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ABSTRACT
In the search for high performance, most transactional memory
(TM) systems execute atomic blocks concurrently and must thus
be prepared for data conflicts. The TM system must then choose
a policy to decide when and how to manage the resulting con-
tention. In this paper, we analyze the interplay between conflict
resolution time and contention management policy in the context
of hardware-supported TM systems, highlighting both the imple-
mentation tradeoffs and the performance implications of the vari-
ous points in the design space. We show that both policy decisions
have a significant impact on the ability to exploit available paral-
lelism and thereby affect overall performance. Our analysis cor-
roborates previous research findings that stalling (especially prior
to retrying an access rather than the entire transaction) helps side-
step conflicts and avoid wasted work. We also demonstrate that
conflict resolution time has the dominant effect on performance:
lazy (which delays resolution to commit time) uncovers more par-
allelism than eager (which resolves conflicts at access time). Fur-
thermore, Lazy’s delayed conflict management decreases the like-
lihood of livelock while Eager needs sophisticated priority mech-
anisms. Finally, we evaluate a mixed conflict detection mode that
detects write-write conflicts eagerly while detecting read-write con-
flicts lazily, and show that it provides a good compromise between
flexibility and implementation complexity.

Categories and Subject Descriptors: D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming C.1.2
[Processor Architectures]: Multiprocessors C.4 [Performance of
Systems]: performance attributes, design studies

General Terms: Performance, Design, Experimentation

Keywords:Transactional memory, contention management, con-
flict detection

1. INTRODUCTION
To utilize transactional memory (TM), at the high level, a pro-

grammer or compiler simply marks sections of code as atomic; the
underlying system (1) ensures memory updates by the atomic sec-
tion are seen to occur in an “all-or-nothing” manner, (2) maintains
isolation with respect to other transactions, and (3) guarantees data
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Table 1: Percentage of total (committed and aborted) transactions
that encounter a conflict.

Benchmark % Conf. tx Benchmark % Conf. Tx
Bayes 85% Vacation 73%
Delaunay 85% STMBench7 68%
Intruder 90% LFUCache 95%
Kmeans 15% RandomGraph 94%

See Section 4 for workload description. These experiments are for
16 thread runs with Lazy conflict detection and a “committer wins”
contention manager.

consistency. Essentially, the higher level system is guaranteed to
see all transactions in some global serial order. To maximize per-
formance, most TM systems execute transactions concurrently and
must thus be prepared for data conflicts (which might break the illu-
sion of serializability). A conflict is said to have occurred between
two or more concurrent transactions when they access the same lo-
cation and at least one of them is a write.

Currently, there is very little consensus on the right way to im-
plement transactions. Hardware proposals are more rigid than soft-
ware proposals with respect to the conflict resolution policies sup-
ported. However, this stems in large part not from a clear analysis
of the tradeoffs, but rather from a tendency to embed more straight-
forward policies in silicon. In general, TM research has tended to
focus on implementation tradeoffs, performance issues, and cor-
rectness constraints while assuming conflicts are infrequent. This
assumption doesn’t seem to hold for the first wave of TM applica-
tions that employ coarse-grain transactions (Table 1). Conflicts that
arise out of sharing between reader and writer transactions are com-
mon with “tries” and linked-list data-structures (which are widely
used). Furthermore, conservative programming practices that en-
capsulate large regions within a single atomic primitive might lead
to unnecessary conflicts due to the juxtaposition of unrelated data
with different conflict properties.

This paper seeks to analyze the interaction of TM design de-
cisions and make recommendations on appropriate policies while
taking both performance and implementation tradeoffs into consid-
eration. Hardware support for TM seems inevitable and has already
started to appear [25]. However, there seems to be very little under-
standing and analysis of TM policies in a HTM context. Our work
seeks to remedy this situation. In the absence of conflicts, policy de-
cisions take a backseat and most systems perform similarly. In the
presence of conflicts, performance varies widely (orders of magni-
tude, see Section 6) based on policy. We focus on the interaction
between two policy decisions that affect performance in the pres-
ence of conflicts: conflict detection/resolution time and contention
management policy. We informally describe these two critical de-
sign decisions below.

Conflict detection refers to the mechanism by which data con-
flicts are identified. TM systems record the locations read and writ-
ten in order to check for overlap. Conflict resolution policies vary
based on when the read and write sets are examined to detect over-



lap. In eager systems (pessimistic), the TM system detects and re-
solves a conflict when a transaction accesses a location. In lazy
systems (optimistic), the transaction that reaches its commit point
first will resolve the conflict.

Once a conflict is detected, the TM system invokes the con-
tention manager to determine the response action. It employs a set
of heuristics to decide which transaction has to stall/retry and which
can progress. Its actions are different based on whether it was in-
voked before the conflict occurred (eager systems) or at commit
(lazy systems). The job of a good contention manager is to medi-
ate access to conflicting locations and maximize throughput while
ensuring some level of fairness.

We use the recently developed hardware-accelerated TM,
FlexTM [23], as our experimental framework. Since FlexTM al-
lows software the flexibility to control both the conflict resolution
time and contention management policy, we can analyze the trade-
offs within a single framework. We set up the following three stud-
ies. First, we analyze the influence of introducing backoff (stalling)
into the contention manager and how it helps with livelock issues.
Second, we implement and compare a variety of contention man-
ager heuristics and evaluate their interaction with conflict resolu-
tion time (Eager and Lazy). Finally, we implement and evaluate
a mixed conflict resolution policy (the semantics of which were
defined in [20]) in the context of hardware-accelerated TM. The
mixed policy resolves write-write conflicts eagerly to save wasted
work and resolves read-write conflicts lazily to exploit concurrency.

Our analysis across a wide set of applications makes the follow-
ing contributions: (1) We corroborate earlier research results [2,19]
that stalling helps side-step conflicts and avoid livelock. In particu-
lar, stalling prior to retrying an access rather than aborting/retrying
the entire transaction avoids wasted work. (2) We demonstrate
that Lazy systems provide better throughput guarantees by exposing
more concurrency (among potentially conflicting transactions) than
Eager. Lazy also reduces the possibility of futile aborts (one trans-
action aborting another transaction only for itself to be aborted),
which practically avoids livelock. (3) We reveal that while the con-
tention manager choice can avoid pathological situations (e.g., star-
vation), the choice of conflict resolution time (in particular, Lazy)
is more important to improved performance. (4) Finally, our results
show that mixed conflict detection in HTMs provides a good com-
promise between exploiting concurrency, saving wasted work, and
implementation complexity.

