
The Composability of ASTRAL Realtime Specifications

Alberto Coen-PorisiniS

Richard A. Kemmerer+
Reliable Software Group

Department of Computer Science
University of California

Santa Barbara, CA 93106

Abstract

ASTRAL is a formal specification language for realtime

systems. It is intended to support formal software

development, and therefore has been formally dejined. In

ASTRAL a realtime system is modeled by a collection of

state machine specifications and a single global

specification.

This paper focuses on extending the ASTRAL

methodology to allow the composition of ASTRAL system

specifications into specifications of larger and more

complex systems.

The ASTRAL language includes structuring

mechanisms that allow one to build modularized

specifications of complex systems with layering. In this

paper we concentrate on how to combine these complex

system specifications into specifications of even more

complex realtime systems. This is accomplished by adding

a COMPOSE section to the language that provides the

needed information to combine two or more ASTRAL

specifications into a single new one.

In this paper we also introduce the necessary proof

obligations to assure that the assumptions of each of the

components of the larger system are satisfied by the other

components of the system that replace the previous external

environment. We also discuss how some exported

transitions become internal transitions of the new system.

A telephony example with local central controls that

interface to long distance units is used to motivate the

extensions.

$ Alberto Coen-Porisini is supported by Consiglio Nazionale
delle Ricerche - Comitato Nazionale per la Scienza e le

Tecnologie delt’Infonnazione

$ This research was partially funded by the National Science
Foundation under grant CCR-9204249

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-lSSTA’93-6/93 /Cambridge, MA, USA

01993 ACM 0-89791 -608 -51931000610128 . ..$1 .50

1. Introduction

ASTRAL is a formal specification language for

realtime systems. It is intended to support formal

software development, and therefore has been
formally defined. [GK 9 la] discusses the rational

of ASTRAL’s design and demonstrates how the

language builds on previous language

experiments. [GK 9 lb] discusses how ASTRAL’s

semantics are specified in the TRIO formal

realtime logic and outlines how ASTRAL

specifications can be formally analyzed by

translating them into TRIO. This paper focuses on

the composability of ASTRAL specifications.

A compositional specification method allows

one to reason about the behavior of a system in
terms of the specifications of its components. That

is, the behavior of a system comprised of several

component processes is completely determined by

the component specifications. This is important

because it modularizes a system’s proof and

allows for bottom-up development. The main

benefit of compositional specification is that it

often makes it easier to write and reason about

designs.

Recently, compositiondity has been the focus

of much research in concurrent and distributed
systems, and, to a lesser extent, in realtime

systems. Barringer, Kuiper and Pnueli [BKP 86]
were among the first to develop a compositional
proof system for concurrent programs. Their work
is noteworthy for considering both shared variable

and message passing models. However, their goal

was only to demonstrate feasibility of a

compositional proof system based on temporal

128

http://crossmark.crossref.org/dialog/?doi=10.1145%2F154183.154271&domain=pdf&date_stamp=1993-07-01

logic, so their published results are very

preliminary.

One of the most thorough treatments of

compositionality in concurrent systems appears in

[Zwi 89]. The work of HoOman [Hoo 87], and of

Hooman and Widom [HW 88] both focus on

developing a compositional proof system for

realtime systems.

The ASTRAL language as it has been defined

and used in the previous papers lends itself to a

top-down design strategy. That is, a system is
modeled by a collection of state machine

specifications (one per process type) and a single

global specification that contains the global

invariants for the system. Each of the state
machine specifications consists of a sequence of

levels. The first (or top) level is a very abstract
model of the process. Lower levels are

increasingly more detailed with the lowest level

corresponding closely to high level code. A proof

theory that prescribes how the proofs of the
individual state machine specifications can be

combined to produce a proof of the entire system
is presented in [CKM 92].

An issue that arises is how to compose two or

more ASTRAL system specifications (i.e., a

global specification and its associated collection of

state machine specifications) to derive the

specification for a more complex realtime system.

In this paper we concentrate on this composition.

