Building the Senceive System

Waltenegus Dargie
Technical University of Dresden
Chair of Computer Networks
Faculty of Computer Science
01062 Dresden
waltenegus.dargie@tu-dresden.de

ABSTRACT

The conception and development of pervasive systems, i.e,
the systems which will be used in pervasive computing envi-
ronments, involve interdisciplinary team work. Apparently,
the team consists of people with a diverse research back-
ground and expertise. While such a composition is an es-
sential prerequisite to solve real world problems, it brings
with it also challenges that should be dealt with. To begin
with, team members should establish a shared understand-
ing of what should be done. This understanding includes the
terminologies that are used as well as the expected project
goals. Secondly, there has to be a division of task and a
clear plan as to how different components or building blocks
should come together to make up a unified, consistent, side-
effect free and wholesome system. In this paper we discuss
the development of the Senceive System within a graduate
project course work. The project work involves students
from computer science, computer engineering and electrical
engineering. Technically, the Senceive System offers a step-
wise abstraction of low-level concerns (sensing) from higher-
level use of meaningful features.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]|: Distributed

Systems—distributed applications

General Terms

building a sensing system, wireless sensor networks

Keywords

Activity recognition, project work, Complex system design,
Wireless sensor networks, Network configuration

1. INTRODUCTION

Recent advances in wireless sensing and processing devices
have made the promise of using wireless sensor networks of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CASEMANS 09 Nara, May 11, 2009, Japan

Copyright 2009 ACM 978-1-60558-439-3 ...$5.00.

18

Alexander Schill
Technical University of Dresden
Chair of Computer Networks
Faculty of Computer Science
01062 Dresden
alexander.schill@tu-dresden.de

diversity of applications. Unlike many applications that are
proposed or developed for pervasive computing, the develop-
ment of wireless sensor networks for a specific applications
involves several people from different research fields. For ex-
ample, in habitat monitoring, an expert knowledge of wild
birds and animals is required [11]; for structural health mo-
nitoring, knowledge of building and bridges as well as the
static and dynamic properties of structures is essential [9];
for healthcare applications, one is required to know about
Parkinson’s disease (PD) or body segments and activity of
daily life (ADL) etc. [1], and [10]; and toxic gas detection in
oil refineries requires knowledge about pipelines, toxic gases
and safety regulations [5], [2].

Most existing projects on wireless sensor networks are
graduate or post graduate projects and require a significant
conception and development time. Some of the members
that make up the project teams may not have system engi-
neering or programming experience before. Sometimes this
results in frustrations and a significant portion of the project
period is spent as members learn how to organise themselves;
how to share tasks; and how to integrate individual contri-
butions.

The graduate level study of computer science and engi-
neering at the Technical University of Dresden includes com-
pulsory practical project works before students begin their
thesis. The aim of these projects is to prepare students to
develop complex systems by working in teams and by apply-
ing both theoretical and technical backgrounds. The project
requires interdisciplinary interactions and a variety of hard-
ware and software technologies.

The team size as a rule does not exceed five people, and in
one project assignment, there can be as many as five groups,
each group having one supervisor. Students are expected
to invest four hours a week to come together and work as
a group. On average a total of 80 hours are required to
successfully complete the task. Additional eight hours are
reserved for students to present progress report and get feed-
back from their fellow students and their supervisors.

1.1 Challenges

One of the typical challenges of these project courses is en-
suring that all members of a team contribute equitably - nei-
ther dominant nor passive members make up an ideal team.
Another challenge for students is exercising self-discipline
and keeping deadlines - there is an associated penalty with
each deadline violated. There are altogether six deadlines,
five of them for reporting progress and one of them for
demonstration and the final presentation. An additional
challenge is related to the background experience students

bring to the task, since they have to divide among them-
selves the project tasks according to their experience and
preference. During this division of labor, some students may
not get a task for which they are well equipped; and they
need to quickly update themselves on particular technologies
or programming languages. Their learning pace determines
the pace of the whole team.

