
brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

Extending Access Control Models with Break-glass

Achim D. Brucker
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
achim.brucker@sap.com

Helmut Petritsch
SAP Research

Vincenz-Priessnitz-Str. 1
76131 Karlsruhe

Germany
helmut.petritsch@sap.com

ABSTRACT
Access control models are usually static, i. e., permissions are
granted based on a policy that only changes seldom. Espe-
cially for scenarios in health care and disaster management,
a more flexible support of access control, i. e., the underlying
policy, is needed.
Break-glass is one approach for such a flexible support

of policies which helps to prevent system stagnation that
could harm lives or otherwise result in losses. Today, break-
glass techniques are usually added on top of standard access
control solutions in an ad-hoc manner and, therefore, lack
an integration into the underlying access control paradigm
and the systems’ access control enforcement architecture.
We present an approach for integrating, in a fine-grained

manner, break-glass strategies into standard access control
models and their accompanying enforcement architecture.
This integration provides means for specifying break-glass
policies precisely and supporting model-driven development
techniques based on such policies.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Pro-
tection

General Terms
security, languages

Keywords
disaster management, access-control, break-glass, model-driven
security

1. INTRODUCTION
Today’s IT systems comprise a fine-grained access control

mechanism based on complex policies. The strict enforce-
ment of these policies, at runtime, always contains the risk
of hindering people in their regular work. Thus, writing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’09, June 3–5, 2009, Stresa, Italy.
Copyright 2009 ACM 978-1-60558-537-6/09/06 ...$5.00.

security policies is always a trade-off between the risk of un-
intentionally revealing secured data or operations and the
benefit gained by using them. This is especially true in ex-
ceptional cases where, by definition, seldom used (and thus
not well tested) processes are executed.
Motivated by use cases from the disaster management do-

main, the break-glass principle [1] was introduced as one ap-
proach for resolving this conflict. Break-glass allows users
to override access control decisions on demand. While orig-
inally introduced for applications in the disaster manage-
ment [1] and health care domain [21], break-glass is becom-
ing more and more important for general IT systems. The
implementation of recent legitimate regulations, especially
in the financial world, like Basel II [4] or Sarbanes-Oxley
Act (SOX) [32], requires complicated dynamic access con-
trol policies [16]. This increase in policy complexity, to-
gether with the overall increase in complexity of IT systems
and the increasing requirement to protect sensitive resources
in a world wide connected network, also increases the risk
of preventing important, business related, processes. To
reduce this risk, break-glass concepts are implemented in
major business software, e. g., Virsa Firefighter for SAP or
Oracle’s Role Manager.
Usually, break-glass solutions are implemented by issu-

ing temporary accounts that comprise more powerful ac-
cess rights (e. g., “root” accounts) on one hand and a more
detailed logging on the other hand. While this approach
provides a clear separation of the regular policy and the
emergency mode, it complicates the a priori analysis of the
security policy being effective. This also resembles the tradi-
tional software engineering practice where the development
of a design model (business logic) and a security model are
treated as different tasks. As a consequence, security fea-
tures are often built into an existing system in an ad-hoc
manner during the system administration phase. While the
underlying motivation of this practice, to desire a separa-
tion of concerns, is understandable, the conflict between se-
curity requirements and availability of services cannot be
systematically analyzed and reasonably balanced in this ap-
proach. Solving this problem requires both an integration
of break-glass into access control models and the integration
of access control models into the early stages of the software
development process. Such an integration into one unified
methodology is necessary, ranging from the modeling over
the implementation to the deployment and the maintenance
phase of a system.
To meet this challenge, Basin et al. [6] present a model-

driven approach which is built upon the SecureUML lan-

197

http://www.brucker.ch/
mailto:"Achim D. Brucker" <achim.brucker@sap.com>
http://petritsch.co.at
mailto:"Helmut Petritsch" <helmut.petritsch@sap.com>

brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

guage. SecureUML provides a core security language for
access control that can be easily combined with a system
modeling language, e. g., UML class diagrams or UML state-
charts. SecureUML allows to specify system models and
security models within the same visual modeling tool. More-
over, SecureUML is supported by a security-aware model-
driven development process, called Model-driven Security
(MDS). We extend both SecureUML and MDS with support
for break-glass strategies.
Our contributions are four-fold: first, we present a generic

break-glass model. Second, we present a SecureUML exten-
sion supporting break-glass. Third, we present a security
architecture supporting break-glass and, finally, a transfor-
mation from break-glass SecureUML policies to XACML.
The rest of the paper is structured as follows: after intro-

ducing the preliminaries of our work in Section 2, we present
a generic break-glass model which can be integrated into a
large class of access control models in Section 3. In the same
section, we also present, as an example for such an integra-
tion, an extension for SecureUML supporting break-glass.
We present a security architecture supporting break-glass in
Section 4. This architecture is the target of the transfor-
mation of break-glass SecureUML policies to XACML which
we present in Section 5. Finally report on related work in
Section 6 and present our conclusions in Section 7.

2. BACKGROUND
In this section, we introduce the technical background of

our work: the break-glass principle and SecureUML.

2.1 Break-glass
Introduced in [1], break-glass1 refers to quick means for

extending a person’s access rights in exceptional cases. Usu-
ally, the usage of emergency access rights needs to be doc-
umented for later audits and reviews. Typically, a special
audit trail is created to monitor such override access. More-
over, the regular access control policies should be established
in a way minimizing the need for break-glass events.
Usually, break-glass solutions are based on pre-staged user

accounts. On one hand, these user accounts need to be
available in exceptional cases with reasonable administrative
overhead and, on the other hand, misuse of these accounts
should be prevented. Typically, a strategy for implementing
the break-glass is comprised of the following steps [1]:

1. Pre-staging break-glass accounts: Emergency accounts
are created in advance to allow careful thought about
the access control policies and audit trails associated
with them.

2. Distributing pre-staged accounts needs to be carefully
managed to provide timely access when needed: Break-
glass requires the emergency accounts be made avail-
able in an appropriate and reasonable manner. The
account details may be provided on media such as a
printed page, a magnetic-stripe card, a smart card or
a token.

3. Monitoring the use of break-glass accounts: The use of
emergency accounts needs to be carefully monitored.
Audit mechanisms should be used and a procedure de-
fined to examine the security audit trails on a regular
basis to identify any use of the emergency accounts. In

1The term “break-glass” is derived from fire alarms that
require breaking a glass cover for triggering an alarm.

addition, systems can alert the security administrator
in the event an emergency account is activated.