This is accomplished by adding a COMPOSE

section to the language, which provides the needed
information to combine two or more ASTRAL

specifications into a single specification of the

total system.

In this paper we also introduce the necessary
proof obligations to assure that the assumptions of

each of the components of the larger system are

satisfied by the other components of the system

that replace what was previously the external

environment. We also discuss how some exported
transitions become internal transitions of the new
system.

is
In the next section a brief overview of ASTRAL
presented. In section 3 an example system,

which is used for illustrating the composability

features of ASTRAL is introduced. Section 4

presents the components of the COMPOSE clause,

demonstrates how a single system specification

can be constructed from the component system

specifications using the information in the
compose clause, and presents the additional proof

obligations that are needed to show that the

composition is sound. Finally, in section 6 some
conclusions from this research are presented and

possible future directions are proposed.

2. Overview of ASTRAL

ASTRAL uses a state machine process model

and has types, variables, constants, transitions,
and invariants. A realtime system is modeled by a

collection of state machine specifications and a

single global specification. Each state machine
specification represents a process type of which

there may be multiple instances in the realtime

system. State variables and transitions may be

explicitly exported by a process. This makes the

variable values readable by other processes and the

transitions executable by the external environmen~

exported transitions cannot be executed by another
process. Interprocess communication is via the

exported variables, and is accomplished by
inquiring about the value of an exported variable

for a particular instance of the process. A process

can inquire about the value of any exported

variable of a process type or about the start or end

time of an exported transition. Start(Opi, t) is a

predicate that is true if and only if transition Opi

starts at time t and there is no other time after t and
before the current time when Opi starts (i.e., t is

the time of the last occurrence of Opi). For
simplicity, the functional notation Start(Opi) is
adopted as a shorthand for “time t such that

Start(Opi, t)”, whenever the quantification of the

variable t (whether existential or universal) is clear
from the context. Start-k(Opi) is used to give the

start time of the kth previous occurrence of Opi.
Inquiries about the end time of a transition Opi
may be specified similarly using End(Opi) and

End-k(Opi).
In ASTRAL one can either refer to the current

time, which is denoted by Now, or to an absolute

129

value for time that must be less than Now. That is,

in ASTRAL one cannot express values of time that

are to occur in the future. To specify the value that

an exported variable var had at time t, ASTRAL
provides a past(var,t) function.

The type ID is one of the primitive types of

ASTRAL. Every instance of a process type has a

unique id. An instance can refer to its own id by
using “Self”. For inquiries where there is more

than one instance of that type, the inquiry is
preceded by the unique id of the desired instance,

followed by a period, and process instance ids that

are used in a process specification must be

explicitly imported. For example, i. Start(Op) gives

the last start time that transition Op was executed

by the process instance whose unique id is i.

However, when the process instance performing

the inquiry is the same as the instance being

queried, the preceding id and period may be

dropped.

An ASTRAL global specification contains

declarations for all of the process instances that

comprise the system and for any constants or non

primitive types that are shared by more than one

process type. A globally declared type must be

explicitly imported by a process type specification

that requires the type.

ASTRAL also allows assumptions about the

external environment and the other processes in
the system to be specified in an environment

clause and an imported variable clause,
respectively. The optional environment clause

describes the pattern of invocation of external

transitions. If Opi is an exported transition,

Call(OpJ may be used in the environment clause
to denote the time of the last occurrence of the call
to Opi (with the same syntactic conventions as

Start(OpJ). The imported variable clause describes
patterns of value changes to imported variables,
including timing information about any transitions

exported by other processes that may be used by
the process being specified (e.g., Start(Opi) and

End(Opi)).

Critical requirements for the system being
designed are represented as invariants and
schedules in an ASTRAL specification. Invariants

represent the properties holding in every state the

system can be in, regardless of the environment,
while schedules represent stronger properties
holding in every state the system can be in,

provided that the environment produces stimuli as

prescribed in the environment clauses. Invariant

and schedules can be both local and global.

A detailed description of ASTRAL and of its

underlying motivations is provided in [GK 91a].