1.2 A model Topic

One of these projects is the Senceive system !, a system
that integrates wireless sensor networks and probabilistic-
based reasoning systems to recognize various everyday hu-
man activities in different settings, such as in lecture and
seminar rooms at the university and in different carriages of
passenger trains and street trams. In the following sections
of this paper, the development of the system as a project
work will be reported.

The remaining part of this article is organized as follows:
in section 2, a higher-level requirement to the system is de-
fined; in section 3, the detailed execution plan of the project
will be introduced; in section 4 and 5, a higher-level con-
ceptual architecture and its refined version are discussed; in
section 6, the implementation and evaluation of the Senceive
system will be discussed in detail; and finally, in section 7,
the lessons and experienced learned during the implementa-
tion of the project will be reported.

2. REQUIREMENTS

At the beginning of the project, students were given a
general description of the system along with a few basic
requirements.

2.1 Platform

Senceive would be used by users who would like to deter-
mine the activities taking place in physical places without
actually being there - lectures, parties, meetings, casual dis-
cussions, etc., in lecture and seminar rooms; fighting, con-
versations, shouts, etc., in train carriages. The users would
be mostly mobile and would own mobile devices - for ex-
ample, students and professors would like to locate lecture
sessions or meetings with the help of Senceive. Therefore,
the system should be able to support mobility and mobile
devices.

2.2 System Integration

During the project work, team work is very much ex-
pected, but individual members should also be able to work
independently. The balance can be made by requiring stu-

dents develop loosely-coupled components that can be brought

together by well defined interfaces. To ensure the smooth
integration, students are required to develop the conceptual
architecture of the systems and to define all the interfaces
of the main building blocks of the architecture together.

2.3 Sensing

Students were required to use existing wireless sensor nodes
(Micaz and Mica2 nodes [14]) to establish the sensing sub-
system. A wireless sensor network was preferred because it
was easier to deploy the nodes without disrupting the nor-
mal functions of rooms and carriages. Moreover, wireless

'The acronym stands for Sensing and Perceiving. A com-
prehensive treatment of the technical aspect of the Senceive
system is given in [7].

19

sensor networks were one of the main research focus of the
Chair, and the expected results could be exploited by some
of the actively running research projects.

Furthermore, the sensing subsystem should support multi-
ple applications. Since a wireless sensor network was chosen
for the sensing task, this seemed to stand in contradiction
with the basic assumption in wireless sensor networks. In
the literature, it is argued that a wireless sensor network is
application specific; the sensing task should be known at the
time the network is deployed; and the task does not change
over time [8]. This premises is the basis for developing en-
ergy efficient communication protocols and data aggregation
algorithms. Because wireless sensor nodes operate with ex-
haustible batteries and charging or replacing these batteries
is not a simple task, energy efficiency is a serious concern. At
the same time, however, wireless sensor networks are emerg-
ing technologies. While designing energy efficient networks
is important, identifying suitable applications for them and
rapid prototyping and testing is vital as well. Subsequently,
for this project, the energy consumption issue was not a
priority concern.

The sensing subsystem should therefore offer three differ-
ent interfaces to applications and users. The first interface
should enable applications to access sensed data; the second
interface should enable an administration to have a complete
knowledge of the deployed nodes and to configure the net-
work. The administration may not have detail knowledge of
network programming and his task should be limited to ad-
justing some known parameters, manage access rights, and
monitor if all existing nodes are functioning properly. The
third interface should enable an experienced programmer to
perform fundamental reconfigurations, not only by chang-
ing parameters, but also by entirely changing a part of the
modules that are deployed on individual nodes. This type of
reconfiguration is essential because (1) during deployment,
complete knowledge of the deployment setting may not be
known; (2) both applications’ requirement and the proper-
ties of the environment can change over time; and (3) once
a network is deployed, it is necessary to detect and fix bugs
while the network is still performing the sensing task. This
is particularly important since manual reconfiguration of in-
dividual nodes is not desirable, as it means collecting a large
number of nodes that are deployed in an extensive field.