4. Cleaning up after break-glass: A procedure should be
established to clean up after an emergency account has
been used.

Traditional break-glass solutions store such emergency ac-
counts either completely electronically or printed on paper
and, e. g., stored in a glass cabinet. In contrast, the inte-
gration of break-glass into the access control model we are
suggesting makes pre-staging accounts unnecessary. And as
such, solves the problems of creating and distributing such
accounts.

2.2 SecureUML
SecureUML [6, 9] is a security modeling language based

on a generalized Role-based Access Control (RBAC) [14, 31]
model. SecureUML is defined using OMG’s meta-modeling
approach, i. e., the abstract syntax is given as MOF [23] com-
pliant meta-model. Figure 1 illustrates the meta-model of
SecureUML and its abstract syntax. SecureUML supports
notions of users, roles and permissions, as well as assign-
ments between them: Users can be assigned to roles, and
roles are assigned to specific permissions. Users acquire per-
missions through the roles they are assigned to. Moreover,
users are organized into a hierarchy of groups, and roles are
organized into a role hierarchy. In addition to this RBAC
model, permissions can be restricted by Authorization Con-
straints (expressed in a language similar to OCL [24]), which
have to hold to allow access. Permissions specify which Role
may perform which Action on which Resource. SecureUML
is generic in that it does not specify the type of actions and
resources itself. Instead, these are defined in the design mod-
eling language which is then “plugged” into SecureUML as
a SecureUML dialect. This dialect specifies exactly which
elements of the design modeling language are protected re-
sources and what actions are available on them. A dialect
may also specify a hierarchy on these actions, so that ac-
tions, such as reading a class, can be expressed as lower-level
actions, such as reading an attribute of the class or executing
a side-effect-free method. Furthermore, a dialect specifies a
default policy, i. e., whether access for a particular action is
allowed or denied in the case that no permission is specified.
Usually, and so did we in this paper, one specifies a default
policy of deny to simplify the security specification.
Basin et al. [6] present two SecureUML dialects: One for

a component-based design modeling language, and one for a
state-machine based modeling language. Due to limitations
of space, we will not address the issue of dialect definitions
further in this paper, and refer to [6] for more details. In-
stead we will assume as given, without presenting in detail,
a SecureUML dialect definition for UML class diagrams in
the spirit of the ComponentUML dialect. This means that
the dialect specifies classes, attributes and operations to be
resources. The dialect also specifies, among others, the ac-
tions create, read, update, and delete on classes, read and
update on attributes, and execute on operations.
Moreover, SecureUML is integrated into a Model-driven

Engineering (MDE) toolchain [9] supporting the design of
SecureUML policies in the context of UML [25] design mod-
els, the formal analysis of these models, and the transforma-
tion of these models into (executable) code and configuration
for access control enforcement architectures.

198

brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

Subject

Group User

Role Permission

AuthorizationConstraint

Action

AtomicAction CompositeAction

Resource0..* 0..* 1..* 0..* 0..* 1..* 0..*0..*

0..*

0..* 0..* 0..*

0..1 0..*

0..*

Figure 1: The SecureUML metamodel describes a language supporting users, roles and permissions, as well as
assignments between them, e. g., Users can be assigned to roles, and roles are assigned to specific permission.

3. A GENERIC BREAK-GLASS MODEL
In this section, we present a generalized break-glass so-

lution that can integrate various access control models. In
more detail, we provide an approach of break-glass that is
based on the notion of emergency levels which allow a fine-
grained control of policies (rules) that can be overridden.

3.1 Emergency Levels
Compared with traditional break-glass approaches based

on pre-staged accounts, our break-glass approach provides:
1. The ability to override access-control decisions on a per

permission basis and not on a per role or per subject
basis,

2. Several levels of emergency providing a classification
on the kind of violation with respect to the regular
policy. This classification can be used, for example,
for informing users about their actions or for a fine-
grained run-time configuration which kind of violations
are currently tolerated.

In the following, we assume an access control model A in
which an access control policy p is represented. A policy
maps access control relevant information, e. g., subjects, re-
sources, actions, and context information to an access con-
trol decision, e. g., deny or allow. In particular, we do neither
restrict the expressiveness nor the structure of the policies.
As a prerequisite of introducing emergency levels, we need

to introduce a notion of refinement of access control policies.
Similar to trace refinement of CSP [30], we define:

Definition 1. A policy p refines a policy p′ (written p v
p′) if and only if the set of system traces that are allowed
under p is a subset of the system traces that are allowed
under p′.

Informally, a policy p refines a policy p′ if and only if p is
at least as restrictive as p′. We write p> for the policy that
allows all actions and p⊥ for the policy that allows no action.
The relation _ v _ defines a partial order on a set of policies
where p⊥ refines all policies and every policy is a refinement
of p>. Therefore, (PA,v, p⊥, p>) is a lattice, where PA be
the set of all policies of the access control model A.
We refer to the regular policy, i. e., the policy that should

be obeyed in normal operations, as preg and we refer to the
set of policies that are refined by the regular policy, i. e.,

LA = {p | p ∈ PA ∧ preg v p ∧ p 6= preg}

as emergency levels or emergency policies of the policy preg.
We require that (PA\p⊥,v, preg, p>) is a lattice, i. e., inf(PA\
p⊥) = preg. At runtime, an emergency level can be active
or inactive and only active emergency levels contribute to
the access control decision. Obviously, the regular policy is
always active.

An access that is only granted by an emergency policy
` ∈ LA (i. e., the regular policy evaluates to “deny” for this
access) is called override access. Such an override access
is granted if and only if there is an active policy ` ∈ LA
allowing this access. As we will discuss later, an interactive
confirmation for applying the override access can be required
from the end user.
Overall, a system can have several regular sub-policies ac-

tive at the same time (e. g., addressing different business
divisions). In these cases, we require that the different poli-
cies are disjoint, i. e., for a given request the corresponding
policy can be efficiently determined. For simplifying the pre-
sentation, we assume in the rest of this paper, that there is
only one, uniquely defined, preg.
Finally, obligations can be attached to an (emergency)

policy. Examples for such obligations are logging require-
ments that allow the a-posteriori audit of override accesses.

