating animations as
student aids in learning computer algorithms. Computers & Education, 33 ,
253–278.

Crescenzi, P., Demetrescu, C., Finocchi, I., & Petreschi, R. (2000). Reversible
execution and visualization of programs with Leonardo. Journal of Visual
Languages and Computing , 11 (2), 125–150.

Crescenzi, P., & Nocentini, C. (2007). Fully integrating algorithm visualization
into a CS2 course: a two-year experience. In ITiCSE ’07: Proceedings of the
12th Annual Conference on Innovation and Technology in Computer Science
Education, (pp. 296–300). New York, NY, USA: ACM Press.

Crosby, M., & Stelovsky, J. (1995). From multimedia instruction to multimedia
evaluation. Journal of Educational Multimedia and Hypermedia, 4 , 147–162.

Cross, J., Hendrix, T., Jain, J., & Barowski, L. (2007). Dynamic object viewers
for data structures. In SIGCSE ’07: Proceedings of the 38th SIGCSE Tech-
nical Symposium on Computer Science Education, (pp. 4–8). New York, NY,
USA: ACM Press.

20

Grissom, S., McNally, M., & Naps, T. (2003). Algorithm visualization in CS
education: comparing levels of student engagement. In SoftVis ’03: Proceed-
ings of the 2003 ACM Symposium on Software Visualization, (pp. 87–94).
New York, NY, USA: ACM Press.

Hamer, J. (2004). A lightweight visualizer for Java. In Proceedings of the Third
Program Visualization Workshop, (pp. 54–61). Coventry, UK: University of
Warwick.

Hansen, S., Narayanan, N., & Schrimpsher, D. (2000). Helping learn-
ers visualize and comprehend algorithms. Interactive Multimedia Elec-
tronic Journal of Computer-Enhanced Learning , 2 (1). Available at
http://imej.wfu.edu/articles/2000/1/02/ (2008).

Hendrix, T., Cross, J., & Barowski, L. (2004). An extensible framework for pro-
viding dynamic data structure visualizations in a lightweight IDE. In SIGCSE
’04: Proceedings of the 35th SIGCSE Technical Symposium on Computer Sci-
ence Education, (pp. 387–391). New York, NY, USA: ACM Press.

Hübscher-Younger, T., & Narayanan, N. (2003). Dancing hamsters and marble
statues: characterizing student visualizations of algorithms. In SoftVis ’03:
Proceedings of the 2003 ACM Symposium on Software Visualization, (pp.
95–104). New York, NY, USA: ACM Press.

Hundhausen, C. (2002). Integrating algorithm visualization technology into an
undergraduate algorithms course: ethnographic studies of a social construc-
tivist approach. Computers & Education, 39 (3), 237–260.

Hundhausen, C., & Brown, J. (2005). What you see is what you code: a
“radically-dynamic” algorithm visualization development model for novice
learners. In VL/HCC ’05: Proceedings of the 2005 IEEE Symposium on Vi-
sual Languages and Human-Centric Computing , (pp. 163–170). Los Alamitos,
CA, USA: IEEE Computer Society Press.

Hundhausen, C., & Brown, J. (2008). Designing, visualizing, and discussing
algorithms within a CS 1 studio experience: an empirical study. Computers
& Education, 50 (1), 301–326.

Hundhausen, C., Douglas, S., & Stasko, J. (2002). A meta-study of algorithm vi-
sualization effectiveness. Journal of Visual Languages and Computing , 13 (3),
259–290.

Jain, J., Cross, J., Hendrix, T., & Barowski, L. (2006). Experimental evaluation
of animated-verifying object viewers for Java. In SoftVis ’06: Proceedings of
the 2006 ACM Symposium on Software Visualization, (pp. 27–36). New York,
NY, USA: ACM Press.

Kann, C., Lindeman, R., & Heller, R. (1997). Integrating algorithm animation
into a learning environment. Computers & Education, 28 (4), 223–228.

21

Kehoe, C., Stasko, J., & Taylor, A. (2001). Rethinking the evaluation of al-
gorithm animations as learning aids: an observational study. International
Journal of Human-Computer Studies, 54 (2), 265–284.

Koifman, I., Shimshoni, I., & Tal, A. (2008). MAVIS: A multi-level algorithm
visualization system within a collaborative distance learning environment.
Journal of Visual Languages and Computing , 19 (2), 182–202.

Korhonen, A., Malmi, L., Silvasti, P., Karavirta, V., Lönnberg, J., Nikander,
J., Stlnacke, K., & Ihantola, P. (2004). Matrix - a framework for interactive
software visualization. Tech. Rep. TKO-B 154/04, Laboratory of Informa-
tion Processing Science, Department of Computer Science and Engineering,
Helsinki University of Technology, Helsinki, Finland.

Kulyk, O., Kosara, R., Urquiza-Fuentes, J., & I., W. (2007). Human-Centered
Visualization Environments, chap. Human-Centered Aspects, (pp. 13–75).
Springer-Verlag.

Kumar, A. (2005). Results from the evaluation of the effectiveness of an on-
line tutor on expression evaluation. In SIGCSE ’05: Proceedings of the 36th
SIGCSE Technical Symposium on Computer Science Education, (pp. 216–
220). New York, NY, USA: ACM Press.

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A., & Malmi,
L. (2005). Multi-perspective study of novice learners adopting the visual
algorithm simulation exercise system TRAKLA2. Informatics in Education,
4 (1), 49–68.

Lawrence, A. (1993). Empirical studies of the value of algorithm animation in
algorithm understanding . Ph.D. thesis, Dep. of Computer Science, Georgia
Institute of Technology.

