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ABSTRACT
We demonstrate how the scale axis transform can be used
to compute a parameterized family of shape skeletons. The
skeletons gradually represent only the most important fea-
tures of a shape, in a scale-adaptive manner. Here a shape O
is any bounded open subset of the plane R2. The scale axis
for scale value s is the medial axis of the multiplicatively
grown shape Os, where Os is the union of medial balls of O
with radii scaled by the factor s.
We present a simple algorithm to compute a parameterized
family of skeletons for shapes that are finite unions of balls
in the plane. The algorithm is based on the scale axis trans-
form. We compare the computed family of skeletons with
two medial axis filters, namely the λ-medial axis, and a fil-
ter based on an angle criterion.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geo-
metrical problems and computations; I.3.5 [Computational
Geometry and Object Modeling]: Curve, surface, solid,
and object representations

General Terms
Theory, Algorithms
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1. INTRODUCTION
One of the most popular shape skeletons is the medial axis.
Here a shape O is an open subset of the Euclidean space.
The medial axis transform MAT(O) is the set of all maximal,
empty, and open balls. A ball B(c, r) ⊆ O centered at c ∈ O
with radius r is called maximal, if it is not contained in
any other open ball contained in O. A ball in the medial
axis transform is called a medial ball, and the union of the
centers of all medial balls is called the medial axis of the
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shape O. Note that any medial ball touches the boundary
of O at least in two points.
Despite its simple and elegant definition, the medial axis is
plagued with two major problems:

(1) The medial axis can only be computed exactly for very
restricted classes of shapes, among them finite unions
of balls [3, 6].

(2) The medial axis is not stable under small perturba-
tions of a shape, i.e., perturbing a shape slightly (for
example in terms of Hausdorff distance) can result in
substantially different medial axes.

The first problem can be mitigated by the fact that any
shape can be approximated by a finite union of balls [2]—in
a sense by a discretization of the medial axis transform. The
second problem is more challenging and has been addressed
by several researchers in recent years. One paradigm that
emerged as the dominant strategy to compute a stable skele-
ton is to filter the medial axis, i.e., to assign a score to every
point of the medial axis and to retain only those medial axis
points that have score larger (or smaller, respectively) than
a prescribed threshold. Examples of the filtering paradigm
are the λ-medial axis [4] and angle based methods that con-
sider the angle formed by the medial axis and the points
on the boundary of the shape touched by the correspond-
ing medial axis ball [5, 1, 9]. For the λ-medial axis there
is even a proof of stability. Nevertheless, so far the filtering
approaches induce yet another problem, namely the medial
axis is not pruned in a feature adaptive way. That is, the
filtered medial axis though stable may no longer faithfully
represent the features of the shape. To address this problem
we introduced the scale axis transform [7] which provides a
parameterized family of skeletons (that are not necessarily
subsets of the medial axis). At the moment we are lacking a
proof of stability for the scale axes, but in experiments (some
of which we show in the video) it behaves stable while still
faithfully representing the features of the shape for a reason-
able interval of the scale parameter values. Like the medial
axis, the scale axes cannot be computed exactly for most
shapes, but fortunately it can be approximated for finite
unions of balls. In the following we give some more details
on the definition of the scale axis, its approximation for a
finite union of balls and compare it to the aforementioned
medial axis filters.



2. THE SCALE AXIS TRANSFORM
The definition of the scale axis transform [7] is based on the
multiplicative scaling operation that is designed to eliminate
“locally small” features. Using the medial axis transform, a
shape can always be considered as a union of balls, where
every ball contributes to the description of the shape. There-
fore, the task of finding locally small features can be posed as
the problem of finding locally small balls, i.e. balls that have
a significantly larger ball close to them. We detect such con-
figurations using the multiplicative scaling, operation that
grows the radius of every medial ball by a factor s > 1:

Definition 1 (Multiplicative scaling). For an open
set O and s > 0, the multiplicatively s-scaled shape is Os =⋃

B(c,r)∈MAT(O) B(c, sr).

Since growing is only used for detecting this contrast in ball
sizes, we compensate for the overall growth of the shape
and define the scale axis transform as the set of scaled-back
medial balls of the grown shape.

Definition 2 (Scale axis transform). For s ≥ 1,
the s-scale axis transform of an open set O ⊂ Rd is SATs(O)
= {B(c, r/s) | B(c, r) ∈ MAT(Os)}. We call the set of cen-
ters of the balls in SATs(O) the s-scale axis.

3. THE ALGORITHM
Computing the scale axis transform for general shapes is not
feasible since the construction relies on manipulations of an
infinite number of balls and the computation of medial axis
transform. Therefore, we designed a simple algorithm that
uses the concept the scale axis transform to compute a family
of scale-aware skeletons.
The input to our algorithm is a union of a finite number of
balls in the plane. This class of shapes has a particularly sim-
ple medial axis structure composed of segments and points.
We can compute the exact medial axis of such a shape with
the algorithm of Amenta and Kolluri [3] or special unions
by using the slightly more efficient algorithm [6].
Our algorithm to compute skeletal structures follows the
construction of the scale axis transform. Instead of scaling
an infinite number of medial balls we work with a finite sam-
pling of the medial balls. The sampling of the medial axis is
done in a recursive manner. For every segment of the medial
axis we pick as samples the endpoints of the segment. If the
two corresponding medial balls are not intersecting in an
angle larger than a threshold (178◦ in our implementation),
then we choose the midpoint of the segment as a sample
and check the two new segments for intersection depth and
recurse if needed.
The steps to compute the s-skeleton are the following:

1. Compute the medial axis of the input U (union of
balls)

2. Sample the medial axis of U

3. Grow the medial balls corresponding to the samples
by multiplying their radii by s

4. Compute the medial axis of the grown shape, i.e., the
union of the grown balls

5. Regularize the medial axis (see details below)

6. Sample the medial axis of the grown shape

7. Shrink the medial balls corresponding to the new sam-
ples with factor s

The regularization step is needed in order to compensate for
discretization artifacts. Small hairs can appear in the medial
axis of the grown shape in case that the input medial balls
have contact arcs on the boundary of the shape — many me-
dial balls of the union of a finite set of balls have this prop-
erty. This regularization step simply repeats the above“grow
balls–medial axis computation–shrink balls” steps, this time
for the grown shape, with a tiny growth factor, i.e., 1.01 in
our implementation.

4. COMPARISON
As mentioned above, the most popular approach to com-
pute stable skeletal structures is to filter the medial axis.
To decide whether a medial axis point has to be pruned, the
following two measures are very often used: the radius of the
minimal enclosing ball of contact points — λ-medial axis [4],
and the angle formed by the contact points and the medial
axis point [5, 1, 9].
To implement medial axis filtrations based on the above
measures we start with a dense sampling of the boundary.
From the samples we can compute the medial axis of inner
Voronoi balls as a subset of the Voronoi diagram [6]. We fil-
ter this set of segments by computing either the radius of the
minimal enclosing ball of contact points or the angle formed
by the contact points with the midpoint of the segment.
All the algorithms were implemented in an extended version
of Mesecina [8], the software that has been used to generate
the images and animations presented in the video.
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