3.2 Implementing Break-glass
Implementing break-glass based on emergency levels in-

stead of using special accounts allows a dynamic adaption
of the current system policy and requires only little support
from the underlying access control model. In more detail,
we propose the following workflow:
• First, we derive the regular policy preg without taking
break-glass situations into account,
• Second, we derive the set LA of emergency policies
together with a hierarchy of these policies from the
domain requirements,
• Finally, a special policy is defined, describing the sub-
jects allowed to activate and de-activate emergency
policies during runtime.

Depending on the actual access control model and enforce-
ment architecture, the policy describing the activation of
emergency policies can be integrated into the regular policy
preg. To ease analysis of the access control specification, we
prefer to treat it, conceptually, as a separate policy.
As we understand the hierarchy of emergency policies as a

requirement that is derived from the application domain, we
enforce the desired refinement relation by a policy-level com-
bining algorithm. For this, we sort all policies in topological
order based on the refinement relations. The policy-level
combining algorithm evaluates a given access request on all
active policies. If all policies deny the request, the algorithm
also denies the request. If at least one active policies allows
the request, the policy combining algorithm returns the first
allow (with respect to the topological sorting) together with
the obligation attached to the corresponding policy. This
construction obviously ensures the required refinement rela-
tion and prefers emergency policies with minimal distance
to the regular policy and thus, avoid the need for special-

199

brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

Permission

Policy Obligation
1..*

0..*

1..* 0..*

0..*

0..*

0..* 0..*

Figure 2: Extending SecureUML with support for
break-glass support requires only means for express-
ing a hierarchy of policies.

ized algorithms for combining obligations, as, for example,
developed by Alqatawna et al. [2].
As our refinement notion is only a partial order on the

set of policies, the result of the topological sorting is not
uniquely defined, i. e., if two active emergency policies al-
lowing the actual request are equidistant from the regular
policy, it depends on the implementation which one is cho-
sen (and thus, which obligations are returned together with
the policy evaluation result). This ambiguity arises, if two
policies, equidistant from the regular policy, define rules for
the same target, but require different obligations.

3.3 Break-glass for SecureUML
For supporting our notion of break-glass, SecureUML is

mainly missing the notion of expressing a hierarchy of ex-
ception levels. As exception levels can be directly repre-
sented by policy sets, we extended the SecureUML meta-
model with means for expressing hierarchy of policies (where
a SecureUML policy is a set of permissions).
Figure 2 illustrates the extension with respect to the orig-

inal SecureUML metamodel (see Figure 1). First, our ex-
tension introduces the concept of policies, i. e., a set of per-
missions. Second, policies can be organized into a hierarchy
and every policy can be associated to obligations. Here, an
obligation describes a requirement (e. g., log all upcoming
actions with a certain level of detail) that the system must
fulfill whenever a permission of the policy grants access.
SecureUML provides a concrete syntax based on UML

class diagrams using a UML profile consisting of custom
stereotypes. Users, Groups and Roles are represented by
classes with stereotypes «secuml.user», «secuml.group», and
«secuml.role» (Figure 3). Assignments between them are
represented by ordinary UML associations, whereas the role
hierarchy is represented by a generalization relationship.
Permissions are represented as association classes with the
stereotype «secureuml.permission» connecting the role and a
permission anchor. The attributes of the association class
specify which action (the attribute’s type) on which resource
(the attribute’s name) is permitted by this permission. Au-
thorization constraints are constraints attached to the as-
sociation class. Attributes or operations on roles as well as
operations on permission have no semantics in SecureUML
and are therefore not allowed in the UML notation. We
extend this notation with a policy hierarchy. Policies are
represented by UML classes with stereotype «secuml.policy»
and the hierarchy is represented as a generalization relation-
ship, similar to the role hierarchy of SecureUML. Finally, we
support obligations (represented by UML classes with stereo-
type «secuml.obligation») on a per policy basis, i. e., we can
assign a set of obligations to every policy.

Figure 3 shows a small example of a system design in
UML (i. e., ComponentUML) annotated with an access con-
trol policy with break-glass permissions. The design model
describes the relation between a MedicalRecord and the Pa-
tient who owns the record. The role-based access control
model consists of a role hierarchy and two permissions. In
more detail, we have a role for regular users (UserRole) and
another role for the system administrator AdministratorRole.
The latter inherits all permissions of regular users. The reg-
ular, i. e., non-emergency, policy preg allows only the owner
to update and delete his MedicalRecord. This requirement is
expressed by an additional constraint attached to the per-
mission OwnerMedicalRecord.
This regular SecureUML policy is extended by two exem-

plary emergency levels (LowEmergencyLevel and HighEmer-
gencyLevel) and emergency permission EmergenyOwnerMed-
icalRecord allowing every user to read any MedicalRecord.
For example, this emergency permission allows everyone to
check the medication of a patient in an emergency situation.
For simplicity reasons, we omit the obligations attached

to the emergency levels in this example. Such obligations
are represented as classes that are associated to a policy.

4. A BREAK-GLASS ARCHITECTURE
In this section, we present an access control enforcement

architecture supporting our notion of break-glass. First, we
introduce an abstract view of the architecture and, second,
we discuss an exemplary system architecture implementing
break-glass access control.

4.1 Standard Enforcement Architectures
Figure 4 shows a common architecture for enforcing access

control policies. Such an architecture is usually comprised
of the following components:
PDP: The Policy Decision Point (PDP) manages the poli-

cies (e. g., written in XACML [22] or PERMIS [11]) and
evaluates the policy for concrete access requests. Some
implementations provide further services such as
• a context provider providing information about
the environment to the PDP, e. g., the current
system time or a list of currently logged in users.
• support for obligations that are specified in the
policy and must be enforced by the Policy En-
forcement Point (PEP). Examples for such obli-
gations are raising log level or sending a notifica-
tion to the administrator.

PEP: The Policy Enforcement Point (PEP) is usually di-
rectly linked to the protected resource (e. g., as a li-
brary running within the same process). The PEP is
responsible for querying the PDP and the enforcement
of the returned access decisions. Moreover, if the an-
swer from the PDP includes obligations, the PEP has
to ensure that the system obeys them.

Protected Resources: Examples of protected resources are
services, business processes, function calls, and files.
All accesses to such resources must be executed via
the PEP which enforces the decisions of the PDP.

UI: The User Interface (UI) is responsible for informing the
user about access restrictions that concern his interac-
tions with the system.