2. RELATED WORK
The seminal DSTM paper by Herlihy et al. [9] introduced the

concept of “contention management” in the context of STMs. They
postulated that obstruction-free algorithms enable the separation of
correctness and progress conditions (e.g., avoidance of livelock),
and that a contention manager is expected to help only with the lat-
ter. Scherer et al. [19] investigated a collection of arbitration heuris-
tics on the DSTM framework. Each thread has its own contention
manager and on conflicts, transactions gather information (e.g., pri-
ority, read/write set size, number of aborts) to decide whether abort-
ing enemy transactions will improve system performance. This
study did not evaluate an important design choice available to the
contention manager: that of conflict resolution time (i.e., Eager
or Lazy). Shriraman et al. [22] and Marathe et al. [11] observed
that laziness in conflict resolution can significantly improve the
throughput for certain access patterns. However, these studies did
not evaluate contention management. In addition, evaluation in all
these studies was limited to microbenchmarks. Scott [20] presents
a classification of possible conflict resolution modes, including the

mixed mode, but does not discuss or evaluate implementations.
Contention management can also be viewed as a scheduling prob-
lem. Yoo et al. [26] and CAR-STM [4] use centralized queues to
order and control the concurrent execution of transactions. These
queueing techniques preempt conflicts and save wasted work by
serializing the execution of conflicting transactions. Yoo et al. [26]
use a single system-wide queue and control the number of trans-
actions that run concurrently based on the conflict rate in the sys-
tem. Dolev et al. [4] use per-processor transaction issue queues to
serially execute transactions that are predicted to conflict. While
they can save wasted work, these centralized scheduling mecha-
nisms require expensive synchronization and could unnecessarily
hinder existing concurrency. Furthermore the existing scheduling
mechanisms serialize transactions on all types of conflict. Serializ-
ing transactions that only have read-write overlap significantly hurts
throughput and could lead to convoying [2, 23].

Most recently, Spear et al. [24] have performed a comprehensive
study of contention management policy in STMs. Though limited
to microbenchmarks, they analyze the performance tradeoffs under
various conflict scenarios and conclude that Lazy removes the need
for sophisticated contention managers in STMs. Our analysis re-
veals a similar trend in HTMs as well; this implies that hardware
designers need to pay careful attention to embedded policies.

It would be fair to say that hardware supported TM systems
have mainly focused on implementation tradeoffs and have largely
ignored policy issues. Bobba et al. [2] were the first to study
the occurrence of performance pathologies due to specific conflict
detection, management, and versioning policies in HTMs. Their
hardware enhancements targeted progress conditions (i.e., practical
starvation-freedom, livelock-freedom) and did not focus on the con-
currency tradeoffs between Eager and Lazy (see Section 5). Fur-
thermore, they analyzed specific points in the design space, making
it difficult to extrapolate the interaction of the policy decisions with
each other. Baugh et al. [1] and Ramadan et al. [16] compare a
limited set of previously proposed STM contention managers in the
context of Eager systems. Most recently, Ramadan et al. [17] have
proposed dependence-aware transactions, forwarding data between
speculative transactions and tying their destiny together with the
goal of uncovering more concurrency. It is not yet clear that per-
formance improvements promised by dependence-awareness merit
the hardware complexity.

3. FRAMEWORK: FLEXTM [23]
We implement the contention managers and conflict detec-

tion policy as a software module within the recently-proposed
FlexTM system.1 FlexTM provides a set of decoupled hard-
ware primitives that each have a well-defined interface to put soft-
ware in charge of controlling TM policy. Like other HTM sys-
tems, it only requires the program to bracket code segments within
BEGIN TRANSACTION and END TRANSACTION and hardware
takes care of the versioning and conflict detection tasks. Unlike
other HTMs, FlexTM allows software to decide how and when
to resolve conflicts and commit a transaction. It achieves this by
separating conflict detection from resolution time and contention
management policy: hardware always detects conflicts and records
them, but software chooses when to notice, and what to do about it.
Furthermore, conflicts are resolved pair-wise between transactions
without requiring global arbiters.
1Since the focus on this paper is the HTM policy, we only briefly review the
details of the FlexTM system. We refer interested readers to our ISCA’08
paper [23].



Conflict Detection: FlexTM maintains the working set of a
transaction in two signatures, read signature (Rsig) and a write sig-
nature (Wsig). Conflict detection is piggybacked on coherence re-
quest and response messages; at the processor ends, conflict sum-
mary tables (CSTs) record the conflicts between transactions and
expose them to software. Each processor has three bitmaps,R-W,
W-R, and W-W; one bit for every other processor. Each of the
bitmaps indicate a type of conflict that can arise between transac-
tions: that a local read (R) or write (W) has conflicted with a read
or write (as suggested by the name) on the corresponding remote
processor. For example, a forwarded exclusive request from P2 that
hits in P1’s Rsig sets P2’s bit in P1’s R-W and the response mes-
sage sets P1’s bit in P2’s W-R. The CSTs ensure that conflicting
transactions are visible to each other; either transaction can invoke
the contention manager. Software can inspect the CSTs to directly
resolve conflicts between transactions without requiring global ar-
bitration (in software or hardware).

Versioning: Since FlexTM supports both Eager and Lazy it im-
plements a redo-log based versioning mechanism: FlexTM buffers
transactional writes and makes them visible only at commit time.
Bounded transactions use private L1 caches to maintain the specu-
lative state and the lower cache levels to maintain non-speculative
state (for concurrent transactions). Overflows from the cache are
maintained by a hardware controller in a hash table, which is al-
located/deallocated by software. The hash-table entries are copied
back to the original locations on commit and discarded on an abort.

Transactions: Every transaction is represented by a software
descriptor containing, among other fields, the transaction status
word (TSW). At the beginning of the transaction, the thread marks
the TSW cache line for alerts [23] (any write to the word by a re-
mote thread triggers a handler). This allows a transaction to detect
when it is aborted by a remote thread. Transactions of a given ap-
plication can operate in either Eager or Lazy mode. In Eager mode,
when conflicts appear on cache coherence messages, the processor
effects a subroutine call to the contention manager. In Lazy mode,
transactions are not alerted into the contention manager. The hard-
ware simply updates the requestor and responder CSTs. At commit
time, a transaction T needs to abort only the transactions found in
its W-R and W-W CSTs 2. R-W conflicts do not require an abort
since the reader is about to serialize prior to the writer, thereby cre-
ating a legal execution. Those enemy transactions could be racing
and trying to commit themselves, but since both operations involve
the enemy’s TSW, cache coherence guarantees serialization. Since
Eager transactions manage conflicts as soon as they are detected, at
commit time the CST for such transactions will be empty and the
only action required is to atomically update its TSW to committed.
(see Sections 3.5 and 3.6 in [23] for more details).

