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ABSTRACT
We study the contribution of network coding (NC) in im-
proving the multicast capacity of random wireless ad hoc
networks. We consider a network with n nodes distributed
uniformly in a unit square, with each node acting as a source
for independent information to be sent to a multicast group
consisting of m randomly chosen destinations. We consider
the physical model, and show that the per-session capacity in

the presence of arbitrary NC has a tight bound of Θ
(

1√
mn

)

when m = O
(

n
(log(n))3

)
, and Θ

(
1
n

)
when m = Ω

(
n

log(n)

)
.

Prior work has shown that these same order bounds are
achievable on the basis of pure routing, which utilizes only
traditional store and forward methods. Therefore, our re-
sults demonstrate that the NC gain for multi-source multi-
cast and broadcast is bounded by a constant factor.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design Wireless Com-
munication]: [Computer-Communication Network]

General Terms
Performance, Theory

Keywords
Capacity, Throughput, Network Coding, Wireless Ad Hoc
Networks, Multicast

1. INTRODUCTION
The concept of network coding was first explored by Ye-

ung et. al. [1] and subsequently generalized by Ahlswede
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et. al. [2] for a single source multicast in arbitrary directed
graphs. Since then, the interest in network coding has in-
creased rapidly. A large number of studies have investigated
the utility of network coding (NC) for wireless networks, and
widely cited experiments [3, 4] have been reported in which
NC has been used successfully in combination with other
mechanisms to attain large throughput gains compared to
approaches based on conventional protocol stacks. These re-
sults have led many to believe that a combination of NC with
wireless broadcasting can lead to significant improvements in
the order throughput of wireless networks. Understandably,
there is significant interest in identifying the true impact of
NC on the throughput order of wireless networks. However,
the exact characterization of network capacity with NC in
the presence of multiple access interference is a very hard
problem, even for simple networks, and limited results have
been reported to date on the subject.

Recent work [5–7] has shown that the throughput gain
due to the use of NC in a wireless network is bounded by a
constant when the traffic in the network consists of multiple
unicast sessions. However, the motivation for the original
work by Ahlswede et. al [2] was improving network perfor-
mance for multicasting, not unicasting. Furthermore, many
commercial and defense applications, such as video confer-
encing, require multicasting of large amounts of information,
and the study of the multicast capacity of wireless ad hoc
networks is an important research topic in its own right.

Several works [8–15] have studied the multicast and broad-
cast capacity of wireless networks under conventional rout-
ing, and these results show consistently that broadcasting
and multicasting significantly alter the throughput order of
wireless networks. In the light of these findings, the impor-
tance of multicasting and broadcasting, and recent practical
results on NC, it is natural to inquire whether the introduc-
tion of NC can improve the throughput capacity of multi-
pair multicasting. In this work, we undertake the important,
and as yet unanswered, task of characterizing the multicast
and broadcast throughput order of wireless ad-hoc networks
in presence of network coding.

We consider a network consisting of n nodes distributed
randomly in the network space, with each node acting as
source for m randomly chosen nodes in the network. Our
contributions are as follows:



As our contribution, we show that, in the presence of ar-
bitrary NC, the per-session multicast capacity of random
wireless ad hoc network under the physical model has a tight

bound of Θ
(

1√
mn

)
when m = O

(
n

log(n)2

)
, and Θ

(
1
n

)
when

m = Ω
(

n
log(n)2

)
.

It has already been established in the literature that the
above bounds are achievable on the basis of traditional store-
and-forward routing methods. Consequently, our analysis
demonstrates that the throughout gain due to NC for mut-
licast as well as broadcast is bounded by a constant factor!

The remainder of this paper is organized as follows. Sec-
tion 2 surveys relevant prior work. Section 3 describes the
network models and other concepts used proofs. Section 4
deduces the capacity results under the physical model. Sec-
tion 5 summarizes our conclusions.

2. LITERATURE REVIEW
Gupta and Kumar’s original work focused on the unicast

capacity of wireless networks [16], an many subsequent con-
tributions have been made on the capacity of wireless net-
works subject to unicast traffic. However, the focus of this
paper, and therefore this section, is on the capacity wireless
networks under broadcast and multicast traffic.

Tavli [8] was the first to show that Θ
(
n−1

)
is a bound

on the per-node broadcast capacity of arbitrary networks.
Zheng [9] derived the broadcast capacity of power-constrained
networks, together with another quantity called ”informa-
tion diffusion rate.” The work by Keshavarz et al. [10] is
perhaps the most general work on the computation of the
broadcast capacity for any number of sources in the network.