The workflow in Figure 4 resembles a client requesting
access to a resource (1). The PEP queries the PDP (2),
which evaluates the policies. The access decision is returned

200

brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

MedicalRecord
disease:String
medication:String
read():OclVoid
update():OclVoid
create():OclVoid

Patient
name:String

0..*
owner 1

«secureuml.role»
UserRole

«secureuml.role»
AdministratorRole

«secureuml.permission»
OwnerMedicalRecord
MedicalRecord:read
MedicalRecord:update
MedicalRecord:delete

caller=self.owner.name

«secureuml.policy»
LowEmergencyLevel

«secureuml.policy»
HighEmergencyLevel

«secureuml.permission»
EmergencyOwnerMedicalRecord
MedicalRecord:read

Figure 3: An example of a SecureUML policy for medical records utelizing our extension for supporting
policy hierarchies. In particular, allowing every user to read patient data in case of an emergency.

User Interface Confirmation Handler

Obligation
Support

Protected
ResourcePEP

Break-glass
PDP

Single
Sign-on

Existing
PDP(s)

Obligation Support

Policy Manager

Au
th
en
tic

at
io
n 1 4

2 3 3
3a 3b

Figure 4: The Break-glass architecture and its mes-
sage flow.

to the PEP (3), which enforces the result. Either the result
of the executed action or an according permission denied
message is returned to the client (4).
User authentication is an orthogonal problem which can

be treated separately. Within our implementation, the client
authenticates itself by passing a security token to the verify-
ing PEP; whereas a single-sign-on engine provides a security
token for the client and verifies this token for the PEP.

4.2 Break-Glass Enforcement Architecture
Figure 4 illustrates the required extension for supporting

our notion of break-glass on top of a standard access control
architecture. The optional, expanding extensions are used
for obligations and user confirmation.
The (existing) PDPs are (without modifying them) en-

capsulated by a break-glass PDP. Such a break-glass PDP
provides the interface to the PEPs, uses the emergency pol-
icy manager to evaluate the request on the active emergency
policies, and executes the policy combination algorithm on
the results.
The emergency policy manager is responsible for execut-

ing the policy-level combining algorithm based on the active
emergency levels and providing an interface to activate and
deactivate emergency levels. The means for activating or

deactivating emergency is, usually, also subject to access
control.
By integrating the policy-level combining algorithm and

the emergency policy manager, we achieve two crucial prop-
erties of our approach. First, the policy refinement is given
by construction, i. e., there is no need to formally analyze
the emergency policies. As such, it is guaranteed that access
rights are never “lost” when activating a higher emergency
level. Second, the policies can be considered as black boxes,
i. e., they can be used without modification. Although, in a
concrete implementation, it is reasonable to exploit features
of the used policy language.
This architecture can be extended stepwise with support

for obligations and support for user confirmations.

Obligation Support.
Supporting obligations requires both the support of obli-

gations in the (break-glass) PDP and in the PEP (Figure 4,
step (3)). Moreover, break-glass accesses may need to be
monitored for later evaluation, i. e., logged (e. g., with addi-
tional information such as emergency level used, justification
provided by the user, etc.) to a secure medium in a format
suitable for later evaluation and approval.
The obligations defined for an emergency level are, as part

of the access decision, returned to the PEP. The PEP has
to ensure that all obligations are fulfilled. If the compliance
to all obligations is not possible, the access decision has to
be treated as a deny. Thus, access control frameworks im-
plementing break-glass techniques with support for, e. g., ex-
tended logging have to support obligations (or a comparable
mechanism which ensures the execution of access restrictions
by the PEP).

User Confirmation.
Implementations of break-glass may require the user to

confirm an override access, for example, in cases where only
the user can decide if an access is legitimate or not. Usu-
ally, even for experienced users it is not self-evident which
actions are justifiable and which are not. Therefore, the
system should give him or her the information required to
decide what exactly he or she is not permitted to do, why
he or she is not permitted to do so, and what the possible
consequences (risks) of overriding the access control are.

201

brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

Overall, break-glass should be part of the (normal) work
process: if a user tries to access a resource he or she is, under
normal circumstances (i. e., under policy preg), not permit-
ted to, but an (active) emergency level (` ∈ LA) could grant
access, he should be informed about the denied permission
and the possibility to override access. If the user is willing
to take the risk and is sure his access is legitimate, he has
to confirm the break-glass access. The intuition of a break-
glass policy requiring a user confirmation is: “the user is
permitted to access the resource, if he is willing to accept
that he is overriding his normal competences and willing to
accept the responsibilities in case of misuse.”
In cases not requiring a user confirmation (e. g., a crises

management system being more permissible during a major
disaster), no such obligation is attached to the corresponding
emergency level.
For supporting user confirmation, the PEP requires access

to the UI. If the PEP receives a user conformation obligation
in step (3), the PEP accesses the user interface in step (3)
and informs the user about the denied permission and the
possibility to override access. If the user confirms that the
access is justifiable, the UI delivers a confirmation as part
of the response in step (3b). This message may contain
further (obligated) information, e. g., a justification message
from the user. If the user confirms the override access and
the PEP is able to enforce all other obligations, in step 4
the result of the access is returned to the client. If the user
does not confirm the override, the PEP returns a “permission
denied” message back to the client.

5. MODEL TO CODE TRANSFORMATION
In this section, we first present an encoding of break-

glass policies in XACML and, second, we present a code-
generation for both the security model and the design model
given as SecureUML model.
For our implementation, we restrict ourselves to a two-

valued OCL-like language for specifying SecureUML permis-
sion constraint, i. e., we only support
• calls to public attributes and the result of calling side-
effect-free public operation of the current resource (ob-
ject),
• the special SecureUML keyword caller referring to
the subject executing an action,
• a limited set of functions for comparing values, e. g.,

_ = _, _ <= _, _ < _, and
• the Boolean operations _ and _, _ or _, and _ not _.

In particular, we do not support recursive OCL expressions
and iterator-based expressions like ->forAll(_ | _).