Simulation Setup: We implement the FlexTM framework us-
ing a full system simulation of a 16-way chip multiprocessor (CMP)
with private L1 caches and a shared L2 (see Table 2(a)), on the
GEMS/Simics infrastructure [13]. Our base protocol is an adap-
tation of the SGI ORIGIN 2000 directory protocol for a CMP, ex-
tended to support FlexTM’s requirements. We chose a 16-processor
2W-W conflicts have to be conservatively treated as dueling W-R conflicts
due to the fact that subsequent reads to the cache line (same or different lo-
cation) will not result in coherence messages. Prefetches and read-modify-
write atomic instructions could also potentially result in missing the read
conflict (only the earlier write would be recorded due to the “get-exclusive”
coherence message, subsequent accesses would result in no coherence ac-
tivity). One of the conflicting transactions must be aborted to guarantee
correctness.

Table 2: Target System Parameters
16-way CMP, Private L1, Shared L2

Processor Cores 16 1.2GHz in-order, single issue; non-memory
IPC=1

L1 Cache 32KB 2-way split, 64-byte blocks, 1 cycle,
32 entry victim buffer, 2Kbit signature [3, S14]

L2 Cache 8MB, 8-way, 4 banks, 64-byte blocks, 20 cycle
Memory 2GB, 250 cycle latency

Interconnect 4-ary tree, 1 cycle, 64-byte links,

system since it provided enough of a heavy load to highlight perfor-
mance tradeoffs between contention managers while keeping simu-
lation time reasonable. Transactions access the contention manager
specific performance counters through memory mapped locations.

Why the FlexTM framework? Shriraman et al. [23] demon-
strated that FlexTM provides high performance comparable to
rigid-policy HTMs thereby exposing the effects of policy changes.
The FlexTM implementation doesn’t embed any of the conflict
policies in silicon and allows these mechanisms to be controlled
by software. Other HTM system implementations limit the options
available, which would have required us to either build each TM
system separately or idealize the framework, both of which would
have introduced noise.

4. APPLICATION CHARACTERISTICS
While microbenchmarks help stress-test an implementation and

identify pathologies, designing and understanding policy requires
a comprehensive set of realistic workloads. In this study, we
have assembled six benchmarks from the STAMP workload suite
v0.9.9 [14], STMBench7 [7], a CAD database workload, and two
microbenchmarks from RSTMv3.3 [12]. We briefly describe the
benchmarks, where transactions are employed, and present their
runtime statistics (see Table 3). Our runtime statistics include trans-
action length, read/write set sizes, read and write event timings, and
average conflict levels (number of locations on which and the num-
ber of transactions with which conflicts occur). We have also in-
cluded information on number of conflicting transactions and type
of conflicts (i.e., Read-Write or Write-Write) to understand the
sharing pattern present in the applications.

Bayes: The bayesian network is a directed acyclic graph that tries
to represent the relation between variables in a dataset. All oper-
ations (e.g., adding dependency sub-trees, splitting nodes) on the
acyclic graph occur within transactions. There is plenty of concur-
rency, the data is shared in a fine-grain manner.
Read/Write Set: Large Contention: High
Input: -v32 -r1024 -n2 -p20 -s0 -i2 -e2

Delaunay: There have been multiple variants of the Delaunay
benchmark that have been released [10, 21]. This version imple-
ments the Delaunay mesh refinement [18]. There are primarily two
data structures (1) a Set for holding mesh segments and (2) a graph
that stores the generated mesh triangles. Transactions protect ac-
cess to these data structures. The operations on the graph (adding
nodes, refining nodes) are complex and involve large read/write sets
which leads to significant contention.
Read/Write Set: Large Contention: Moderate
Input: -a20 -i inputs/633.2

Genome: This benchmark processes a list of DNA segments (short
strings of alphabets A,T,C,G) and matches them up to construct the
longer genome sequence. It uses transactions for (1) picking the
input segments from a shared table and (2) pairing them up with



Table 3: Transactional Workload Characteristics
Benchmark Inst/tx Wrset Rdset Wr1 Rd1 WrN RdN CST

conflicts
per-tx

Avg.
per-tx
W-W

Avg.
per-tx
R-W

Bayes 70K 150 225 0.6 0.05 0.8 0.95 3 0 1.7
Delaunay 12K 90 178 0.5 0.12 0.85 0.9 1 0.10 1.1
Genome 1.8K 9 49 0.55 0.09 0.99 0.85 0 0 0
Intruder 410 41 14 0.5 0.04 0.99 0.8 2 0 1.4
Kmeans 130 4 19 0.65 0.1 0.99 0.7 0 0 0
Vacation 5.5K 12 89 0.75 0.02 0.99 0.8 1 0 1.6

STMBench7 155K 310 590 0.4 0 0.85 0.9 3 0.5 3.6
LFUCache 125 1 2 0.99 0 0.99 0.78 6 0.8 0.8

RandomGraph 11K 9 60 0.6 0 0.9 0.99 5 0.6 3
Setup: 16 threads with lazy conflict detection; Inst/Tx- Instructions per transaction. K-Kilo
Wrset(Rdset): Number of written (read) cache lines
Wr 1 (Wr N): First (last) write event time; Measured as fraction of tx execution time. Rd-Read

CST conflicts per tx: Number of CST bits set. Median number of conflicting transactions encountered
W-W (R-W): - Avg( No. of conflicts/tx

Number of set CST bits/tx ). Avg. number of conflicting locations shared between txs.

existing segments using a string matching algorithm. In general the
application is highly parallel and contention free.
Read/Write Set: Moderate Contention: Low
Input: -g256 -s16 -n16384

Intruder: This benchmark parses a set of packet trace using a three
stage pipeline. There are also multiple packet-queues that try to
use the data-structures in the same pipeline stage. Transactions are
used to protect the FIFO queue in stage 1 (capture phase) and the
dictionary in stage 2 (reassembly phase).
Read/Write Set: Moderate Contention High
Input: -a10 -l16 -n4096 -s1