Several recent efforts have adressed the multicast capac-
ity of wireless networks, primarily under the protocol model.
Jacquet and Rodolakis, [11] proved that the scaling of mul-
ticast capacity is decreased by a factor of O(

√
m) compared

to the unicast capacity result by Gupta and Kumar [16].
This result implies that multicasting gain, over transmitting
the information from each source as m unicasts, is at least
Θ(
√

m). The work by Shakkottai et al [12] assumes there
are nε multicast sources and n1−ε destinations per flow for
some ε > 0. The results from this work are limited in scope,
because of its constraints on the number of sources and des-
tinations. Li et al. [13] compute the capacity of wireless
ad hoc networks for unicast, multicast, and broadcast ap-
plications. Zheng et. al. [14] independently generalized this
work and introduced (n, m, k)-casting as a framework for the
characterization of all types of information dissemination in
wireless networks. Keshavarz et. al. [15] studied the mul-
ticast and broadcast capacity of wireless networks, consider
the physical model, and generalize the work in [17] to the
multicast regime. This prior work has only addressed con-
ventional store-and forward routing for multicast and broad-
cast traffic.

Since Ahlswede et. al.’s [2] seminal work, most of the the-
oretical research on NC has focused on directed networks,
where each communication link is point to point and has a
fixed direction. However, a wireless network is more appro-
priately modeled by bi-directional links. Li et. al [18, 19]
have studied the benefits of NC in undirected networks.
The result shows that, for a single unicast or broadcast ses-
sion, there is no throughput improvement due to NC. In the
case of a single multicast session, such an improvement is
bounded by a factor of two. Nevertheless, the work by Li

et. al does not account for multiple access interference, and
hence cannot be directly applied to wireless networks.

As we have stated, there has been prior addressing the
unicast capacity of wireless networks that use NC. Liu et.
al. [5, 6] have shown that the NC for unicast traffic in a
random network (i.e. a network in which the nodes are dis-
tributed randomly in a Euclidean space and the sources and
desitantions are also placed randomly) is bounded by a con-
stant factor. Keshavarz et. al. [7] extended these conclu-
sions to arbitrary networks and an arbitrary unicast traffic
pattern. Furthermore, they also showed that the NC gain
for even a single source multicast is bounded by a constant
factor in any arbitrary network.

Physical network coding (PNC) [20] and analog network
coding (ANC) [21] have been proposed recently, which com-
bine NC with advanced processing at the physical layer that
allows receivers to decode multiple concurrent transmissions.
ANC was shown [21] to provide throughput gains when com-
pared with digital network coding (i.e., receivers decode at
most one packet at a time) and traditional routing (i.e., no
NC and receivers decode at most one packet at a time) oper-
ating in simple network topologies in which ideal scheduling
(i.e., no MAI) is assumed for channel access. Throughput
gains have also been reported for PNC in simple topolo-
gies [20]. However, we have shown that the order throughput
of a wireless network can be increased by embracing interfer-
ence at the physical layer through multi-packet transmission
(MPT) or reception (MPR), without the use of NC [22,23].
Furthermore, we have also shown [24] that using NC to-
gether with MPT and MPR does not increase the order
throughput of a wireless network for multicasting compared
to what MPR and MPT can provide by themsleves.

From the above, it is apparent that prior work has not
determined whether NC by itself can provide any gains on
the multicast order throughput in wireless networks, which
is the subject of this paper.

3. PRELIMINARIES
For a continuous region A, we use |A| to denote its area.

We denote the cardinality of a set by |S|, and by ‖Xi −Xj‖
the distance between nodes i and j. Whenever convenient,
we utilize the indicator function 1{P}, which is equal to one
if P is true and zero if P is false. Pr(E) represents the
probability of event E. We say that an event E occurs with
high probability (w.h.p.) if Pr(E) > (1− (1/n)) as n →∞.
We employ the standard order notations O, Ω, and Θ.

We assume that the topology of a network is described by
a uniformly random distribution of n nodes in a unit square.
Let V = 1, . . . , n represent the node-set and let Xi be the
location of node i ∈ V . To avoid boundary effects, it is
typical to assume that the network surface is placed upon
a toroid or sphere. However, for mathematical convenience,
in this work we ignore edge effects and thus assume that the
network is placed in a 2-D plane. Further, in our model, as
n goes to infinity, the density of the network also goes to
infinity. Therefore, our analysis is applicable only to dense
networks. We do not consider mobility of nodes and assume
a static stationary distribution of nodes. Our capacity anal-
ysis is based on the physical model introduced by Gupta and
Kumar [16].