5.1 Encoding Break-glass in XACML
XACML [22] is a widely used access control language that

is supported by freely available frameworks, e. g., an open
source XACML PDP is provided by Sun (http://sunxacml.
sourceforge.net/). In particular, XACML has a built-in
support for obligations and context providers, which simpli-
fies the implementation of our break-glass architecture.
For mapping break-glass SecureUML to XACML we need

to implement (partially) the Emergency Policy Manager and
provide a mapping of SecureUML elements (e. g., permis-
sions, roles) to XACML. In more detail:
• We need to implement an Emergency Policy Manager:

– implementing a persistence layer that allows for
storing and updating the set of active emergency

levels and provides the set of active emergency
levels to the XACML PDP

– implementing an externally accessible interface
to activate and deactivate emergency levels, pro-
tected by an internal policy

As XACML supports sets of policies and the (user-
configurable) combination thereof as built-in, this min-
imal infrastructure is sufficient.
• For mapping the core SecureUML constructs to XACML
and Java, we follow the presentation in [6]. In particu-
lar, we need to map OCL-like formulae to XACML (the
required attributes for the formulae evaluation are pro-
vided in the XACML request from the PEP) and to ex-
pand the role hierarchy similar to the approach taken
in [6] for the EJB platform.
• Permissions from the SecureUML model are mapped
to XACML permit rules. As our mapping only uses
permit rules within one policy (i. e., in each emergency
policy and in the regular policy), we can use the “first-
applicable combining algorithm” for joining the rule
sets into one policy.
• Obligations are, as defined by the model, assigned to
policies.
• In case of XACML, it is not necessary to implement a
custom policy level combining algorithm. Instead, we
can re-use the XACML infrastructure and resolve the
ordering during the model-to-code transformation. In
particular, for each class of the design model, we gen-
erate a policy set (XACML element PolicySet) con-
taining the permissions (Rule) assigned to emergency
policies (Policy) for this class ordered with respect
to the topological sorting of the emergency policies.
Thus, all permissions belonging to the regular policy
will be mapped on the “top” policy of the policy set,
followed by the rules belonging to the first emergency
level. Therefore, the policy combining algorithm “first-
applicable,” which is provided by standard XACML
can be used for evaluating the policy.

We generate policies for an arbitrary XACML PDP (we only
require the corresponding context provider). The XACML
policies generated by our framework are only based on the
standard XACML tool set, i. e., no extensions of the language
are required. The policy, defining the access control for the
Emergency Policy Manager, can be specified in SecureUML
itself. Thus, the access controls required for updating the set
of active emergency levels is also generated automatically.

5.2 Code Generation

5.2.1 Generating XACML Policies
Listing 1 shows the policy for the MedicalRecord from Fig-

ure 3, using a reduced form of XACML: for simplifying the
presentation, we removed namespaces, shortened attribute
names and values, eliminated empty target, subject (role),
resource, and action declarations, and simplified condition
and obligation definitions (e. g., the Target definition in line
2 does not contain a subject or action definition and is there-
fore reduced to the Resource definition).
The PolicySet generated for every UML class is saved in

a separate policy file. If the permissions of one class are
altered, only the file for this class has to be updated. The
Target definition of the policy set matches the UML class
(line 2–4). All permissions defined for this class are con-

202

http://sunxacml.sourceforge.net/
http://sunxacml.sourceforge.net/

brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

<PolicySet PolicyCombAlg ="first - applicable ">
<Target ><Resource >

MedicalRecord
</ Resource ></ Target >

5 <Policy RuleCombAlg ="first - applicable ">
<Rule Effect =" Permit ">

<Target >
<Role >UserRole </Role >
<Action >update </ Action >

10 </ Target >
<Condition FunctionId ="string - equal ">

<Attribute >subject </ Attribute >
<Attribute >owner .name </ Attribute >

</ Condition >
15 </Rule >

<Rule Effect =" Permit ">
<Target >

<Role >UserRole </Role >
<Action >write </ Action >

20 </ Target >
<Condition FunctionId ="string - equal ">

<Attribute >subject </ Attribute >
<Attribute >owner .name </ Attribute >

</ Condition >
25 </Rule ><Policy >

<Policy RuleCombAlg ="first - applicable ">
<Rule Effect =" Permit ">

<Target >
<Role >UserRole </Role >

30 <Action >read </ Action >
</ Target >
<Condition >LowEmergencyLevel </ Condition >

</Rule >
<Obligation Id="log" FulfillOn =" Permit ">

35 <LogLevel >DEBUG </ LogLevel ></ Obligation >
<Obligation Id=" confirm " FulfillOn =" Permit ">

<EmergencyLevel >LowEmergencyLevel
</ EmergencyLevel >

</ Obligation >
40 </ Policy >

<Policy >
<Rule Effect ="Deny"/>

<Policy ></ PolicySet >

Listing 1: A break-glass PolicySet: default policy,
policy for the LowEmergencyLevel with confirmation
and log obligation, and final deny policy

tained in this policy set, so the target matches to AnySubject
and AnyAction.
The policy set contains the default policy (line 5–25), the

emergency policies ordered by the hierarchy of emergency
levels (line 26–40), and the final deny policy (line 41–43). If
an emergency level does not define any permission for the
UML class defined by the policy set, the complete policy de-
scribing this emergency level can be left out (e. g., no Policy
for HighEmergencyLevel in Listing 1 as no permission is as-
signed to this emergency level in Figure 3). The policies
match the same resource as the policy set, thus, we do not
need to restrict the target of the policies.
Attached to the emergency policy is the log obligation

(line 34–35) and the user confirmation obligation (line 36–
39). The definition of the emergency level is attached to the
rule (line 27–33) as a condition (line 32).
Additionally to the policy set for every UML class, the

policy for the emergency policy manager is generated (which
has to be modeled in SecureUML with OCL constraints).

public interface UserContext {
// returns authentication information
AuthnInfo getAuthn ();

}
5 public interface ObligationContext {

ObligResult fulfill (Obligation obligation);
}
public interface UIContext extends

ObligationContext {
10 // confirm override - access by the user

ConfirmationResult confirm (
Obligation confirmObligation);

}

Listing 2: PEP Context Interfaces: supplying the
PEP with environment related authentication infor-
mation and obligation implementations

The generated files are imported into a prepared PDP, which
provides the emergency policy manager, protected by the
generated policies. Either a jar file is generated, which can
be integrated in any environment, or a war file, which can
be deployed in a servlet container (providing the interfaces
as web service).