3. MILESTONES AND PROCEDURES

One way of ensuring the timely completion of the project
work is by defining specific milestones and by requiring stu-
dents keep deadlines. Given the complexity of the system
they develop and the relatively short duration of the project,
the challenge is not so easy. In order to help students better
organize themselves, the important milestones along with
the associated duration to reach the milestones are defined
for them. The milestones are the same for all teams, re-
gardless of the topic they choose. This way, it is possible to
ensure that all groups complete their task uniformly.

Table 1 shows the detailed time plan, the milestones and
the expected results of the project.

To further assist students keep deadlines, each supervi-
sor broke down the system development task into subtasks.
The breaking down of tasks into subtasks would enable the
students define short and long term goals and to better or-
ganize themselves. For the Senceive system, table 2 displays

| Week | Date | Meeting | Assignment | Milestones | Expected Results |
1. 13.10.2006 | All Introduction Group formation
2. 20.10.2006 | Team meeting First team meeting;
Starting requirement analysis
3. 27.10.2006 | Team meeting Requirement analysis Division of tasks
4. 03.11.2006 | Presentation Assessment of related work; M1 Specification
a conceptual architecture of the architecture
6. 17.11.2006 | Presentation Refined conceptual architecture | M2 Refinement
9. 08.12.2006 | Implementation | Prototype M3 In part
12. 12.01.2007 | Presentation Prototype M4 Complete
14. 26.01.2007 | Presentation Testing and evaluation M5 Refinement
15. 02.02.2007 | Team meeting Finalizing the documentation M6 Submission
Table 1: The Project’s schedule and milestones

| Step | Task | Remark |

1. Refining the Architecture | Detail understanding the components of the architecture

2. Platform Specification Identification of the devices and technologies required

3. Protocols and algorithms | definition of the Network’s topology and data processing algorithms

4. First phase prototyping Implementation of the sensing subsystem

5. Modeling Extracting higher-level features and feature modeling

6. Reasoning Implementing and training the recognition scheme

7. Testing Testing the system as a whole

8. Final Presentation Submission of the final document

Table 2: A guideline for a step-by-step implementation of the Senceive system

the procedure that was prepared and made available to the
students by their supervisor.

4. CONCEPTUAL ARCHITECTURE

Three weeks after the project was formally started and
two weeks after the teams met their supervisor, the first
milestone would be reached. By this time, students have
closely studied the typical features of the system they would
develop; made requirements analysis; and drafted a higher-
level conceptual architecture which would serve as a basis
for division of labor. Accordingly, the Senceive group met
twice and individuals shared their experience. It is worth to
note that the students who made up the team had quite a di-
versity of cultural and educational background, even though
they had been studying similar subjects. This was a chal-
lenge at the outset, since establishing a shared understand-
ing of the main task was difficult, but later it proved to be
very useful. The result of the two meetings was a hierarchi-
cal conceptual architecture, which is displayed in figure 1.

The group identified four main layers in the architecture.
The bottom layer, the sensing layer, delivers raw sensor data
which is the basis for reasoning the activities that take place
in various places. The modeling layer extracts higher-level
features from the sensed data and establishes relationships
between these features. This layer requires signal processing
and stochastic analysis. The features are stored in a knowl-
edge base. The reasoning layer receives various features and
feature models in order to recognize the higher-level activ-
ities that are represented by the features. Finally, applica-
tions put query and subscription requestes to the recognition
layer to intelligently make decisions.

20

Aplication

Reasoning

Modelling

Sensing

Figure 1: The conceptual architecture of the Sen-
ceive system

Once the group agreed on the conceptual architecture,
the next step was division of labor?. The team members
could easily identify where they could best fit. The task that
needed more work was at the sensing layer, since besides es-
tablishing the network and efficiently collecting data, there
was also a management task. Two people volunteered to
work together (and the others agreed), one being responsible
for establishing the network and defining various commands
that would enable dynamic network management, and the

2Note the discrepancy between the schedule specified in ta-
ble 1 and the way things progressed in reality. The sched-
ule specified that division of labor should occur during the
second week of the project, before the conception of the sys-
tem architecture. This could not be done, however, before
students acquired a better understanding of the entire sys-
tem and before they are confident of their own contribution.
This was discussed with the supervisor and an agreement
was reached to exercise some flexibility as long as the mile-
stones were reached at the appropriate time.