In this paper, due to space limitations, only the

concepts of ASTRAL that are needed to present

the composability issues are discussed in detail.
These concepts are illustrated via an extension of

the phone example presented in [GK 91a] that

includes long distance dialing and area codes.

3. Example System

The example system used in this paper is a

simple phone network. The system is composed
of two different ASTRAL specifications, the first

one being the specification of a local area phone
system, while the second one is the specification

of a long distance system. The composition of the

two specifications will lead to a phone network in
which there are several area codes, and in each

area code there is a local phone system composed

of many phones and one central control.

The system is a simplification of a real phone

network, every lod phone number is seven digits

long, area codes are three digits long, a customer

can be connected at most with one other phone

(either local or in another area) and ongoing calls

cannot be interrupted.

3.1 The local phone system

The local phone system specified is derived
from a previous ASTRAL specification of a phone
system presented in [GK 91a]. This system is

composed of a set of process instances of type
Phone and a set of Central_Control units that

provide all the functionalities needed to set up a

local call, i.e., a call between two phones

connected to the same Central_Control unit. This

is modeled in ASTRAL by the following process

declaration:

130

PROCESSES

Phone: array[O.. Num_Phone]of Phone,
Centrals:array[O.. Num_Area] of Central_Control

The constant

Is_In_Area(P:Phone,C:Central_Control):Boolean

is used to describe that each phone is associated

with a central control, and that such a binding
cannot change.

The Central_Control unit, also provides the

functionality that allows it to send out (receive)

data to (from) an external environment whenever a

call to a different area code is made. Figure 1

shows the architecture of a local phone system.

!z_-
F’

Et ‘“
P4 =B=

CalI(Receive_kmg_Distance(.. .))

LDOut_Lin

4

Call(Start_bmg_Oistance(.. .))
b. LOOut_S&tus

Phone_State Call(Start_Talk_2(.))

Call(Terrninate_LD_Call_2(.. .))

Figure 1: A Local Phone System

In what follows we will focus on the behavior

of the central control with respect to long distance

calls.

The global specification contains several type

declarations among which there are:

Enabl@_State= (Idle, Ready_To_Dial, Dialing, Ringing,

Waiting, Calling, Disconnect,Busy, Alarm),

representing the states that a customer’s phone

could be in,

ConnectionIS STRUCTURE OF
(From_Area,From_Number,To_Ara,
To_Number: Digit_List),

representing the data structure needed to store the

information related to a long distance call, and

Connection_Status= (Available, In_Progress,
Disconnected,Connected,Talk)

representing the status of a long distance line.

The Central_Control exports three variables

(LDOut_Line, LDOut_Status and Phone_State) to

send out data to the external environment and four
transitions (Receive_ Long_ Distance,

Start_ Talk_2, Start_ Long_ Distance and

Terminate_LD_Call_2) to receive data from the

environment.

The variable:

Phone_State(RPhone):Enablti_State

indicates the central control’s view of the mode of

each of its customer’s phones.

The variables:

LDOut_Line(P: Phone):Connection

and

LDOut_Status(l?Phone):Connection_Status

indicate during a long distance call, whom the

phone P is connected to and what is the status of

the connection, respectively.

The exported transitions of the central control

are called from the environment whenever an
incoming call to a phone connected to the central

control occurs (Receive_Long_Distance), to notify

the central control that an outgoing call has been
received by the called central control

(Start_Long_Distance), to notify the central

control that an outgoing call has been answered by

the called customer (Start_Talk_2) and to notify

the central control that an outgoing call has been

ended by the called central control
(Terminate_LD_Call_ 2). For instance the
specification of transition Receive_Long_Distance

is as follows:

TRANSITION Receive_Long_Distance(
LDIn_Line:Connection,
LDIn_Status:Connection_Status)Tim5

ENTRY
LDIn_Line.To_Area= Get_Area(Self)