5.2.2 Generating Java
In our presentation of the code generation, we focus on the

break-glass concepts effecting the PEP and the communica-
tion with the PDP. The dependencies of the PEP to the en-
vironment are represented by context interfaces (Listing 2):
the UserContext interface helps to abstract from the au-
thentication mechanism (i. e., the authentication technique
used in the target application must be encapsulated by a
class implementing this interface). The ObligationContext
interface is used to provide the implementation of obliga-
tions for the PEP. For example, the UIContext interface
helps to acquire the confirmation from the user (i. e., this
interface must be implemented by a UI class if user confir-
mation obligations are used).
For our implementation, we use a simple Java based user

interface which implements the UIContext interface and au-
thenticates the user at the startup of the application. As the
source files of our model are generated, the code accessing
the PEP is directly integrated into the Java source files of
the entities (Listing 3). The PEP itself is a Java API which
is attached as a jar file to the compiled class files. Of course,
the PEP API can be used for any (manual, non-generated)
implementation.
The PEP is the representation of the Policy Enforcement

Point which is initialized at application startup and available
for every class by singleton. It is part of an API and there-
fore not generated. During the initialization of the pep, the
dependencies to the environment must be resolved, depend-
ing on the used obligations, e. g., a valid UIContext object
for user confirmation obligations. For further obligations
(e. g., logging), a key-value pair of ObligationId and im-
plementing ObligationContext interface must be provided
(supporting the obligation, identified by an ObligationId).
The PEP is responsible for resolving the required attributes

for the evaluation of the OCL formulae associated with the
evaluated permission (e. g., the “owner name” from this,
passed as first parameter to the PEP.update() function).
As both the resolving code and the policies for the PDP

203

brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

public class MedicalRecord {
private static PEP pep;
// model related class - variables
public void update (MedicalRecord record) {

5 AuthzResult authzResult = pep. authorize (
this , userContext ,
" MedicalRecord ", " update ");

if (authzResult . getDecision () ==
AuthzResult . PERMIT) {

10 // execute action
} else {

throw new PermissionDeniedException (
authzResult);

}
15 }

}

Listing 3: A generated Java class, using a PEP

are generated from the same source (i. e., the SecureUML
model), only the required attributes are passed to the PDP.

6. RELATED WORK
The problem of access control unable to handle excep-

tional situations has been known for at least ten years [7].
One solution is to pre-stage accounts, permitted to access
more sensitive resources. These accounts (e. g., username/-
password pairs) are kept in sealed covers or protected by
glass panels, which have to be broken in case of emergency [1].
Similar approaches are implemented by commercial GRC so-
lutions, e. g., Virsa Firefighter for SAP or Oracle’s Role Man-
ager.
Optimistic security [27] and a posteriori compliance con-

trol [13] delay the access control after access by providing
an infrastructure which allows securely auditing and rolling
back in case of a denied access, focusing on risks of not
granting privileges [26]. Similarly, risk-based access control
models, e. g., [12], are based on risk or trust models. This
allows for integrating the risk of granting access into the ac-
cess control decision. While this usually results in a more
flexible access control decision, we see these techniques as a
concept being orthogonal to break-glass. As such, both con-
cepts may benefit from each other. For example, estimating
the risk of different emergency levels could, by allowing dif-
ferent risk classes depending on the current emergency level,
minimize the need for user confirmations within emergency
situations.
Existing work using the term break-glass [1] implements

break-glass in an ad-hoc, application specific manner on top
of the underlying access control mechanism. Ferreira et
al. [15] implement the break-glass mechanism in the source
code of the business logic, i. e., the decision is not defined
in a policy but directly in the accessed entity. Longstaff et
al. [21] focus on a specific health care application with an
application specific authorization mechanism.
Stevens et al. [33] distinguish in the point of time when

permissions are defined: ex-ante (before access), uno-tempore
(during access), and ex-post (after access). Rissanen et
al. [28] combine this with Access Control Spaces [19] and
propose a model which has, additional to permit and deny,
a further access decision: possibility-with-override, allowing
the user to override the access restrictions. Furthermore,
Rissanen et al. [29] describe a technique called Authority

Resolution (finding, with a given override and the XACML
policy, a person who is in position to approve the override).
Based on the work of Rissanen et al. [28, 29], Alqatawna

et al. [2] present an approach for overriding access con-
trol in XACML with obligations. They introduce a specific
type of obligation, override-obligation, and, in addition to
the effects-combining algorithms in standard XACML, an
obligations-combining algorithm to be able to distinguish
between normal and override obligations. Thus, if a per-
mit rule is available, no possible-with-override rule is used.
A more universal approach, related to break-glass, is to

make the decision process more flexible, thus expanding the
expressiveness of rules and its describing language (such as
Generalized Temporal RBAC [20], context aware RBAC [34,
18]). For example, XACML allows to take the environment
into concern (such as system time, or physician-injured ra-
tio). Alam et al. [17] model pre-defined conditions which
have to be true before break-glass access is permitted, e. g.,
during an emergency visit. These concepts help to define
more accurate policies, but also raise complexity—“a wide
variety of access control models have the expressive power
to represent almost arbitrary policies, few are ever used by
others due to their complexity” [19].
A further approach to temporarily increase access rights is

delegation [3, 35]. There are major analogies: different del-
egation approaches have to solve the question which rights
are delegated; i. e., the rights to access a function or the
rights to access the resources, this function will work on. As
for delegation the delegate should only delegate a task one
time (and not be asked again, if an additionally required per-
mission should be granted), even in the case of break-glass
policies the user should break the glass only once.

7. DISCUSSION AND FUTURE WORK
We presented an access control model agnostic approach

for implementing break-glass policies. As an example for the
integration of our approach into an existing access control
model, we extended SecureUML with our notion of break-
glass. This extension is the basis for a model-driven develop-
ment approach supporting role-based access control policies
with break-glass. In particular, our approach supports the
generation of break-glass SecureUML policies for a concrete
security architecture based on Java and XACML.
Compared with existing solutions, we avoid the need for

special accounts which cause additional administrative over-
head and are also an additional security threat (e. g., due
to loss or theft of the pre-staged accounts). Moreover, our
approach integrates means for monitoring and logging the
usage of emergency rights using obligations.
In this paper, we assume that in emergencies the rights

of subjects are extended (i. e., they have at least their nor-
mal rights); in fact, our notion of break-glass guarantees
this property by construction (instead of requiring a formal
proof). While, for example, this is a strict requirement in
the disaster management or health-care domain, there are
applications where the opposite behavior is required. For
these situation, extend our model by the set Ldeny

A of poli-
cies that refine the regular policy

Ldeny
A = {p | p ∈ PA ∧ p v preg ∧ p 6= preg}

and adapt our construction accordingly, i. e., an access is
only granted, if it is granted by the regular policy and not
denied by any active emergency polices.