Command

| Purpose

Sets the location label
for the selected node

Set location

Delet history data Empties local storage

Auto config (AC) on | Switch on/off global

automatic node configuration

AC mic gain Sets microphone gain (0 to 255)

AC rout update Sets rout update interval

AC storage mode Sets storage mode value (8 or 16)

AC LPL cycle Sets low power listening duty cycle

Status check interval | Sets node status request interval

Node active timeout | sets the sleeping duration of a node

Memory auto-DL sets downloading

interval of stored

Table 3: Control commands for interacting and con-
figuring the wireless sensor network

other being responsible for implementing the commands and
designing the management interface that would enable both
an experienced programmer and a lay administrator to con-
figure the network. The remaining three students identified
their place in the remaining layers.

5. REFINING THE ARCHITECTURE

In the following weeks, students focused mainly on re-
searching related work; acquainting themselves with existing
technologies and refining the layer of the conceptual archi-
tecture for which they were responsible.

5.1 The sensing layer

The sensing layer supports two specific tasks: establishing
the wireless sensor network for collecting raw data from vari-
ous places and managing the network to accommodate mul-
tiple applications and dynamic network (re)configuration.
The student who was responsible for establishing the net-
work with Micaz and Mica2 sensor nodes (section 2), iden-
tified three essential tasks: interpretation, collection, and
configuration. For each of these tasks, he defined a corre-
sponding component and a set of interfaces. Moreover, he
defined 10 basic control commands that would enable users
and administrators to interact with these components and
thereby, with the sensor network. Table 3 displays the com-
mands and their specific purpose.

The student who was responsible for designing the net-
work management subsystem identified three main compo-
nents that would permit flexible operation and management.
These are the query/subscription service, the lower-level
configuration service and the higher-level configuration ser-
vice. The detailed description of the management subsystem
is displayed in figure 2.

5.1.1 The Query/Subscription Processing Service

The query/subscription processing service enables appli-
cations (according to the conceptual architecture, multiple
modeling services) to access sensor data declaratively. The
premise for the existence of this service is that whether the
network is setup with a single application in mind or not,
most existing applications extract sensor data from the net-
work and perform data processing elsewhere. For example,
structural health monitoring [3] and active volcano monitor-
ing [13] applications collect raw data from the sensor net-

21

Apalicall
_D‘Application | Admin J | User

Appl. Interface MNet. Interface User Interface
Query/ Low-Level High-Level
Subseription Config Canfig
Service Service Service

I ; A
Kernel =

Figure 2: The conceptual architecture of the Sen-
ceive Middleware

work, but feature extraction takes place with the support
of resource rich computers outside of the network. Like-
wise, existing sensor nodes do not support higher-level digi-
tal signal process such as extraction of Mel Frequency Cep-
stral Coefficients [6] from an audio signal at the local level.
Therefore, applications can declaratively express interest by
specifying the duration and sampling frequency of data that
should be collected by the network.

More specifically, the query/subscription processing ser-
vice provides the following functionalities:

e Process snapshot queries and historical queries;
e Start long run queries with or without data listener;

e Provide information about available sensors in the net-
work along with their present internal configurations;

e Register listener to process relevant events (changes in
network status).

5.1.2 The Higher-Level Configuration Service

The higher-level configuration service enables centralized
control of the network. A centralized control ensures that
the user’s policy is enforced and the integrity of the network
is maintained, and that only eligible applications are access-
ing the network. It enables also an administrator to monitor
the status of individual nodes. If the network supports mul-
tiple applications, there can be some potential conflicts, for
example, if three applications put an alert (alert-if-below)
subscription request, in which case the applications are in-
terested to be notified when the temperature of a certain
region falls below 12, 15 and 17¥C, respectively. Because an
“alert-if-below” request is a simple request, nodes can pro-
cess such a subscription locally. However, a simple node may
process only a few of these requests because of local memory
constraint®. In this case, the higher-level configuration ser-
vice decides which of these thresholds should be evaluated
locally and which of them centrally so that the overall data
traffic that results due to these requests is minimized.