The physical model describes the success of a transmission
in terms of Signal-to-Inteference/Noise (SINR) criteria.



Definition 3.1. The Physical Model
All transmissions at all nodes utilize an identical transmis-
sion power P . Node i can successfully transmit to node j
iff the signal-to-interference/noise ratio (SINR) of the pair
transmitter i and receiver j satisfies

SINRi→j =
Phij

BN0 +
∑n

k 6=i,k=1 Phkj
≥ β, (1)

where hij is the channel attenuation factor between nodes
i and j, and BN0 is the total ambient noise power. We
assume that the channel attenuation factors are completely
determined by the path loss model and hence hij = ‖Xi −
Xj‖−α. We assume that β ≥ 1 in all our analysis.

We assume that the data rate for each successful trans-
mission is W bits/second, which is a constant value and does
not depend on n. Given that W does not change the order
capacity of the network, we normalize its value to one.

We focus on the traffic scenario in which each node of the
wireless network acts as a multicast source for a randomly
chosen set of m distinct destinations.

Definition 3.2. Feasible rate
In a wireless ad hoc network with n nodes in which each
source transmits its packets to m destinations, a throughput
of λm(n) bits per second for each multicast session is feasible
if there is a spatial and temporal scheme for scheduling and
network coding transmissions, such that, by operating the
network in a multi-hop fashion and buffering at intermedi-
ate nodes when awaiting transmission, every source node can
send λm(n) bits per second on average to its m chosen des-
tination nodes. That is, there is a T < ∞ such that in every
time interval [(i− 1)T, iT ] every node can send Tλm(n) bits
to its corresponding destination nodes. Let Cm(n) represent
the maximum feasible rate.

Definition 3.3. Throughput Order
Cm(n) is said to be of order Θ(f(n)) bits/second if there
exist deterministic positive constants c and c′ such that

{
lim

n→∞
Prob (Cm(n) = cf(n) is feasible) = 1

lim infn→∞ Prob (Cm(n) = c′f(n) is feasible) < 1.
(2)

Definition 3.4. Cut
Given a node set V , a cut is the separation of the vertex set
V into two disjoint and exhaustive subsets (S, SC). Here,
a vertex partition can be completely described by partition-
ing the network-area into two region (A, Ac) as shown in
Fig. 1, thus we also refer to a closed region A as a cut.
The cut-capacity C(A) is defined as the maximum number
of simultaneous transmissions that can take place from Ac

to A.

Definition 3.5. Multicast Cut-Demand
Given a cut A, a source node in Ac is said to have demand
across the cut iff at least one of its destination lies in A.
The multicast demand D(A) across the cut is defined as the
total number of sources in Ac such that there is at least one
destination in the multicast group across the cut.

Definition 3.6. Sparsest Cut
We define the sparsity ΓA of cut A as the ratio

ΓA =
C(A)

D(A)
(3)

Figure 1: Generalized Sparsity Cut

Hence, the sparsest cut is given by

A∗ = arg min
A

ΓA (4)

where A∗ has the least possible sparsity, denoted as ΓA∗ .

The conventional definition of Sparsity cut [25]is applica-
ble only to unicast traffic [6]. Our definition generalizes the
conventional definition to multicast traffic.

Finally we state the well-known Chernoff Bounds [26],
which shall be repeatedly used in the rest of this paper.

Lemma 3.7. Chernoff Bounds: Consider n i.i.d random
variables Yi ∈ {0, 1} with p = Pr(Yi = 1). Let Y =

∑n
i=1 Yi.

Then for any 1 ≥ δ ≥ 0 and δ2 ≥ 0 we have

Pr (Y ≤ (1− δ1)np) < 2e
−δ2

1np

3 (5)

Pr (Y ≥ (1 + δ2)np) < 2e
−δ2

2np

3 (6)

4. BOUNDS FOR PHYSICAL MODEL
It is well-known that under the conventional definition,

the sparsity cut can be used to obtain an upper bound on
the unicast traffic flow in a wireless network [6, 25]. In a
similar way, our generalized definition provides an upper
bound for multicast flows.