204

brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

Although we implemented our approach using XACML
(and exploiting its support for obligations and generic policy
combining algorithms), our approach can be transferred to
a large class of policy languages. First, by using an exter-
nal emergency policy manager and extending, if necessary,
the PEP with support for obligations, our notion of break-
glass can be added on top of arbitrary policy languages and
frameworks. Optionally, users can be asked for confirma-
tions. For supporting such confirmations, the PEP needs to
be integrated in the user interface. Notably, the policy com-
bination algorithms and obligation support can be encap-
sulated in the emergency policy manager. Second, the core
idea of our notion of break class, i. e., a hierarchy of policies
with a partial order can be encoded directly in many policy
languages. Recall our running example (see Figure 3); for
example for Prolog-like languages like Datalog, we can write

readMedicalRecord (P, medicalRecord)
:- role(P, userRole), owner (P).

readMedicalRecord (P, medicalRecord)
:- role(P, userRole), emergencyLevel (low).

for modeling that in emergency cases not only the owner of a
medical record is allowed to read it. Similarly, by extending
XACML with an additional “emergency level” attribute for
Policy elements, the ordering of the emergency levels can
be done by an additional component within the PDP.
Our approach provides means for specifying a fine-grained

hierarchy of emergency policies together with a policy re-
stricting the activation and deactivation of the emergency
policies. A fine-grained policy hierarchy is a prerequisite for
both a careful monitoring and for providing detailed feed-
back to the user. Nevertheless, for practical reasons the pol-
icy restricting the activation and deactivation of emergency
policy should be coarse-grained, i. e., most emergency levels
should be active by default. Otherwise, the set of subjects
that are able to activate the emergency levels are becoming
a bottle-neck. Such activation of emergency levels can also
be implemented without user intervention, based on con-
text information such as time, monitoring information, or
sensor values. For example, a hospital could, automatically,
increase the set of activated emergency levels on weekends
where only a reduced number of doctors is on duty.
We see several lines of future research motivated by the in-

tegration of break-glass support into traditional access con-
trol models. On the practical side, we see the need for better
means of informing users about the effect of overriding reg-
ular policies.
On the analytical side, we plan to extend existing anal-

ysis methods for SecureUML [5, 10] to our extension of
SecureUML. The (formal) access control specification with
different emergency levels should also allow for a more de-
tailed and automated post-mortem analysis techniques and
information flow across emergency levels.
While our approach for supporting break-glass is, in prin-

ciple, access control model agnostic, extending systems based
on data labeling, e. g., Bell-LaPadula, with break-glass needs
to be investigated in more detail. Moreover, a classification
of long-living vs. short living data (or different abstraction
level of data) could simplify the audit, i. e., the post-mortem
analysis. This could result in combinations of role-based ac-
cess control and approaches based on data-labeling.
Finally, support for dynamic (i. e., additional checks at

runtime are necessary) access control specifications like sep-

aration of duty or binding of duty has to be developed. Inte-
grating such dynamic requirements into a break-glass frame-
work makes a controlled transition from an exception level
to normal behavior particular challenging. Of course, static
(i. e., properties that can be ensured statically by the policy
set) separation of duty or binding of duty constraints are
supported by our framework.
The concrete (UML-based) syntax of SecureUML is quite

lengthy. For working with large models, an integration of
SecureUML concepts into a CASE tool is available [8]. This
extension allows for directly specifying access control within
the GUI of ArgoUML. This extension needs to be extended
for supporting our SecureUML extension, i. e., a notion of
policies and obligations.

8. ACKNOWLEDGMENTS
We would like to thank Adam J. Lee and the anonymous

referees for helpful comments on the paper.
This work has been supported by the German “Federal

Ministry of Education and Research” in the context of the
project “SoKNOS.” The authors are responsible for the con-
tent of this publication.

9. REFERENCES
[1] Break-glass: An approach to granting emergency

access to healthcare systems. White paper, Joint
NEMA/COCIR/JIRA Security and Privacy Committee
(SPC), 2004.

[2] J. Alqatawna, E. Rissanen, and B. Sadighi. Overriding
of access control in XACML. In Proceedings of the
Eighth IEEE International Workshop on Policies for
Distributed Systems and Networks (POLICY), pages
87–95, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

[3] E. Barka and R. Sandhu. Framework for role-based
delegation models. In Proceedings of the 16th Annual
Computer Security Applications Conference, pages
168–176, Los Alamitos, CA, USA, 2000. IEEE
Computer Society.

[4] Basel Committee on Banking Supervision. Basel II:
International convergence of capital measurement and
capital standards. Technical report, Bank for
International Settlements, Basel, Switzerland, 2004.

[5] D. Basin, M. Clavel, J. Doser, and M. Egea.
Automated analysis of security-design models.
Information and Software Technology, 51(5):815–831,
2009. Special Issue on Model-Driven Development for
Secure Information Systems.

[6] D. A. Basin, J. Doser, and T. Lodderstedt. Model
driven security: From uml models to access control
infrastructures. ACM Transactions on Software
Engineering and Methodology, 15(1):39–91, 2006.

[7] K. Beznosov. Requirements for access control: US
healthcare domain. In Proceedings of the third ACM
workshop on Role-based access control (RBAC),
page 43, New York, NY USA, 1998. ACM Press.

[8] A. D. Brucker and J. Doser. Metamodel-based UML
notations for domain-specific languages. In J. M.
Favre, D. Gasevic, R. Lämmel, and A. Winter,
editors, 4th International Workshop on Software
Language Engineering (ATEM 2007). Oct. 2007.

205

brucker.ea-sacmat-bgrbac.tex 5570 2009-03-24 05:22:05Z brucker

[9] A. D. Brucker, J. Doser, and B. Wolff. An MDA
framework supporting OCL. Electronic
Communications of the EASST, 5, 2006.

[10] A. D. Brucker, J. Doser, and B. Wolff. A model
transformation semantics and analysis methodology
for SecureUML. In O. Nierstrasz, J. Whittle, D. Harel,
and G. Reggio, editors, MoDELS 2006: Model Driven
Engineering Languages and Systems, number 4199 in
Lecture Notes in Computer Science, pages 306–320.
Springer-Verlag, 2006. An extended version of this
paper is available as ETH Technical Report, no. 524.