& LDIn_Status = In_Progress
& Phone_State(Get_Phone_ID(

LDIn_Line.To_Number))= Idle
& Available_lines >0

EXIT
Phone_State(Get_Phone_ID(

LDIn_Line’.To_Number)) BECOMES Ringing
& LDOut_Status(Get_Phone_ID(

LDIn_Line’.To_Numba)) BECOMES Connected
& Plug(LDOut_Line(Get_Phone_ID(

LDIn_Line’.To_Number)), LDIn_Line’)
& FORALL P My_Phone

(P -= Get_Phone_TD(LDIn_Line’.To_Number)
+ NOCHANGE(LDOut_Line(P)))

Figure 2 gives a partial view of how variables

Phone_State (denoted as P) and LDOut_Status

(denoted as L) are affected by transitions of

131

Central_Control when processing incoming or

outgoing long distance calls.

Rec_Long_D

St_Talk_l

v

St_TaZ._2

Proc_Digit

Figure 2: The Central_Control

3.2 The long distance network

The long distance network specification is

composed of a global specification and a single
process type specification (Long_Distance_Unit).

Each area code is controlled by one instance of

type Long_Distance_Unit. For simplicity, we

assume that each Long_Distance_Unit instance is

connected with all the other instances, so that a

direct communication between two

Long_Distance_Unit instances is always possible
(See figure 3).

L /’ \
Figure 3: The long distance network

Long_Distance_Unit has four variables:

NetworkOut(LLine): Connection

and

NetworkStatus(L: Line): Connection_Status

are used to communicate with another

Long_Distance_Unit, while

LocalOut(L:Line): Connection

and

LocalStatus(L:Line): Connection_Status

are used to send the information about the

connection and the status occurring on a given line

L to the external environment,

Long_Distance_Unit also exports four

transitions:

●

●

●

●

Receive_Local_Request: which is called

whenever a long distance call has been
requested from the local area,

Local_Connection_Established, which is

called to notify the unit that an incoming call

to the local area has been received,

Started_Locd_Talk, which is called to notify

the unit that an incoming call, previously
received has been answered, and

End_Local_Connection, which is called to

notify the unit that an incoming call has

ended.

Figure 4 shows the interface of a

Long_Distance_Unit with the external

environment.

CaU(Receive_Local_Request(.. .))

ca]l(stitid-Lwal-Talko)=

Call(Local_Connection_I% tablished(...)

Call(End_Lxal_Connection(...)

Figure 4: The long distance unit

For instance the specification of transition

Receive_Locd_Request is as follows:

TRANSITION Receive_Locd_Request(
In_Line Connection,
In_Status:Connection_Status)Til

ENTRY
In_Line.Fmm_Area = Get_Area(Self)

& In_Status = In_Progress

EXIT

EXISTS L: Line

(NetworkStatus’(L) = Available

& Connect(NetworkOut(L), In_Line’)

& FORALL L1 :Line

(L1 -= L + NOCHANGE(NetworkOut(Ll))
& NetworkStatus(L) BECOMES In_Progress)

Figure 5 shows how the variables of

Long_Distance_Unit are affected by its transitions

132

when processing incoming or outgoing long

distance calls.

E_L_C
E_I.au_C

Ju.rnc.l.t?

KC_Eti

LafJ_c_E*

*_ti_T

--’~
Figure 5: The Long_Distance_Unit

Low.C,
.ka.c

The complete details of the specifications can be

found in [CK 92].

4. Composing ASTRAL Specifications

Consider two ASTRAL top level specifications

S’ and S“. Composing S’ and S“ means to build a
new top level specification C, that is the

specification of a system obtained by making S’
and S” interact. The behavior, the environment

and the properties of C are obtained from those of

S’ and S”, once their interaction is formally

described. Thus, in order to compose S’ and S“

we have to define:

1)

2)

3)

4.1

how the interconnection between two or

more ASTRAL specifications can be

formally described,

how the specification C can be built starting

from S’, S” and the description of their

interaction.

under which conditions the properties stated
in S’ and S” will still be valid in C.