Lemma 4.1. Let Cm(n) be maximum multicast flow-rate
in a network and let A∗ be the sparsest cut with sparsity
ΓA∗ , then we have

Cm(n) ≤ ΓA∗ (7)

Proof. Let f be the total maximum feasible average rate
at which bits can be transmitted from Ac to A, where A is
any arbitrary cut. Then by Def. 3.4 we have

f ≤ C(A) (8)

The total information flow across a cut has to be greater
than or equal to the sum of the data rates associated with



individual multicast sessions that communicate across the
cut. Hence,

f ≥
n∑

i=1

Cm(n)1{source i in Ac has demand across cut A}

= Cm(n)

n∑
i=1

1{source i in Ac has demand across cut A}

= Cm(n)D(A). (9)

Inserting the above equation in Eq.8, we have

Cm(n) ≤ C(A)

D(A)
= ΓA ≤ ΓA∗ . (10)

In order to prove the upper bounds under the physical we
utilize a circular cut, instead of square shaped cut, with
radius rA as shown in Fig. 2. Additionally, we utilize the
following property of the physical model. A similar property
of ”straight-lined cuts” has also been utilized by Liu, et. al.
[6].

Figure 2: Geometric property of transmissions
across the cut

Lemma 4.2. Consider a circular cut A of radius rA with
its center at point O. Let S1 and S2 be two nodes outside A
transmitting across the cut in the same slot. We claim that
the arc subtended by angle ∠S1OS2 on cut A has a length of
atleast

∆1rAmax{L1, L2}
rA + max{L1, L2} (11)

where ∆1 =
(
β

1
α − 1

)
and Li represents the (minimum)

distance of transmitter Si from cut A.

Proof. Without loss of generality we can assume that
S1, S2 are placed as shown in Fig. 2 and L1 ≥ L2. In
Fig. 2 the rays OS1 and OS2 intersect the cut A at I1 and
I2 respectively. Therefore, L1 = ‖S1I1‖ and L1 = ‖S2I2‖.
Furthermore, the length of segment I1I2 is less than the
length of the arc subtended by ∠S1OS2. Hence, in order to
prove the claim, it is sufficient to show that

‖I1I2‖ ≥ ∆1rA‖S1I1‖
rA + ‖S1I1‖ (12)

Consider a receiver R1 that lies inside A and can success-
fully decode a transmission from S1. It follows from Eq. 1
in Definition 3.1 that

P‖S1R1‖−α

BNo + P‖S2R1‖−α
≥ β

=⇒ ‖S2R1‖ ≥ β
1
α ‖S1R1‖ = (1 + ∆1)‖S1R1‖ (13)

Consider the triangle formed by S1, S2 and R1, as shown
in Fig. 2. Now draw a perpendicular from S1 to F , which is
a point on segment S2R1. Note that ‖FR1‖ ≤ ‖S1R1‖ and
hence it is easy to show that ‖S2F‖ ≥ ∆1|S1R1|. Now draw
a line through S2 parallel to segment I1I2 and drop a perpen-
dicular S1E1 on this line. Since ∠S1S2E1 ≤ ∠S1S2R1, we
have cos (∠S1S2E1) ≥ cos (∠S1S2R1), which implies that
|S2E1| ≥ |S2F |. Similarly draw a line through S1 par-
allel to I1I2. Let this line intersect the ray OS2 at J2.
Drop a perpendicular S2E2 on line S1J2. Since the triangle
S1OJ2 is isosceles, ∠S1J2S2 is acute and hence E2 should lie
within the segment S1J2. Hence, ‖S1J2‖ ≥ ‖S1E2‖. Since
S2E1S1E2 forms a rectangle we get ‖S1J2‖ ≥ ∆1|S1R1|.
Finally, we note that ‖S1R1‖ ≥ ‖S1I1‖ because S1I1 is the
shortest distance between S1 and circle A. Hence,

‖S1J2‖ ≥ ∆1‖S1I1‖ (14)

Consider the triangle OS1J2. The Basic Proportionality
Theorem implies that

‖I1I2‖ =
‖S1J2‖‖S1I1‖

‖OS1‖ (15)

Substituting Eq. 14 in Eq. 15 proves the claim in Eq. 13

Theorem 4.3. In a random geometric network, the mul-
ticast capacity under the physical model, with network cod-
ing, w.h.p has an upper bound of

Cm(n) = O

(
1√
mn

)
, (16)

when m = O
(

n
log(n)2

)
and n →∞.

Proof. Consider a circular cut A with radius rA = 1
4
√

m
.

Divide the region Ac, as shown in Fig. 3, into sub-region B
and Ac −B, where the B is an annular region of width 1√

n
.