Kmeans: This workload implements the popular clustering algo-
rithm that tries to organize data points into K clusters. This algo-
rithm is essentially data parallel and can be implemented with only
barrier-based synchronization. In the STAMP version, transactions
are used to update the centroid variable, for which there is very lit-
tle contention.
Read/Write Set: Small Contention: Low
Input: -m10 -n10 -t0.05 -i inputs/random2048-d16-c16.txt

Vacation: Implements a travel reservation system. Client threads
interact with an in-memory database that implements the database
tables as a Red-Black tree. Transactions are used during all opera-
tions on the database.
Read/Write Set: Moderate Contention: Moderate
Input: -n4 -q45 -u90 -r1048576 -t4194304

STMBench7: STMBench7 [7] was designed to mimic a transac-
tion processing CAD database system. Its primary data structure
is a complex multi-level tree in which internal nodes and leaves
at every level represent various objects. It exports up to 45 dif-
ferent operations with varying transaction properties. It is highly
parametrized and can be set up for different levels of contention.
Here, we simulate the default read-write workload. This bench-
mark has high degrees of fine-grain parallelism at different levels
in the tree.
Read/Write Set: X-Large Contention: High
Input: Reads-60%, Writes-40%. Short Traversals-40%. Long
Traversals 5%, Ops. - 45%, Mods. 10%.

µbenchmarks: We chose two data structure benchmarks from
RSTMv3.3, LFUCache and RandomGraph. Marathe et al. [12]
describe these workloads in detail. LFUCache uses a large
array based index and a smaller priority queue to track the most

frequently accessed pages in a simulated web cache. The Random-
Graph benchmark requires transactions to insert or delete vertices
from an undirected graph represented with adjacency lists. Our
intent with these workloads highlight the performance variations
between the policy decisions using contention scenarios absent
from other workloads.
Read/Write Set: Small Contention: X-High
Input: 1/3rd lookup, 1/3rd insert, 1/3rd delete

To summarize, Bayes, Intruder, STMBench7, and Vacation all
employ “trie”-like data structures extensively and the transactions
are primarily used to protect the “trie” operations. There are an
extensive number of conflicts arising between transactions that per-
form lookups on the tree and writer transactions that perform ro-
tations and balancing. The primary cause of conflicts is read-write
sharing (which Lazy can exploit). The working set size is also mod-
erate to high due to the prevalence of pointer chasing. Kmeans
and Genome are essentially data parallel while Delaunay employs
transactions in a small segment of the application. LFUCache and
RandomGraph are both stress tests — they have small, highly con-
tended working sets; most of the conflicts are write-write and con-
currency is almost non-existent.

5. CONFLICT RESOLUTION PRIMER

5.1 Conflict Detection and
Contention Management

We define the terms and discuss the options available to a con-
tention manager when invoked under various conflict scenarios.

The contention manager (CM) is called on any conflict and has
to choose from a range of actions when interacting with the dif-
ferent conflict detection schemes. Assuming deadlock freedom (is
a property of the underlying TM system), the additional goals of
the runtime, broadly defined, are to try to avoid livelock (ensure
that some transaction makes progress) and starvation (ensure that
a specific transaction that has been aborted often makes progress).
It also needs to exploit as much parallelism as possible, ensuring
that transaction execute and commit concurrently (whenever pos-
sible). The contention manager is decentralized and is invoked by
the transaction that detects the conflict, which we’ll label the at-
tacking transaction (Ta), using the terminology introduced in [5].
The conflicting transaction that must participate in the arbitration is
labeled the enemy transaction (Te) (as opposed to victim [5], since
Te might actually win the arbitration). On detecting a conflict, Ta



invokes its contention manager, which decides the order it wants

to serialize the transactions (based on some heuristic): Ta
before−−−−→

Te or Te
before−−−−→ Ta. The actions carried out by the contention

manager may also depend on when it was invoked, i.e., the conflict
resolution time.

There are primarily two conflict detection/resolution modes, Ea-
ger and Lazy, which exploit varying levels of application paral-
lelism due to their approach to concurrent accesses. Eager mode
enforces the single-writer rule and allows only multiple-readers
while Lazy mode permits multiple writers and multiple readers to
coexist until a commit. Transactions need to acquire exclusive per-
mission to the written locations sometime prior to commit. Eager
systems acquire this permission at access and block out other trans-
action workers for the duration of the transaction while Lazy delays
this to commit allowing concurrent work. There is, of course, a
sliding scale between access and commit time, but we have chosen
the two end points for evaluation.

With Lazy, it is possible for readers to commit when concur-
rently executed with potential writer enemies by executing the com-
mit protocol earlier in time. This form of dependence-awareness
where potentially conflicting transactions are allowed to concur-
rently execute and commit uncovers more parallelism than Eager.
This parallelism tradeoff is completely orthogonal to the contention
management that typically focuses on improving progress and fair-
ness. Eager can possibly save more wasted work via early detec-
tion of transactions but only if the attacker commits; the attacker
might itself abort after killing an enemy, which wastes more work.
Lazy also reduces the window of vulnerability, where a transaction
aborts its enemies only to find itself aborted later. In Lazy since
the attacker aborts its enemies after all the transaction work, its
window of vulnerability is limited to the commit window, whereas
with Eager the window extends from the contention managed at
access-time to commit-time.

Figure 1 shows the generic set of options available to a con-
tention manager. We now discuss in detail the option exercised for
a specific conflict type. Table 4 summarizes the details. Any trans-
action can encounter three types of conflicts: Read-Write, Write-
Read3
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WAITa - Backoff on conflict in Eager systems
WAITc - Backoff before commit in Lazy systems
ABrem - Abort remote transaction
ABself - Self abort
COself - Commit the transaction

Figure 1: Contention Manager Actions

3Read-Write and Write-Read conflicts are converse of each other. They
vary based on the transaction that notices the conflict; when a transaction T1
reads a location being concurrently accessed by T2 for writing, the conflict
is classified as Read-Write at T1’s end and Write-Read at T2’s end.

Read-Write: Read-Write conflicts are noticed by reader trans-
actions, where the reader plays the role of the attacker. If in Eager
mode, the contention manager can try to avoid the conflict by wait-
ing and allowing the enemy transaction to commit before it reads.
Alternatively, it could take the action of either ABself (self abort,
see Figure 1 to release isolation on other locations it may have ac-
cessed or ABrem on the writer in-order to make progress. With
Lazy systems, when the reader reaches the commit point, the reader
can commit without conflict.