More specifically, the higher-level configuration services
provides the following functionalities:

3Note that there are additional sensors and other resources
in a single node and associated requests that should be pro-
cessed locally as well

e Provides detailed network status information

e Provides information about configuration aspects
e Modifies individual node configuration

e Modifies global configuration

e Dynamically integrates and configures new nodes and
update corresponding routing and medium access poli-
cies.

5.1.3 The Lower-Level Configuration Service

In secion 2, it was mentioned some of the reasons why
we need to reconfigure an already deployed network. The
higher-level configuration discussed above is usually referred
to as soft-configuration, since it does not affect the runtime
code of a node. There are, however, conditions in which one
needs to replace certain modules (for example, replacing a
low-pass filter with a bandpass filter) or even the entire set
of modules, as in the case of a considerable fault in the
deployed code or a total change in the user’s requirement.

Typical tasks of a lower-level (re)configuration task is to
make sure that a program code is propagated successfully
and the new set of modules are installed in a consistent
manner. If some nodes have installed the code and others are
still running old modules, there will be a significant conflict.
For this reason, the lower-level configuration services should
be able to monitor consistency of modules and successful
code propagation and installation.

5.1.4 The Kernel

The kernel interfaces the higher-level services with the
wireless sensor network. Its basic purpose is to transform
the higher-level syntax into lower-level syntax that can be
processed and executed by the network elements. Moreover,
it plays a vital role when in-network decision is made based
on global knowledge. For example, it stores global variables
such as the number of cluster heads allowed to form a hier-
archical topology.

5.2 Modeling, Reasoning, and Application

The three upper layers are very closely related because
the modeling and reasoning processes are application spe-
cific. Hence, the first important decision that was made
by the three responsible students was to identify the sen-
sors which would deliver meaningful data *. The student
responsible for the modeling layer identified two important
components that were useful to storing raw sensor data (a
distributed database) and the higher-level features and their
interpretation (a knowledge base). Furthermore, he defined
the way to analyze the statistical significance of the data in
the database and defined how to save interpretations in the
knowledge base.

It was decided by the entire team and their supervisor to
use fuzzy logic for classifying the stochastic and time domain
features. So task of the student who was responsible for the
reasoning layer was to define fuzzy sets and membership
functions. Therefore, the task of this student was more of
analysis that software design.

The student who was responsible for the application layer
was responsible to design a graphical user interface and to in-
terface the application with the reasoning layer. The graph-
ical user interface should enable users to declaratively put

4These were temperature, light, and acoustic sensors.

22

requests to the sensing layer or the reasoning layer so that
they can observe the change in the measurement data or sim-
ply obtain higher-level activities from the reasoning layer.

6. IMPLEMENTATION AND EVALUATION

The Senceive team presented the conceptual architecture
and the refined version thereof to the whole project groups
and received constructive feedback. Afterwards, they pro-
ceeded with the implementation plan. The sensor network
was setup based on the TinyOS 2.x runtime environment.
The network was made up of Crossbow MICAz nodes with
MTS300 and MTS310 sensor boards. The sensing subsystem
supported single sensor access, stream sampling, resource
arbitration and power management. Newly arriving nodes
could autonomously register with the network, synchronize
to global network time, receive commands to alter configu-
ration or start sensing tasks and reliably deliver data to a
sink.

The management subsystem provided external control of
and dynamic binding to the network. Remote applications
could access the network and collect data using the Java
Remote Method Invocation (RMI). The query/subscription
processing service made available a complete description of
the services that were supported by the sensing subsystem,
including the type of query and subscription requests that
could be processed. Likewise, the higher-level configuration
service provided network administrators with information
pertaining to the number of available nodes and their spa-
tial distribution as well as the configuration functionalities.
Figure 3 shows the administrator’s view of the Senceive sys-
tem.