Let nB and nAC−B be the maximum number of nodes, from
region B and region Ac − B respectively,that can transmit
to region A in a single time slot. Hence,

C(A) ≤ nB + nAc−B (17)

A transmission from any node in region Ac−B to any node
in region A has a minimum hop-length of 1√

n
. Consequently,

Lemma 4.2 implies that any two transmitters in Ac−B, that
transmit in the same slot, have to be separated such that

they subtend an arc on A of length at least
∆1rA

1√
n

rA+ 1√
n

. Since

the circumference of A is 2πrA we have

nAc−B ≤ 2πrA ×
rA + 1√

n

∆1rA
1√
n

=
2π

∆1

( √
n

4
√

m
+ 1

)
≤ 5π

√
n

2∆1
√

m
(18)



Figure 3: Cut Capacity under Physical Model

To obtain a bound on nB , observe that the area of region B
is given by

|B| = π

(
rA +

1√
n

)2

− πr2
A

=
2πrA√

n
+

π

n
≤ π

2
√

mn
+

π√
mn

≤ 3π

2
√

mn
(19)

If m = O
(

n
(log(n))2

)
, there exists a constant c3 ≥ 0 such

that

|B| ≤ c3log(n)

n
(20)

The total number of nodes in B is necessarily greater than
nB . Therefore, the Chernoff Bound of Eq. 5 implies that,
for any δ2 ≥ 0, we have

Pr

(
nB ≤ 3π(1 + δ2)

√
n

2
√

m

)
≤ 2e

−δ2
2n|B|
3

≤ 2e
−δ2

2log(n)
3c3 =

2

n
δ2
2

3c3

. (21)

Consequently, if we choose δ2 ≥ 3c3, then as n → ∞ w.h.p
we have

C(A) ≤ 3π(1 + δ2)
√

n

2
√

m
+

5π
√

n

2∆1
√

m

=
π(3(1 + δ2)∆1 + 5)

√
n

2∆1
√

m
(22)

In the previous section, we have already shown that that
w.h.p the demand across square shaped cut with area O( 1

m
)

is of the order of Θ(n). Such a property is valid for circular
cuts also. Let q1 be probablity that a source node in Ac has
atleast one of its m destinations in the circle A. We can
show that

q1 ≥
(

1− 1

16

) (
1−

(
1− 1

16m

)m)

=
15

(
1− e

1
16

)

16
= c4 (23)

The Chernoff Bound of Eq. 6 implies that there exists a
1 ≥ δ1 ≥ 0 such that as n → ∞ w.h.p D(A) ≥ (1 − δ1)c4n
Therefore, the Sparsity bound from Lemma 4.1, along with
Eq. 22 and Eq. 23, implies that w.h.p.

Cm(n) ≤
(

π(3(1 + δ2)∆1 + 5)

2∆1(1− δ1)c4

)
1√
mn

(24)

Theorem 4.4. Under the physical model, the multicast
capacity in a random geometric network with network coding
w.h.p. has an upper bound of

Cm(n) = O

(
1

mlog(n)

)
if m ≤ n

log(n)
(25)

Cm(n) = O

(
1

n

)
if m ≥ n

log(n)
(26)

Proof. Decompose the network into squarelets of side-

length
√

log(n)
9n

. Let J be an event that there exists a squarelet

containing at least (1−δ3)log(n)
9n

nodes, where 1 ≥ δ3 ≥ 0, with
all its eight adjoining squarelets empty. The event J is illus-
trated in Fig. 4. We are interested in showing that the event
J occurs w.h.p. Let η represent the total number of nodes in

a squarelet, p1 = Pr(η = 0) and p2 = Pr
(
η ≤ (1−δ3)log(n)

9n

)
,

where 1 ≥ δ3 ≥ 0. p1 can be computed as

p1 =

(
1− log(n)

9n

)n

= e
−log(n)

9 = n
−1
9 . (27)

We used the fact that limn→∞
(
1− a

n

)n
= e−a.

Figure 4: Clustering of nodes

In addition, Eq. 5 implies that

p2 = Pr
(
η ≤ (1−δ3)log(n)

9n

)

≤ 2e
−δ2

3log(n)
27 = 2n

−δ2
3

27 . (28)

Therefore, as n →∞, in the limit we have

Pr(J) ≥ 1− (1− (1− p2)p
8
1)

9n
log(n)

≥ 1− (1− (1− 2n
−δ2

3
27 )n

−8
9 )

9n
log(n)

≥ 1−
((

1− n
1
9 (1− 2n

−1
27 )

n

)n) 9
log(n)

= 1− e
−9

n
1
9 (1−2n

−1
27 )

log(n) = 1. (29)