[11] D. W. Chadwick and A. Otenko. The PERMIS X.509
role based privilege management infrastructure. In
Proceedings of the seventh ACM symposium on Access
control models and technologies (SACMAT), pages
135–140, New York, NY USA, 2002. ACM Press.

[12] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon,
and K. Moody. Using trust and risk in role-based
access control policies. In Proceedings of the ninth
ACM symposium on Access control models and
technologies (SACMAT), pages 156–162, New York,
NY USA, 2004. ACM Press.

[13] S. Etalle and W. H. Winsborough. A posteriori
compliance control. In Proceedings of the 12th ACM
symposium on Access control models and technologies
(SACMAT), pages 11–20, New York, NY USA, 2007.
ACM Press.

[14] D. F. Ferraiolo, R. S. Sandhu, S. I. Gavrila, D. R.
Kuhn, and R. Chandramouli. Proposed NIST standard
for role-based access control. ACM Transactions on
Information and System Security, 4(3):224–274, 2001.

[15] A. Ferreira, R. Cruz-Correia, L. Antunes, P. Farinha,
E. Oliveira-Palhares, D. Chadwick, and
A. Costa-Pereira. How to break access control in a
controlled manner. In Proceedings of the 19th IEEE
International Symposium on Computer-Based Medical
Systems (CBMS), pages 847–854, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[16] C. Fox and P. Zonneveld. IT Control Objectives for
Sarbanes-Oxley: The Role of IT in the Design and
Implementation of Internal Control Over Financial
Reporting. IT Governance Institute, Rolling Meadows,
IL, USA, 2nd edition, Sept. 2006.

[17] M. Hafner, M. Memon, and M. Alam. Modeling and
enforcing advanced access control policies in
healthcare systems with Sectet. In H. Giese, editor,
MoDELS Workshops, volume 5002 of Lecture Notes in
Computer Science, pages 132–144, Heidelberg, 2007.
Springer-Verlag.

[18] J. Hu and A. C. Weaver. Dynamic, context-aware
access control for distributed healthcare applications.
In Proceedings of the First Workshop on Pervasive
Security, Privacy and Trust (PSPT), 2004.

[19] T. Jaeger, A. Edwards, and X. Zhang. Managing
access control policies using access control spaces. In
Proceedings of the seventh ACM symposium on Access
control models and technologies (SACMAT), pages
3–12, New York, NY USA, 2002. ACM Press.

[20] J. B. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A
generalized temporal role-based access control model.
IEEE Transaction on Knowledge and Data
Engineering, 17(1):4–23, 2005.

[21] J. Logstaff, M. Lockyer, and M. Thick. A model of
accountability, confidentiality and override for
healthcare and other applications. In Proceedings of
the fifth ACM workshop on Role-based access control,
pages 71–76, New York, NY USA, 2000. ACM Press.

[22] eXtensible Access Control Markup Language
(XACML), version 2.0, 2005.

[23] OMG XML metadata interchange (XMI) specification
(version 1.1), Nov. 2000. Available as OMG document
formal/00-11-02.

[24] UML 2.0 OCL specification, Oct. 2003. Available as
OMG document ptc/03-10-14.

[25] UML 2.0 superstructure specification, July 2005.
Available as OMG document formal/05-07-04.

[26] D. Povey. Enforcing well-formed and partially-formed
transactions for Unix. In Proceedings of the 8th
conference on USENIX Security Symposium, volume 8,
pages 5–5. USENIX Association, 1999.

[27] D. Povey. Optimistic security: A new access control
paradigm. In Proceedings of the 1999 workshop on
New security paradigms, pages 40–45, New York, NY
USA, 1999. ACM Press.

[28] E. Rissanen. Towards a mechanism for discretionary
overriding of access control (transcript of discussion).
In B. Christianson, B. Crispo, J. A. Malcolm, and
M. Roe, editors, Proceedings of the 12th International
Workshop on Security Protocols, volume 3957 of
Lecture Notes in Computer Science, pages 320–323,
Heidelberg, Mar. 2004. Springer-Verlag.

[29] E. Rissanen, B. S. Firozabadi, and M. J. Sergot.
Discretionary overriding of access control in the
privilege calculus. In T. Dimitrakos and F. Martinelli,
editors, Proceedings of the Workshop on Formal
Aspects Security and Trust (FAST), volume 173, pages
219–232, Heidelberg, 2004. Springer-Verlag.

[30] A. Roscoe. Theory and Practice of Concurrency.
Prentice Hall, 1998.

[31] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. Computer,
29(2):38–47, 1996.

[32] P. Sarbanes, G. Oxley, et al. Sarbanes-Oxley Act of
2002. 107th Congress Report, House of
Representatives, 2nd Session, 107–610, 2002.

[33] G. Stevens and V. Wulf. A new dimension in access
control: studying maintenance engineering across
organizational boundaries. In Proceedings of the ACM
conference on Computer supported cooperative work
(CSCW), pages 196–205, New York, NY USA, 2002.
ACM Press.

[34] M. Wilikens, S. Feriti, A. Sanna, and M. Masera. A
context-related authorization and access control
method based on RBAC: A case study from the health
care domain. In Proceedings of the seventh ACM
symposium on Access control models and technologies
(SACMAT), pages 117–124, New York, NY USA, 2002.
ACM Press.

[35] L. Zhang, G.-J. Ahn, and B.-T. Chu. A role-based
delegation framework for healthcare information
systems. In Proceedings of the seventh ACM
symposium on Access control models and technologies
(SACMAT), pages 125–134, New York, NY USA, 2002.
ACM Press.

206

http://www.omg.org/cgi-bin/doc?formal/00-11-02
http://www.omg.org/cgi-bin/doc?ptc/03-10-14
http://www.omg.org/cgi-bin/doc?formal/05-07-04

	Introduction
	Background
	Break-glass
	SecureUML

	A Generic Break-glass Model
	Emergency Levels
	Implementing Break-glass
	Break-glass for SecureUML

	A Break-glass Architecture
	Standard Enforcement Architectures
	Break-Glass Enforcement Architecture

	Model to Code Transformation
	Encoding Break-glass in XACML
	Code Generation
	Generating XACML Policies
	Generating Java

	Related Work
	Discussion and Future Work
	Acknowledgments
	References