The COMPOSE clause

A COMPOSE clause describes the interaction

between S’ and S”, and thus provides the
information needed to compose two or more

global specifications into a single specification of

the combined system.

The interaction between S’ and S“ is described
by specifying which exported transitions of S’

(S”) are no longer exported to the external
environment, i.e., the stimuli needed to fire such

transitions are produced by the system S” (S’)

rather than by the external environment.

For instance, in Figure 6 S’ exports transitions

T1 and T2 and state variables xl, x2 and x3, while

S“ exports transition T3 and state variables yl and
y2.

Call(Tl)

Call(T2)

e
Call(T3)

Figure 6: S’ and S“

When S’ and S“ are composed some transitions

of S’ (S”) will not need an external call, since S”

(S’) is now providing part of the environment in

which S’ (S”) works. For instance, in Figure 7

transitions T1 and T3 are no longer exported since

the events that trigger them are now represented by

particular values of y2 and xl, x3, respectively,

/ .— -— -— -

L__—L___~
Figure 7: Composing S’ and S“

133

Thus, the system C will export only transition

T2, i.e., the external environment of C can call

only transition T2 (See Figure 8).

L-J
x1
x2

Call(T2) ~ T2 c x3

yl
y2

Figure 8: The system C

In general a compose clause contains the

following parts:

● A set of clauses defining types, constants,
and definitions that are used in the compose

clause. For instance, the following

declarations are introduced in the compose
clause of the example:

CONSTANTS
Is_LD_Unit(CentralTControl,

Long_DMance_Unit): Boolean

DEFINES
Change(L: Connection_Status, c Time) ==

EXISTS e: Time
(e> O&e St
& FORALL d Time

(d 2 t - e & d < t -+ past(L,d) -= past~,t))),
LastChg(L: Connection_Status,c Time) ==

Change(T+t)
& FORALL tl: Time

(tl > t & tl < Now + -Change(L,tl))

● A name clash resolution clause, which is

used to solve any possible name clashes that

can arise because of overloaded identifiers
(i.e., the same identifier is used in both S’

and S” with different meanings).

● A call generation clause which describes

how exported transitions of S’ (S”) are

triggered by events occurring in S“ (S’).

Such events are described by means of

formulas of the following form:

FORALL c Time ,... (P(S’) H Call(T) = t),

where P(S’) is an ASTRAL well-formed formula

describing the occurrence of the events in S’,
which are equivalent to calling the exported
transition T of S“.

For instance, the following formula describes

when the behavior of process Central_Control is

such that a call to transition
Receive_ Local_ Request of process

Lon~Distance_Unit occurs:

FORAJ-,L t: Time, C: Central_Control, P: Phone,

U: Long_Distance_Unit

(LastChg(C.LDOut_Status(P),t)

& C.LDOut_Status(P) = In_Progress

& Is_In_Area(P,C) & Is_LD_Unit(C,U)

+ Call(U.Receive_Local_Request(C.LD@t_Line(p),

C.LDOut_Status(P))) = t)

The generation of calls for transition

Receive_ Long_ Distance of process

Central_Control is specified in the following way:

FORALL t: Time, C: Central_Control, L Line,

U: Long_Distance_Unit

(LastChg(U.LoealStatus(L),t)

& U.LocalStatus(L) = Ir_Progress

& Is_LD_Unit(C,U)

f+ Call(C.Receive_Long_Distance(U.LocaJOut(L),

uLOcalstatus(L))) = t)

4.2 Building the new specification

When composing two or more system
specifications using the compose clause it is

desirable to produce the specification of the

composed system. Since an ASTRAL

specification is composed of a Global specification
and a set of process type specification, it is

necessary to:

1) build the new Global specification, and

2) build the new Process specifications

according to the guidelines described in the
compose clause.

4.2.1 The global specification

A global specification G is made up of a set of
clauses defining types, constants and definitions,

as well as global invariant IG, global schedule SCG

and global environment EnvG clauses.

The clauses defining types, constants and

definitions are built by taking the corresponding

clauses from the compose clause and the

corresponding clauses belonging to specifications

134

S’ and S“, using the name clash clause to resolve

any name clashes.