Note that e
−9

n
1
9 (1−2n

−1
27 )

log(n) approaches zero faster than 1
n

when n →∞.
Let us choose a circular cut A of radius rA = ls√

2
such

that A circumscribes a squarelet satisfying property J . Ob-
serve that we can draw another circle B of radius rB = 3ls

2
concentric to A, such that all nodes that transmit across
the cut A are placed outside B. Therefore the minimum
hop-length of any transmission across the cut A is atleast
rB − rA. Therefore Lemma 4.2 implies that

C(A) ≤ 2πrA × rA + (rB − rA)

∆1rA(rB − rA)
=

2πrA

∆1(rB − rA)

=
2π ls√

2

∆1

(
3ls
2
− ls√

2

) =
π2
√

2

∆1(3−
√

2)
= c5 (30)

Now let p3 be the probability that a source has demand
across cut A. Observe that all the nodes inside the circle A
are within the middle squarelet. Hence the Chernoff Bound
can be used to show that as n →∞ w.h.p the total number

of nodes outside the circle A are at least n − (1+δ4)log(n)
9

,
where δ4 ≥ 0. Therefore, as n →∞ w.h.p.,

p3 =

(
1− (1 + δ4)log(9n)

n

)

×
(

1−
(

1− (1− δ3)log(n)

9n

)m)

=

(
1− e

−m(1−δ3)log(n)
9n

)
(31)

In the above equation we have p3 = Θ(1) when m =

Ω
(

n
log(n)

)
, while when m = O

(
n

log(n)

)
we have that

p3 ≥ m(1− δ3)log(n)

9n
(32)

Therefore, an application of Eq. 6 allows us to show that

D(A) = Ω(mlog(n)) when m = O
(

n
log(n)

)
, while D(A) =

Ω(n) when m = Ω
(

n
log(n)

)
. We get the final result by

calculating the sparsity ΓA = C(A)
D(A)

which, as established

by Lemma 4.1 provides an upperbound for the capacity
Cm(n).

The upper bounds stated in the above theorem are iden-
tical to those of Theorem 2 in [15] and the initial steps in
our proof are similar to those in [15]. However, we highlight
that our eventual argument utilizes the geometric properties
of the cut and hence is distinct from [15]. In particular, the
claims and the proof in [15] is applicable only to routing,
while our bounds apply to NC.

Keshavarz et. al. [15] have established the following lower
bound on the multicast capacity under routing.

Theorem 4.5. In a random geometric network the mul-
ticast capacity under the physical model, with routing, w.h.p.

has an lower bound

Cm(n) = Ω
(

1√
mn

)
if m ≤ n

log(n)3

Cm(n) = Ω

(
1

m
√

log(n)3

)
if

n

log(n)3
≤ m ≤ n

log(n)2

Cm(n) = Ω

(
1√

mnlog(n)

)
if

n

log(n)2
≤ m ≤ n

log(n)

Cm(n) = Ω
(

1
n

)
if

n

log(n)
≤ m (33)

Given that any capacity achieved by routing is necessarily
achievable by network coding, putting together the deduc-
tions up to this point, we arrive at the following result.

Theorem 4.6. Under the physical model, the multicast
capacity in a random geometric network with network coding
has a tight bound w.h.p. of

Cm(n) = Θ
(

1√
mn

)
if m ≤ n

log(n)3
(34)

Cm(n) = Θ
(

1
n

)
if n

log(n)
≤ m. (35)

Consequently,

Corollary 4.7. In a random geometric network with n
nodes and for all values of m, the multicast throughput or-
der gain provided by network coding over routing, under the
physical model, is O(1)

5. CONCLUSION
Network coding (NC) has received considerable attention,

and recent results for specific instantiations of NC have led
many to infer that NC could lead to order throughput gains
for multicasting in wireless networks. In this work, we used
the physical model to show that the order throughput gain
derived from NC for multicasting and broadcasting in wire-
less networks is bounded by a constant. That is, as the net-
work size increases, NC renders the same order throughput
as traditional store-and-forward routing.

Despite this negative result on order throughput for NC,
we need to emphasize that, in practice, constant-factor gains
should not be ignored, and hence NC may still prove to have
much utility in wireless networks. However, together with
prior results on the order throughput gains derived from
multi-packet transmission and reception (MPTR) [22, 24],
the results in this paper indicate that specific implementa-
tions of NC should be evaluated against specific implementa-
tions of MPTR, not just traditional protocol stacks designed
to avoid multiple access interference.
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