Write-Read: A Write-Read conflict at the high level is the same
as Read-Write, except that the writer is the attacker. If the con-
tention manager decides to commit the reader before the writer then
the writer has to stall irrespective of the conflict detection scheme
(Eager or Lazy ). Eager systems would execute a WAITa while
Lazy systems would execute a WAITc only if the reader has not
committed prior to the writer’s commit. If the writer is to serialize
ahead of the reader, the only option available is to abort the reader.
In this scenario aborting early in Eager systems might potentially
save more wasted work.

Write-Write: True write-write conflicts are serializable even
if concurrent transactions commit; but, due to constraints with
coherence-based conflict detection, implementations need to con-
servatively treat write-write conflicts as dueling read-write, write-
read conflicts. There is no serial history in which both transactions
can concurrently commit. One of them has to abort. However, since
Eager systems manage conflicts before access, they can WAITa

until the conflicting transaction commits. Lazy systems have no
such option and in this case will waste work. Both Eager and Lazy
may also choose to abort either transaction.

Table 4: Contention Manager and Conflict Detection Interaction
Objective Te

before−−−−−→ Ta Ta
before−−−−−→ Te

E L E L
R(Ta)-W(Te) WAITa : Ta WAITc : Ta ABrem : Te COself : Ta

W(Ta)-R(Te) WAITa : Ta WAITc : Ta ABrem : Te ABrem : Te

W(Ta)-W(Te) WAITa : Ta WAITc : Ta ABrem : Ta ABrem : Ta

R(tx) - Tx has read the location; W(tx) - Tx has written location
Ta - Attacking transaction; Te - Enemy transaction

5.2 Design Space
As described in [5], each contention manager exports notifica-

tion and feedback methods. Notification methods inform the con-
tention manager about transaction progress. In order to minimize
overhead, unlike the STM contention managers in [5], we assume
explicit methods exist only at transaction boundary events — trans-
action begin, abort, commit, and stall. Any information on access
patterns is gleaned via hardware performance counters/registers.
Feedback methods indicate to the transaction, based on who the en-
emy and attacker are, the information the contention manager has
on their progress, and what type of conflict is detected (R-W, W-
R, or W-W), what action must be taken among aborting the enemy
transaction, aborting itself, or stalling in order to give the enemy
more time to complete.

Exploring the design spectrum of contention manager heuristics
is not easy since the objectives are abstract. In some sense, the con-
tention manager heuristic has the same goals as the heuristics that
arbitrate a lock. Just as a lock manager tries to maximize concur-
rency and provide progress guarantees to critical sections protected
by the lock, the contention manager seeks to maximize transaction
throughput while guaranteeing some level of fairness. We have
tried to adopt an organized approach: a five dimensional design



space guides the contention managers that we develop and analyze.
We enumerate the design dimensions here while describing the spe-
cific contention managers in our evaluation Section 6.

1. Conflict type (C): This dimension specifies whether the con-
tention manager distinguishes between various types of con-
flict. For example, with a write-write conflict the objective
might be to save wasted work while with read-write conflicts
the manager might try to optimize for higher throughput.
Options: Read-Write, Write-Read, or Write-Write

2. Implementation (I): The contention manager implementation
is a tradeoff between concurrency and implementation over-
heads. For example, each thread could invoke its own in-
stance of the contention manager (as we have discussed in
this paper) or there could be a centralized contention man-
ager that usually closely ties both conflict detection and com-
mit protocol (e.g., lazy HTM systems [8]). The latter enables
global consensus and optimizations while the former imposes
less performance penalty and is potentially more scalable.
Options: Centralized or De-centralized

3. Conflict Detection (D): This controls when the contention
manager is invoked, i.e., the conflict resolution time.
Options: Eager, Lazy, or Mixed (see Section 6.3)

4. Election (E): This indicates the information used to arbitrate
among transactions. There are a number of heuristics that
could be employed, such as timestamps, read-set and write-
set sizes, transaction length, etc. Early work on contention
management [19] explored this design axis. In this paper,
we limit the information used in a tradeoff between reduced
implementation complexity and statistics collection overhead
with throughput in the presence of contention.
Options: Timestamp, Read/Write set size, etc.

5. Action (A): Section 5 included a detailed discussion of the
action options available to a contention manager when in-
voked under various conflict scenarios. These have a critical
influence on progress and fairness properties. A contention
manager that always only stalls is prone to deadlock while
one that always aborts the enemy is prone to livelock. A good
option probably lies somewhere in between. We show in our
results that aside from progress guarantees, waiting a bit be-
fore making any decision is important to overall throughput.
Options: abort enemy, abort self, stall, increase/decrease pri-
ority etc.

Since in this paper we are focused on the influence of software
policy decisions we have adopted the simpler de-centralized man-
ager implementation. We investigate all three types of conflict de-
tection, Eager, Lazy and Mixed. We study the interaction of conflict
detection with various election strategies, with varying progress
guarantees (e.g., Timestamp vs. Transaction progress). With all
these managers the contention manager can exercise the full range
of actions.

6. RESULTS
There are many different heuristics that can be employed for

conflict detection and contention management. To better under-
stand the usefulness of each heuristic, we integrate them in a step-
by-step fashion to the, targeting specific objectives. First, in Sec-
tion 6.1 we find that livelock is a problem mainly in Eager sys-
tems and corroborate earlier findings [19] that randomized-backoff

is an effective solution. We further note that the timing of back-
off (whether prior to access or after aborting) is important. Fol-
lowing this, in Section 6.2 we focus on the tradeoffs between the
various software arbitration heuristics (e.g., timestamp, transaction
size) that prioritize transactions and try to avoid starvation. We
analyze the influence of these policies on the varying concurrency
levels of Eager and Lazy. Finally, in Section 6.3, we describe the
Mixed conflict detection mode, and analyze its performance against
Eager and Lazy modes.

6.1 Randomized Backoff:
Can it avoid livelock ?

Randomized backoff is perhaps best known in the context of
the Ethernet access-control framework. In the context of transac-
tional memory, it is a technique used to either be used to (1) stall a
transaction restart to mitigate repeated conflicts with another or (2)
stall an access prior to actual conflict and thereafter elide it entirely.
There seems to be a general consensus that backoff is useful – most
STM contention managers use it [19] and most Eager HTMs fix it
as their default [15].