The wireless sensor network supported multi-hop commu-
nications; the minimum distance for a single-hop commu-
nication was determined by the service quality (tolerable
end-to-end delay and packet loss) that was defined by the
administrator. The received signal strength was used to set
a threshold for multi-hop communication. For data gath-
ering and command dissemination (higher-level configura-
tion), the data collection and dissemination protocols intro-
duced by sdlib [4] was adopted.

6.1 Data Collection

The Senceive group performed also an experimented with
regard to the impact of adopting a layered architecture of
the timeliness (latency) of the recognized activity (context).
A time diffusion [12] protocol was used to calculate the time
needed to collect data from any node within the network
to a remote base station that interfaced the network with a
laptop computer. The experiment was conducted thus: stu-
dents distributed several MICAz nodes in different rooms,
at the faculty of computer science in such a way that the
node depth increased with every node. Whereas some nodes
directly communicated with the base station, other nodes
used intermediate nodes, based on the local decision regard-
ing the signal strength. This ensured the establishment of
a link with a reliable quality. The average collection time
was about 10 ms for nodes within a one-hop range; 14ms for
nodes within two-hop range; 20ms for nodes within three-
hop range and 46ms for nodes within four-hop range. The
data collection time fluctuated from 10ms to 25ms for nodes
within one-hop range; Oms to 24ms for nodes within two-hop
range; 3ms to 45ms for nodes within three-hop range; and
33ms to 64ms for nodes within four-hop range. A further

Senc:eive Middleware Administration Example

=lof x|

Mote Control Middleware Control
Moteisy: [3 |~ | [Leave Admin State [x]] || sena | [Export History Data to CS¥ File [=]| || set |
Hetwork Overview
id| location | sensors |mote... laststatus lastcolle..] parent nodede...fwdqueuejlinkgualijﬂmemnm... hattery | micgain |routeup...|storage..| Iplevele | realTim...
3 |window |[MTS31.. |7 2007-08-0311:5... |1 a 1 a0 165 0 8 G4] g 10000 118881..
4 |door MTS3.. |4 2007-08-0311:5... |18 a0 a0 165 0 3000 G4 5 g 10000 118881 ..
5 [floar MTS31... |4 2007-08-0311:5... [0 0 1 0 124 0 2820 G4 a g 10000 118881..
4] |id6 MTS31... |4 2007-09-0311:5... |36 0 1 0 1849 0 2940 G4 a g 10000 118881 ..
Mote Command History Mote Query List Mote Sleep Intervals

timestamp crd|argl| arg2 | id end fuery hedin duration Begin (hhemm): (1220
2007-08-0311:47:31.0 108 |0 0 a| 141.76.40126_... |nia SELECT accelxaccely FRO.. 22:.0 240 min
2007-09-03 11:47:31.500 106 [0 1] 141.76.40126_... [nia SELECT mage,magy FROM .| 12:30 B0 min Duration {min): |50
2007-08-03 11:47:52.296 106 [0 a
2007-06-03 11:46:00171 [106 0|0 Add New Interval
2007-08-03 11:49:00171 106 [0 a S
2007-08-0311:50:00187 106 |0 0 Remove Interval
2007-09-03 11:50:09.703 |4 24 5120
2007-089-03 11:50:42.359 |4 120 |1024 L
2007-08-03 11:51:00187 106 [0 a =
2N7-na-nr 445700487 [Mns 0 n | Sion.cuen
Middleware Configuration
Auto Config (AC) OM|_ ACMicGain | AC RouteUpdate | AC StorageMode | ACLPL-Cycle | StatusCheck Interval| MoteActive Timeout [Memary Auto-DL Int. |
1 |54 |5 |a [10000 1 E] |2048 |

Figure 3: An overview of the Senceive configuration service administration interface)

test starting multiple long run queries on the nodes resulted
in the same collection times.