The global invariant I is constructed in the
following way:

Let I’ and I“ denote the global invariants of S’

and S“, respectively:

1) Rewrite I’ and I“ using the name clash

clause. Let W and RI” be the result of these
rewritings;

2) Substitute any occurrences of the operators

Start and End referring to a no longer

exported transition with an equivalent
predicate referring to exported variables. Let

SRI’ and SRI” be the result of these

substitutions.

3) I is the conjunction of SRI’ & SRI”

The global schedule Sc is constructed in the

same manner as the global invariant. However, at

point 2, any occurrence of the operator Call
referring to a no longer exported transition has to

be substituted by using the predicate in the

corresponding call generation clause,

The global environment clause has to be

modified since some transitions are no longer

exported. In particular all formulas referring to the

transitions that are used in the call generation

clause of the compose clause should be eliminated
from the global environment clause.

4.2.2 The process type specification

A process type specification P is composed of a

set of transitions OpI, Opn, a local invariant I,

a local schedule Sc a local environment Env,

imported variable assumptions IV, a further local

environment FEnv and a further process

assumption FPA. Moreover, every transition @j

is described by entry and exit clauses denoted ENj
and EXj, respectively.

Each process type specification in either S’ or

S“ should be included in C; however, the
following transformations have to be made:

● The local environment clauses (Env, and

FEnv) have to be modified since some

transitions are no longer exported. This

transformation is identical to the one

described for the global environment clause;

● The export/import clauses have to be

modified: the transitions belonging to the
processes of S’ (S”) that are referred to in

the call generation clause of the compose

section, should no longer be exported by S’

(S”); moreover each state variable in S’ (S”)
referred to in the call generation clause of a

transition belonging to the processes in S”

(S’) has to be imported by the processes of

S“ (S’). For instance, the export clause of

the process type Central_Control before the
composition is:

EXPORT

Phone_State, Enabled_Ring_Pulse, LDOut_Line,

Enabled_Ringback_Pulse, LDOut_Status,

Receive_Lcmg_Distance, Start_Long_Distance,

Star_Talk_2, Termina@_LD_Call_2

while, after the composition is:

EXPORT

Phone_State, Enabled_Ring_Pulse, LDOut_Line,

Enabled_Ringback_Pulse, LDOut_Status

● Each transition T belonging to the processes

of S’ (S”) referred to in the call generation

clause of the compose section, has to be
modified using the related call generation

clause. This will result in adding to the entry

clause of such transitions a formula such as:

EXISTS c Time.. .(?(S’) & start(T) c t)

where P(S’) is the predicate used in the related

call generation clause.

Note that a similar clause may also be needed in

the exit assertion.

For instance, the transition

Receive_ Local_ Request of process

Long_Distance_Unit is transformed as follows in
the composed specification (the italicized portions

indicate changes or additions):

135

TRANSITION Reeeive_Local_Request Til

ENTRY

EXISTS t: Time, C: Central_Control, P: Phone

(LastChg(CLDOut_Status(P),t)

& C.LDOut_Status(P) = In_Progress

& Is_In_Area(P,C) & Is_D_Unit(C,Self)

& Start(Receive_Local_Request) < t)

EXIT

EXISTS t: Time, C: Central_Control, P: Phone

(LastChg’(C.LDOut_Status(P),t)

& C.LDOut_Status’(P) = In_Progress

& Is_In_Area(P,C) & Is_LL_Unit(C,Self,)

& Start-2 (Receive Local_Request) < t

& EXISTS L: Lfie

(NetworkStatus’(L) = Available

& Connect(NetworkOut(L), C.LDOut_Line(P))

& FORALL Ll:Line (L1 -= L

IMPLIES NOCHANGE(NetworkOut(Ll))

& NetworkStatus(L) BECOMES In_Progress))

● The imported variables clause (IV) has to be

modified in order to describe the behavior of

the newly imported variables. The new
assumptions are generated from the related

call generation clauses and the old

environment clauses;

● The local schedule (Se) has to be modified

only if it refers to the call of no longer

exported transitions. In such a case the same

substitution defined for the global schedule
is applied,

● The local invariant (I) and the further

process assumptions (FPA) are not

modified.