We study three contention managers, Reqwin,Reqlose, and
Comwin, with and without backoff. Reqwin and Reqlose are
access-time schemes compatible with Eager In Reqwin the at-
tacker always wins and aborts the enemy while in Reqlose the at-
tacker always loses, aborting itself. Comwin is the simple commit-
ter always-wins policy in Lazy. Reqwin and Reqlose when com-
bined with backoff (+B systems), wait a bit, retrying the access a
few times (until the average latency of a transaction) before falling
back to their default action. Reqwin and Reqlose strategy were first
studied by Scherer [19] in the context of STMs. Recently Bobba et
al. [2] studied similar schemes as part of a pathology exploration in
fixed-policy HTMs.

Implementation. There are significant challenges involved in
integrating even these simple managers within the existing frame-
work. Reqwin requires no modifications to the coherence proto-
col but is prone to livelock, while Reqlose requires the support
of coherence NACKs to inform the requestor to abort the access.
Comwin in previous Lazy systems [3, 8] has required the sup-
port of a global-arbiter. In FlexTM [23], it requires a software
commit-protocol to collect the ids of all the enemies from the con-
flict bitmaps and abort them.

Implementing backoff with HTMs is not straightforward; the
backoff needs to occur logically prior to the access to elide the con-
flict but it should occur only on conflicting accesses lest it waste
time unnecessarily. Hence, backoff occurs after the coherence re-
quests for an access have been sent out to find out if the access
does conflict. Therein lies the problem: coherence messages typ-
ically update metadata along the cache hierarchy to indicate ac-
cess; if backoff is invoked, the metadata needs to be cleaned up
since logically the access did not occur. This requires extra mes-
sages and states in the coherence protocol. Furthermore, stalling
perennially without aborting can lead to deadlock (e.g., transac-
tions waiting on each other). The coherence extensions needed
to conservatively check for deadlock (e.g., timestamps on coher-
ence messages [15]) introduce verification challenges. In FlexTM,
since transactions can use alerts [22] to abort remote transactions
explicitly, we use a software-based timestamp scheme similar to
the greedy manager [6]. Eliminating the need for backoff prior to
an access would arguably make the TM implementation simpler.

Performance Analysis. Figure 2 shows the performance plots.
The Y-axis plots normalized speedup compared to sequential exe-
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Figure 2: Stalling conflict management to improve performance. Y-axis: Normalized throughput. 1 thread throughput = 1. +B - with
randomized Backoff

cution. Each bar in the plot represents a specific contention man-
ager.

Result 1a: Backoff is an effective technique to elide conflicts
and randomization ensures progress in the face of conflicts. The
introduction of backoff in existing contention managers can signif-
icantly improve Eager’s performance. Lazy’s delayed commit in-
herently serves as backoff.

Implication: HTM systems that rely on coherence protocols for
conflict detection should include a mechanism to stall and retry a
memory request when a conflict is detected. STMs should persist
with the out-of-band techniques that permit stalling.

At anything over moderate levels of contention (benchmarks
other than Kmeans and Genome in Table 3) both Reqlose and
Reqwin perform poorly (see Figure 2). Reqlose’s immediate aborts
on conflicts does serve as backoff, but in these benchmarks it ends
up wasting more work. Bobba et al. [2] observed this same trend
for other SPLASH2 workloads. Introducing backoff helps thwart
these issues (see Figures 2 (a),(b),(f),(g))): waiting a bit prevents us
from making the wrong decision and also tries to ensure someone
makes progress. Bobba’s EL system [2] is similar to Reqwin. In

both of them the requester wins the conflict but they vary in their
utilization of backoff; Reqwin applies it to the requester logically
prior to access whereas the EL system applies backoff to the restart
of the enemy transaction after aborting it. This leads to different
levels of wasted work compared to the Reqlose system (compara-
ble to Bobba’s EE system); Bobba’s work report significant wasted
work and futile stalls in the EL compared to EE while here Reqwin

performs similarly to Reqlose.
Comwin performs well even without backoff. In benchmarks

with no concurrency (e.g., RandomGraph) Lazy ensures that the
transaction aborting enemies at commit-time usually finishes suc-
cessfully (i.e., some transaction makes progress). In other bench-
marks (e.g., Bayes and Vacation) it exploits concurrency (allows
readers and writers to execute concurrently and commit). Backoff
improves the chance of concurrent transactions committing. With
read-write conflicts it stalls the writer at the commit point and tries
to ensure the reader’s commit occurs earlier, eliding the conflict
entirely (see Figure 1(b)). There is noticeable performance im-
provement in workloads with read-write sharing (e.g., Bayes and
Vacation).



We did observe that randomizing backoff at transaction start
time can help avoid convoying that arises in irregular workloads
such as STMBench7. There are many short-running concurrent
writer transactions that desire to update the same location and when
one of them commits the rest abort, restart and the phenomenon re-
peats. This is akin to the “Restart Convoy” observed by Bobba et al
[2] in their microbenchmarks.

6.2 Interplay between Conflict
Detection and Management

In this section, we build a set of contention managers and study
their interaction with conflict detection. All managers in this sec-
tion include backoff to eliminate performance variations due to live-
locking. Note that this does not help a specific transaction make
progress (i.e., starvation-freedom); arbitration heuristics can help
(refer to Section 5.2). They deal with fairness issues by increas-
ing the priority of the starving transaction over others; letting them
win and progress on conflicts. Orthogonally, conflict detection has
a first-order effect on uncovering parallelism and overlapping ex-
ecution from various transactions. For example compared to Ea-
ger, Lazy provides benefit of allowing conflicting concurrent read-
ers and writers to overlap and commit (if the reader commits first).
Here, we investigate three heuristics: transaction age, read-set size,
and number of aborts; under both both Eager and Lazy conflict de-
tection. The plots also include Reqlose+B and Comwin+B as a
baseline.

• Age: The Age manager helps with scenarios where a trans-
action is repeatedly aborted. It also helps with increasing the
likelihood of it committing if it aborts someone. Every trans-
action obtains a logical timestamp by incrementing a shared
counter at the start. If the enemy is older the attacker waits
hoping to avoid the conflict, after a fixed backoff period, it
aborts. If the enemy is younger its aborted immediately. The
timestamp value is retained on aborts and no two transactions
have the same age which guarantees that at least one transac-
tion in the system makes progress.