The results led to the expected conclusion that collection
time is most significantly affected not due to the higher-level
services but due to an increase in node depth. Only nodes
within two-hop range showed unexpected behavior, usually
needing a shorter time to deliver message to the base sta-
tion. A probable cause for this is the time synchronization.
As the implemented time synchronization protocol does only
provided synchrony with a resolution of around 20ms, real
collection times could be higher. The above results can nev-
ertheless be regarded as proof of reliability. All node mes-
sages reach the base station with a relatively short delay.

6.2 Command Dissemination

Dynamic configuration of the network was supported by
defining several simple commands that could directly be
executed inside a node. These commands related to mea-
surement thresholds, transmission power levels, low-power
listening status, buffer size, acoustic gains and so on. By
aggregating these commands, control of the behavior as well
as performance of the network. The basic challenge was to
successfully (and timely) propagating these commands at
runtime.

The test environment for the collection performance was
also used to test the reliability of command dissemination.
Unfortunately the dissemination protocol could not offer any
meta information about routing status as the collection pro-
tocol did. Thus it was hard to account lost packets and how
many times they were retransmitted. As a result, it was not
possible to determine whether the delay in command dis-
semination was due to retransmission of lost packets or due
to the system complexity.

With regard to the impact of multi-hop communication
on command dissemination, the experiment showed an ex-

23

pected behavior, nevertheless. Nodes with a node depth of
1 always received commands with a negligible delay and re-
sponded promptly. With a higher node depth, however, the
response time increased. During testing, nodes within one-
hop always responded directly, while nodes within two and
three hops away usually responded with a 0 to 2 second de-
lay and nodes within four hops away usually needed 1 to 2
seconds to respond. In some cases, the response time was
significantly higher, reaching up to 4 seconds. The positive
result of the test was that no command was lost.

The results showed that the dissemination protocol reli-
ably delivered commands to the nodes as long as time span
between sending two commands was large enough. The
protocol did not guarantee, however, a low delivery time
if multi-hop command delivery were necessary. As the num-
ber hops increased, the command delivery time reached up
to the factor of ca. 100 times slower than the data collection
time.

The network management subsystem was implemented in
Java and so was the reasoning subsystem. mySQL was used
to implement the knowledge base and the database.

6.3 Discussion

During the modeling process, frequency domain audio fea-
tures (which were very useful for the recognition task) could
not be extracted as expected. To recognize human speeches
or speech related activities, the surrounding acoustic should
be sampled at a frequency of at least 8000Hz. This is be-
cause, the human speech lies in the frequency range of 0-
4KHz. This much sampling could not be supported both
by the available memory size of individual nodes and by
the TinyOS runtime environment. Therefore the modeling
process of acoustic data was limited to time domain and
stochastic feature.

Senceive was implemented and tested according to its ini-
tial description. The students successfully delivered the pro-
totype and the documentation on time. This same system
was later used in two third-party projects with minor mod-
ifications: in one of them, the simple fuzzy logic recognition
was replaced by a more advanced scheme that was based on
the hidden Markov models, and the wireless sensor network
was complemented by wired, high sensitive microphones to
capture and process acoustic signals. In the other project,
additional contexts for a train setting were introduced to
determine if seats in a carriage were occupied or free; and if
windows and light systems were properly functioning.

The Senceive system proved to be relatively simple to
setup and to configure for both settings. Users with lit-
tle experience in wireless sensor networks could be able to
operate and monitor it. Perhaps the simplicity and easiness
in supporting multiple applications can be explained by the
software complexity in the middle layers and in the manage-
ment subsystem. Both the query processing service and the
configuration services perform a significant computation to
transform user friendly, higher-level commands and requests
into lower-level system commands that can be processed by
the wireless sensor nodes. Apparently, implementation of
the two services was labor intensive. Such complexity can
only be justified if indeed multiple applications can use the
sensing system. It is also worth to note that the system is
not energy efficient.

7. LESSONS LEARNED

project works prepare graduate students not only to the
real world outside of their universities, but also to their im-
mediate concern - the writing of a meaningful graduating
thesis. Because they have to work in teams and keep dead-
lines, the challenges help them learn to efficiently organize
themselves, manage time and set priorities.