The complete specification of the composed

system can be found in [CK 92].

4.3 Proof obligations for system
composition

Again consider two ASTRAL system

specifications S’ and S”. Both S’ and S” may have
a local and/or global schedule and/or invariant,

representing some of the properties of S’ and S”.

In [CKM 92] it was shown how such properties

can be formally proved.

When S’ and S“ are composed, the
“environment” in which S’ (S”) runs is given by

the external environment and the exported features
of S” (S’). As a consequence, the properties of S’
(S”) might not be valid in the composed system

because of the changes in the environment in

which S‘ (S”) runs. However, if we prove that

from the viewpoint of S’ (S”) the behavior of the

environment (i.e., the way in which it produces

stimuli) has not changed then we can conclude that

the properties of S’ (S”) are still valid.

For simplicity assume that the specification

resulting from the composition of S’ and S” is a

closed system, that is, there are no exported
transitional. Note that weakening this hypothesis

requires one to partition each environmental

assumption into two parts; the first part being the

assumptions that do not involve the environment

of the composed specification, and the second part

being the assumptions that continue to involve the

environment. In general the proof obligations

related to composability affect only the f~st part.

4.3.1 Invariant

The invariants of S’ (S”) represent properties

that hold for every environment in which S’ (S”)

may run. The main effect of composing S’ and S”

is the modification of the environment in which

they run, and therefore all the local invariants and

the global invariant belonging to either S’ or S” are

still valid in the composed system.

4.3.2 Schedules

The schedules of S’ (S”) represent properties

that hold when the environment in which S’ (S”)

runs behaves according to the assumptions stated

in the global environment (EnvG), local

environment (Env) and further environment

(FEnv) clauses.

Since in the composed system S’ (S”) provides
the environment for S” (S’), the schedules of S“

(S’) will continue to hold only if the behavior of
S’ (S”) implies what is stated in the environment

clauses of S“ (S’). Thus, the following proof

obligations ensure

(S”) is still valid.

that the global schedule-of S’

lThis is not the case for the example discussed in the paper

136

Al & A2° & A3 & A4 & EnvG’ & CG’ 1-

Fa’ + EnvG”, for S“

Al& A2° & A3 & A4 & EnvG” & CG” 1-

Ffi” + EnvC’, for S’

Al, A2”, A3 and A4 are the axioms describing

the ASTRAL abstract machine as in the global

schedule proof obligation [CKM 92]; EnvG’ and

EnvG” are the global environment clauses of S’

and S”, respectively. Fo’ and Fa” are sequences
of events of S’ and S“, respectively. CG (CG”) is

the call generated clause that binds events

occurring in S’ (S”) to the generation of a call for
the system S“ (S’).

Similarly, the following proof obligations
ensure that the local schedule of process p of S’

(S”) is still valid.

Al & A2° & A3 & A4 & EnvG’ & ~G 1-

Fm’ + EnvP” & FEnvP”, for S“

Al& A2° & A3 & A4 & EnvG” & C!lG” 1-

Fq “ + EnvP’ & FEnvP’, for S’

Envp’ and FEnvP’ (EnvP” and FEnvP”) are the

local assumptions about the environment and the
further assumptions made by process p of S’ (S”),

and C-G’ (C-G”) is obtained from CG’ (CG”) by
freezing the value of process p.