• Size: The Size manager tries to ensure that (1) a trans-
action that is making progress and is closer to commit-
ting doesn’t abort (2) read sharing is prioritized to improves
overall throughput. This heuristic approximates transaction
progress by the number of read accesses made by the trans-
action. It uses this count to arbitrate between conflicting
transactions. This manager uses a performance counter to
estimate the number of reads.4 Finally, Size also considers
the work done before the transaction aborted. Hence, trans-
actions restart with the performance counter value retained
from previous aborts (similar to Karma [19].

• Aborts: The Abs manager tries to help with transactions that
are aborted repeatedly. Transactions accumulate the number
of times a transaction has been aborted. On a conflict the
manager uses this count to make a decision. Unlike Size it
does not need a performance counter since abort events are
infrequent and can be counted in software. Abs has weaker
progress guarantees compared to Age; two dueling transac-
tions can end up with the same abort counter and kill each
other. Similar to Age and Size it always waits a bit before
making the decision.

4When arbitrating, software would also need to read performance counters
of on remote processors to compare against. For this, we use a mechanism
similar to the SPARC %ASI registers.

Figure 3 shows the results of our evaluation of the above poli-
cies. ’-E’ refers to eager systems and ’-L’ refers to lazy systems. We
have removed Kmeans and Genome from the plots since they have
very low conflict levels all policies demonstrate good scalability.

Result 2a: Conflict detection policy choice seems to be more im-
portant than contention management. Lazy’s ability to allow con-
current readers and writers finds more parallelism compared to any
Eager system and this helps with overall system throughput.

Result 2b: Starvation and livelock can be practically avoided
with software-based priority mechanisms (like Age). They should
be selectively applied to minimize their negative impact on con-
currency. With Lazy there is typically at least one transaction at
commit-point, which manages to finish successfully, ensuring prac-
tical livelock-freedom.

Overall, Lazy exploits reader-writer sharing and allows concur-
rent transactions to commit while Eager systems are inherently
pessimistic, which limits their ability to find parallelism. Also a
Lazy transaction aborts its enemies only when it reaches its com-
mit phase, at which point it has better likelihood of finishing. This
helps with overall useful work in the system. Note that multi-
programmed workloads could change the tradeoffs [22]. Currently,
on an abort, the transaction keeps retrying until it succeeds; if the
resources were to be yielded to other independent computation, Ea-
ger could be a better choice. Power and energy constraints could
also constrain Lazy’s speculation limits, which would affect the
concurrency that can be exploited for performance.

As shown in Figure 3, a specific contention manager may help
some workloads (by helping prevent starvation) while they hurt the
performance in others (serializing unnecessarily).

We have observed that Size performs reasonably well across
all the benchmarks. It seems to have similar effect on Eager and
Lazy alike. Size maximizes concurrency and tries to help readers
commit early thereby eliding the conflict entirely without abort-
ing the writer (e.g., vacation); orthogonally, Size also helps with
writer progress since typically writers that are making progress
have higher read counts and win their conflicts. Note that the num-
ber of reads is also a good indication of the number of writes since
most applications read locations before they write them.

Age helps transactions avoid starvation in workloads that have
high contention (LFUCache and RandomGraph). Age’s timestamps
ensure that a transaction gets the highest priority in a finite time and
ultimately makes progress. On other benchmarks, Age hurts perfor-
mance when interacting with Eager. This is due to the following
dual pathologies (1) In Eager mode, Age can lead to readers con-
voying and starving behind a older long running writer; with Lazy
mode, since reads are optimistic, no such convoying results. (2)
Age can also result in wasteful waiting behind an older transaction
that gets aborted later on (akin to “FriendlyFire” [2]); With Lazy
usually, the transaction that reaches the commit point first is also
older and it makes progress. Bobba [2] explored hardware prefetch-
ing mechanisms to prioritize starving writers in a rigid-policy HTM
that prioritized enemy responders. We have shown that similar ef-
fects can be achieved with Age; we can also explore writer priority
in a more straightforward manner since the control of when and
which transaction aborts is in software.

As for the Abs manager, its performance falls between Size and
Age. This is expected, since it does not necessarily try to help with
concurrency and throughput like Size but does not hurt them with
serialization like Age.

The “Serialized commit” pathology observed by others [2] does
not arise with our optimized Lazy implementation, which allows
parallel arbitration and commits. We report a significant perfor-
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Figure 3: Contention manager heuristics with L-Lazy, E-Eager conflict detection. Y axis: Normalized throughout. 1 thread throughput = 1

mance boost compared to even contention management optimized
Eager systems. Although the contention manager can help elimi-
nate pathologies, it does not affect the concurrency exploited. In
general, Lazy exploits more concurrency (reader-writer overlap),
avoids conflicts, and ensures better progress (some transaction is
at the commit stage) than Eager. Combining Lazy with selective
invoking of the Age manager (to help starving transactions get pri-
ority) and backoff (for avoiding convoying) would lead to a opti-
mized system that can handle various workload characteristics.

Finally, note that for some workloads (e.g., STMBench7) nei-
ther conflict detection nor contention management tweaks seem to
have any noticeable impact. We analyze the reasons and propose
solutions in the next section.

6.3 Mixed Conflict Detection
As shown in Figure 3, none of the contention managers seem

to have any noticeable positive impact on STMBench7’s scalabil-
ity. Despite the high level of conflicts, both Eager and Lazy per-
form similarly. STMBench7 has an interesting mix of transactions:
unlike other workloads, it has a mix of transactions of varying
length. It has long running writer transactions interspersed with
short readers and writers. This presents an unhappy tradeoff be-
tween the desire to allow more concurrency and avoid high levels
of wasted work on abort. Eager cannot exploit the concurrency
since the presence of the long running writer blocks out other trans-
actions. With Lazy the abort of long writers by other potentially
short (or long) writers starves them and wastes useful work. We
evaluate a new conflict detection policy in HTM systems, Mixed,
which detects read-write and write-read conflicts lazily while de-
tecting write-write conflicts eagerly. 5 For Write-Write conflicts,
there is no valid execution in which two writers can concurrently
commit. Mixed uses eager resolution to abort one of the transac-
tions and thereby avoid wasted work, although it is possible to elect
the wrong transaction as the winner (one that will subsequently be
aborted). For Read-Write conflicts, if the reader’s commit occurs
before the writer’s then both transactions can concurrently commit.
5In FlexTM [23], this requires minor tweaks to the conflict detection mech-
anism. In Lazy mode, where the hardware would have just recorded the
conflict in the W-W list, it now causes a trigger to the contention manager.