Several lessons were learned during the development of
the Senceive system. First, the performance or achievement
of students depends on the standards set for them by their
supervisors and by the clarity of the objectives of their task.
This does not mean, however, that students’ educational
background does not play a role. On the contrary. This
withstanding, a project work being a first step towards de-
veloping complex systems, most of the students lack confi-
dence and are vague about their contribution. Setting a high
standard enables them to discover their potential. Second,
defining milestones was the crucial step in supporting stu-
dents manage their time properly and measure progress ob-
jectively. Having said this, project works require flexibility.
Everything may not be flowing as expected because individ-
ual students approach the same problem in different ways.
Here the supervisor need to demonstrate a good judgment
and accommodate individual differences. Third, the main
objective of a project work should be less of developing an
excellent, compact, and efficient system than identifying and
understanding the various components of a complex system
and building individual subsystems that function in concert.
Finding the right balance is very challenging because of the
associated time and the implication on keeping deadlines.

8. REFERENCES

[1] A. Benbasat, Paradiso, and A. Joseph. A framework
for the automated generation of power-efficient

24

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

classifiers for embedded sensor nodes. In SenSys ’07:
Proceedings of the 5th international conference on
Embedded networked sensor systems, pages 219-232,
New York, NY, USA, 2007. ACM.

X. Chao, W. Dargie, and L. Guan. Energy model for
h2s monitoring wireless sensor network. In CSE ’08:
Proceedings of the 2008 11th IEEE International
Conference on Computational Science and
Engineering, pages 402—409, Washington, DC, USA,
2008. IEEE Computer Society.

K. Chintalapudi, T. Fu, J. Paek, N. Kothari,

S. Rangwala, J. Caffrey, R. Govindan, E. Johnson,
and S. Masri. Monitoring civil structures with a
wireless sensor network. IEEE Internet Computing,
10(2):26-34, 2006.

D. Chu, K. Lin, A. Linares, G. Nguyen, and J. M.
Hellerstein. Sdlib: a sensor network data and
communications library for rapid and robust
application development. In IPSN ’06: Proceedings of
the fifth international conference on Information
processing in sensor networks, pages 432-440, New
York, NY, USA, 2006. ACM.

W. Dargie, X. Chao, and M. Denko. Modelling the
energy cost of a fully operational wireless sensor
network. Springer Journal of Telecommunication
Systems, 2009.

W. Dargie and T. Tersch. Recognition of complex
settings by aggregating atomic scenes. IEEE
Intelligent Systems, 23(5):58-65, 2008.

C. Hermann and W. Dargie. Senceive: A middleware
for a wireless sensor network. In AINA 08:
Proceedings of the 22nd International Conference on
Advanced Information Networking and Applications
(aina 2008), pages 612-619, Washington, DC, USA,
2008. IEEE Computer Society.

C. Intanagonwiwat, R. Govindan, D. Estrin,

J. Heidemann, and F. Silva. Directed diffusion for
wireless sensor networking. IEEE/ACM Trans. Netw.,
11(1):2-16, 2003.

B. H. Koh and S. J. Dyke. Structural health
monitoring for flexible bridge structures using
correlation and sensitivity of modal data. Comput.
Struct., 85(3-4):117-130, 2007.

K. Lorincz, B. Chen, J. Waterman, G. Werner-Allen,
and M. Welsh. Resource aware programming in the
pixie os. In SenSys 08: Proceedings of the 6th ACM
conference on Embedded network sensor systems,
pages 211-224, New York, NY, USA, 2008. ACM.

A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,
and J. Anderson. Wireless sensor networks for habitat
monitoring. In ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA
2002), pages 88-97, 2002.

W. Su and I. F. Akyildiz. Time-diffusion
synchronization protocol for wireless sensor networks.
IEEE/ACM Trans. Netw., 13(2), 2005.

G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo,
J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless
sensor network on an active volcano. IEEE Internet
Computing, 10(2):18-25, 2006.

J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor
network survey. Comput. Netw., 52(12), 2008.