For instance, when proving that the local

schedule of process Central_Control is still valid,

one of the clauses of CG” is:

FORALL t: Time, C: Central_Control, P Phone,

U: Long_Distance_Unit

(LastChg(C.LDOut_Status(P),t)

& C.LDOut_Status(P) = In_Progress

& Is_In_Area(P,C) & Is_LD_Unit(C,U)

+ Call(U.Receive_Local_Request(C.LDOut_Line(P),

C.LDOut_Status(P))) = t)

Since we are considering a single instance of
process type Central_Control, the variable C

should be considered as a constant. As a

FORALL c Time, P: Phone, U: Long_Distance_Unit

(LastChg(C.LDOut_Status(P),t)

& C.LDOut_Status(P) = In_Progress

& Is_In_Area(P,C) & Is_LD_Unit(C,U)

+ Call(U.Receive_Local_Request(C.LDout_Llne(p),

C.LDOut_Status(P))) = t)

5. Conclusions and Future Directions

In this paper we have described how to

compose two or more ASTRAL system

specifications into a more complex realtime
system. To accomplish this a COMPOSE clause
was added to the ASTRAL specification language.

We also described how the compose clause can be

used to transform the existing system specification
into a new ASTRAL specification for the

composite system. Finally, we introduced the

additional proof obligations that are necessary to

assure that the resulting specification is sound.

By adding the compose clause to the ASTRAL
language and introducing a compositional

specification method a system designer can now

reason about the behavior of a composite system

in terms of the specifications of its components.

The size of the ‘composite specification grows

linearly with the size of the component

specifications. However, because the composite

specification is completely determined by the

component specifications, the resulting system
specification is easy to comprehend,

The composite specification approach coupled

with the previously defined top-down specification

approach of ASTRAL allows a system designer to

specify his/her system using either a bottom-up or

a top-down approach, or some combination of the

two. The composability of specifications also

promotes the reuse of existing specifications.

Future work in this area will concentrate on

applying the composition approach to more varied

and complex realtime systems. The ASTRAL

specification processor will also be updated to
process the compose clause and generate the

additional proof obligations.

consequence, this clause in C-G” is transformed
into:

137

References

[BKP 86]

[CK 92]

[CKM 92:

[GF 91]

[GK 91a

Barringer H., Kuiper R. and Pnueli

A., “Now You May Compose

Temporal Logic Specifications, ”
Proceedings of 18th POPL, pp. 173-

183. ACM, 1986.

Coen-Porisini A. and Kemmerer R.
“The Composability of ASTRAL

Realtime Specifications”, Technical

Report TRCS 92-25, Department of

Computer Science, University of

California Santa Barbara, December

1992.

Coen-Porisini A., Kemmerer R. and
Mandrioli D., “A Formal Framework

for ASTRAL Intra-Level Proof

Obligations”, Proceedings of the

Fourth European Software

Engineering Conference, Garmisch,

Germany, September 1993.

Gabrielian A. and Franklin M.,
“Multilevel Specification of Realtime

Systems,” CACM 34, 5, pp. 51-60,

May 1991.

Ghezzi C. and Kemmerer R.,

“ASTRAL: An Assertion Language

for Specifying Realtime Systems, ”

Proceedings of the Third European

Software Engineering Conference,

Milano, Italy, pp. 122-146, October

1991.

[GK 91b]

[Hoo 87]

[HW 88:

[Ost 88]

[Zwi 89

Ghezzi C. and Kemmerer R.,

“Executing Formal Specifications: the

ASTRAL to TRIO Translation

Approach, “Proceedings of TAV4: the

Symposium on Testing, Analysis, and

Verification, Victoria, B. C., Canada,
pp. 112-119, October 1991.

Hooman J., “A Compositional Proof

System for an Occam-like Real-Time
Language,” Technical Report CSN

87/14, Department of Mathematics

and Computer Science, Eindhoven
University of Technology, November

1987.

Hooman J. and Widom J., “A

Temporal-Logic Based Compositional
Proof System for Real-Time Message
Passing,” Technical Report 88-919,

Department of Computer Science,

Cornell University, June 1988.

Ostroff J.S., “Modular Reasoning in

the ESM/RITL Framework for Real-
Time Systems,” Technical Report CS-

88-03, Department of Computer

Science, York University, April 1988.

Zwiers J., Compositionality,

Concurrency, and Partial Correctness,

LNCS 321, Springer Verlag, Berlin,
1989.

138