Lawrence, A., Badre, A., & Stasko, J. (1994). Empirically evaluating the use
of animations to teach algorithms. In VL ’94: Proceedings of the 1994 IEEE
Symposium on Visual Languages, (pp. 48–54). Los Alamitos, CA, USA: IEEE
Computer Society Press.

Malmi, L., Karavirta, V., Korhonen, A., Nikander, J., Seppälä, O., & Silvasti,
P. (2004). Visual algorithm simulation exercise system with automatic assess-
ment: TRAKLA2. Informatics in Education, 3 (2), 267–288.

Moreno, A., Myller, N., Sutinen, E., & Ben-Ari, M. (2004). Visualizing programs
with Jeliot 3. In AVI ’04: Proceedings of the Working Conference on Advanced
Visual Interfaces, (pp. 373–376). New York, NY, USA: ACM Press.

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of
a new instructional approach. In SIGCSE ’04: Proceedings of the 35th
SIGCSE Technical Symposium on Computer Sceince Education, (pp. 75–79).
New York, NY, USA: ACM Press.

22

Myller, N. (2007). Automatic generation of prediction questions during program
visualization. Electronic Notes in Theoretical Computer Science, 178 , 43–49.

Naps, T. (2005). JHAVE: supporting algorithm visualization. IEEE Computer
Graphics and Applications, 25 , 49–55.

Naps, T., Roessling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen,
C., Korhonen, A., Malmi, L., McNally, M., Rodger, S., & Velázquez-Iturbide,
J. (2003). Exploring the role of visualization and engagement in computer
science education. SIGCSE Bulletin, 35 (2), 131–152.

Naps, T., & Rößling, G. (2007). JHAVÉ – more visualizers (and visualizations)
needed. Electronic Notes in Theoretical Computer Science, 178 , 33–41.

Norvell, T., & Bruce-Lockhart, M. (2000). Taking the hood off the computer:
Program animation with the Teaching Machine. In Proceedings of the Cana-
dian Electrical and Computer Engineering Conference, (pp. 831–835).

Pareja-Flores, C., Urquiza-Fuentes, J., & Velázquez-Iturbide, J. (2007). Win-
HIPE: an IDE for functional programming based on rewriting and visualiza-
tion. SIGPLAN Notices, 42 (3), 14–23.

Pierson, W., & Rodger, S. (1998). Web-based animation of data structures
using JAWAA. In SIGCSE ’98: Proceedings of the 29th SIGCSE Technical
Symposium on Computer Science Education, (pp. 267–271). New York, NY,
USA: ACM Press.

Price, B., Baecker, R., & Small, I. (1998). An introduction to software visual-
ization. In J. Stasko, J. Domingue, M. Brown, & B. Price (Eds.) Software
Visualization, (pp. 3–27). Cambridge, MA: MIT Press.

Rößling, G., & Ackermann, T. (2007). A framework for generating AV content
on-the-fly. Electronic Notes in Theoretical Computer Science, 178 , 23–31.

Rößling, G., & Naps, T. (2002). A testbed for pedagogical requirements in
algorithm visualizations. In ITiCSE ’02: Proceedings of the 7th Annual Con-
ference on Innovation and Technology in Computer Science Education, (pp.
96–100). New York, NY, USA: ACM.

Rößling, G., & Schroeder, P. (2009). Animalipse - an Eclipse plugin for Ani-
malScript. Electronic Notes in Theoretical Computer Science, 224 , 3–14.

Rößling, G., Schüer, M., & Freisleben, B. (2000). The ANIMAL algorithm
animation tool. In ITiCSE ’00: Proceedings of the 5th Annual Conference
on Innovation and Technology in Computer Science Education, (pp. 37–40).
New York, NY, USA: ACM Press.

Shaffer, C., Heath, L., & Yang, J. (1996). Using the Swan data structure visual-
ization system for computer science education. In SIGCSE ’96: Proceedings
of the 27th SIGCSE Technical Symposium on Computer Science Education,
(pp. 140–144). New York, NY, USA: ACM Press.

23

Stasko, J. (1992). Animating algorithms with XTANGO. SIGACT News, 23 (2),
67–71.

Stasko, J. (1997). Using student-built algorithm animations as learning aids.
In SIGCSE ’97: Proceedings of the 28th SIGCSE Technical Symposium on
Computer Science Education, (pp. 25–29). New York, NY, USA: ACM Press.

Stasko, J., Badre, A., & Lewis, C. (1993). Do algorithm animations assist
learning?: an empirical study and analysis. In CHI ’93: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, (pp. 61–66).
New York, NY, USA: ACM Press.

Urquiza-Fuentes, J. (2008). Generación Semiautomática de Animaciones de
Programas Funcionales con Fines Educativos. Ph.D. thesis, Dept. de Lengua-
jes y Sistemas Informáticos I, Universidad Rey Juan Carlos.

Urquiza-Fuentes, J., & Velázquez-Iturbide, J. (2007). An evaluation of the
effortless approach to build algorithm animations with WinHIPE. Electronic
Notes in Theoretical Computer Science, 178 , 3–13.

Velázquez-Iturbide, J., Pareja-Flores, C., & Urquiza-Fuentes, J. (2008). An
approach to effortless construction of program animations. Computers &
Education, 50 (1), 179–192.

Velázquez-Iturbide, J., Pérez-Carrasco, A., & Urquiza-Fuentes, J. (2008). SRec:
an animation system of recursion for algorithm courses. In ITiCSE ’08: Pro-
ceedings of the 13th Annual Conference on Innovation and Technology in
Computer Science Education, (pp. 225–229). New York, NY, USA: ACM.

Virtanen, A., Lahtinen, E., & Järvinen, H.-M. (2005). VIP, a visual interpreter
for learning introductory programming with C++. In Proceedings of the Fifth
Koli Calling Conference on Computer Science Education, (pp. 125–130).

24