Mixed postpones conflict detection and contention management to
commit time, trying to exploit any concurrency inherent in the ap-
plication.

Implementation Tradeoffs. It is generally claimed that Eager
is easier to implement than Lazy because of its more modest ver-
sioning requirements; we seek to show that the implementation of
Mixed is comparable to that of Eager. Eager conflict mode main-
tains the “Single Writer or Multiple Reader” invariant. At any given
instant, there is only one copy that is being actively accessed by
transactions: either the single writer isolates the speculative copy
or multiple readers look at the non-speculative original location.
There are only two copies that need to be maintained for any given
memory block. Similar to Eager, Mixed also needs to maintain
only two copies of the memory block;Mixed maintains the “Sin-
gle Writer and/or Multiple reader” invariant. At any given instant,
there is only one speculative copy accessed by the single writer
and/or a non-speculative version accessed by the concurrent read-
ers. This simplifies the implementation of versioning (i.e., lookup
and copyback). Conversely, Lazy is a “Multiple Writer and/or Mul-
tiple reader” scheme, which explodes the number of data versions
required, potentially requiring as many as the number of specula-
tive writer transactions (an unbounded number) plus the one non-
speculative version required by the readers. This proves to be a
significant implementation and virtualization challenge [23]. Tak-
ing implementation costs into consideration, Mixed offers a good
compromise between performance and complexity-effective imple-
mentation.

Figure 4 plots the performance of Mixed against Eager and
Lazy. To isolate and highlight the performance variations due to
conflict detection, we use the best contention manager we identi-
fied in Section 6.2. For the STAMP workload and STMBench7 we
use the Size contention manager while for LFUCache and Random-
Graph we use the Age contention manager.

Result 3: Mixed combines the best features of Eager and Lazy.
It can save wasted work on write-write conflicts and uncover par-
allelism prevalent with read-write sharing.

As the results (see Figure 4) demonstrate, Mixed is able to pro-
vide a significant boost to STMBench7 over both Eager and Lazy.
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Figure 4: Impact of conflict detection on performance. Y-axis- Normalized speedup at 16 threads, throughput normalized to sequential thread
runs. RDG: RandomGraph. For each of the workloads, we used the best performing contention manager from Section 6.2. For LFUCache
and RandomGraph we used the Age manager and for all other workloads we used the Size manager.

In STMBench7, which has a mix of long running writers conflicting
with short running writers, resolving write-write conflicts early re-
duces the work wasted when the long writer aborts. Similar to Lazy
it also exploit more reader-writer concurrency compared to Eager.

When there’s significant reader-writer overlap (Bayes, Delau-
nay, Intruder, and Vacation), its performance is comparable to the
Lazy system. On LFUCache, Mixed performs badly due to duel-
ing writer transactions. Trying to exploit reader-writer parallelism
does not help since all transactions seek to upgrade the read lo-
cation causing a write-write conflict; Furthermore, a writer could
abort another transaction only to find itself aborted later (cascaded
aborts). This leads to an overall fall in throughput. On Random-
Graph, Mixed’s ability to exploit read-write sharing helps it ex-
ploit more concurrency than Eager. Compared to Lazy, it saves
more wasted work than Lazy and therefore performs better. Simi-
lar to Eager, Mixed does livelock on RandomGraph for other con-
tention managers. Eager’s limitations (inability to exploit reader-
writer concurrency), resulting in the inability to exploit parallelism
in workloads with fine-grain sharing (e.g., STMBench7, Vacation,
Bayes), cannot be aided by the contention manager.

7. CONCLUSIONS
In this paper, we performed a comprehensive study of the in-

terplay between policies on “when to detect” (conflict detection)
and “how to manage” (conflict management) conflicts in hardware-
accelerated TM systems. Although the results were obtained on a
HTM framework, the conclusions and recommendations are appli-
cable to any type of TM: hardware, software, or hybrid.

Our first set of experiments corroborate recent studies that ran-
domized Backoff can effectively prevent livelock in Eager systems;
we further note that this has to be applied before conflict man-
agement. We then demonstrated that Lazy provides higher perfor-
mance than Eager by (1) exploiting possible concurrency between
conflicting readers and writers by allowing their overlapped exe-
cution, and (2) narrowing the conflict window so that transactions
don’t abort in vain (the transaction aborting its enemies at commit
point will usually finish successfully). Sophisticated software prior-
ity schemes seem to help Eager avoid pathologies (e.g., starvation
and fairness), but they do not exploit the concurrency between con-
flicting readers and writers (Eager’s inherent limitation). A simple
backoff contention manager seems to suffice for Lazy.

Finally, we evaluate a mixed conflict detection mode in the
context of HTMs. The mixed mode retains most of the concur-
rency benefits of lazy and outperforms it (by saving wasted work)
in workloads dominated by write-write conflicts. Its complexity-
effective versioning requirements make it more attractive for hard-
ware vendors.

8. REFERENCES
[1] L. Baugh, N. Neelakantan, and C. Zilles. Using Hardware Memory

Protection to Build a High-Performance, Strongly Atomic Hybrid
Transactional Memory. In Proc. of the 35th Intl. Symp. on Computer
Architecture, Beijing, China, June 2008.

[2] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift,
and D. A. Wood. Performance Pathologies in Hardware Transactional
Memory. In Proc. of the 34th Intl. Symp. on Computer Architecture,
pages 32-41, San Diego, CA, June 2007.

[3] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk Disambiguation
of Speculative Threads in Multiprocessors. In Proc. of the 33rd Intl.
Symp. on Computer Architecture, Boston, MA, June 2006.

[4] S. Dolev, D. Hendler, and A. Suissa. CAR-STM: Scheduling-Based
Collision Avoidance and Resolution for Software Transactional
Memory. In Proc. of the 27th ACM Symp. on Principles of
Distributed Computing, Toronto, Canada, Aug. 2008.

[5] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention
Management in SXM. In Proc. of the 19th Intl. Symp. on Distributed
Computing, Cracow, Poland, Sept. 2005.

[6] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of
Transactional Contention Managers. In Proc. of the 24th ACM Symp.
on Principles of Distributed Computing, Las Vegas, NV, Aug. 2005.
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