
Cut Locus and Topology from Surface Point Data

Tamal K. Dey∗ Kuiyu Li†

March 24, 2009

Abstract

A cut locus of a point p in a compact Riemannian manifold M is defined as the set of points where minimizing
geodesics issued from p stop being minimizing. It is known that a cut locus contains most of the topological infor-
mation of M . Our goal is to utilize this property of cut loci to decipher the topology of M from a point sample.
Recently it has been shown that Rips complexes can be built from a point sample P of M systematically to compute
the Betti numbers, the rank of the homology groups of M . Rips complexes can be computed easily and therefore are
favored over others such as restricted Delaunay, alpha, Čech, and witness complex. However, the sizes of the Rips
complexes tend to be large. Since the dimension of a cut locus is lower than that of the manifold M , a subsample of
P approximating the cut locus is usually much smaller in size and hence admits a relatively smaller Rips complex.

In this paper we explore the above approach for point data sampled from surfaces embedded in any high dimen-
sional Euclidean space. We present an algorithm that computes a subsample P ′ of a sample P of a 2-manifold where
P ′ approximates a cut locus. Empirical results show that the first Betti number of M can be computed from the Rips
complexes built on these subsamples. The sizes of these Rips complexes are much smaller than the one built on the
original sample of M .
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1 Introduction
A considerable amount of interest has been generated recently in applying geometric and topological techniques to
data analysis in high dimensional spaces [1, 7, 10, 11, 20, 24, 26, 27]. Assuming that the data is sampled from a low
dimensional manifold lying in a high dimensional space, the results in these works facilitate algorithms that ‘learn’
different properties of the manifold. We are specifically interested in extracting the topology (information about
homology) of the manifold from its point data.

Recently a few algorithms have been proposed for the problem which have theoretical guarantees [3, 5, 10,
24]. These algorithms are theoretically sound but are not practical. They dwell on data structures such as Delaunay
triangulations and alpha shapes that have impractically high computational cost in large dimensions. Alternative data
structures such as witness complex, Čech complex, and Rips complexes have been proposed [7, 25] to counter this
problem. Rips complexes can be computed more easily than the others and so become an attractive choice [8, 18] in
applications. Taking this view point, Chazal and Oudot [7] show how one can build a hierarchy of Rips complexes from
a point cloud data and then use topological persistence [15, 27] to compute the Betti numbers of the sampled manifold.
However, the size of a Rips complex is relatively large and that becomes a bottleneck for computing persistent Betti
numbers from them. It is this consideration which motivates our work.

We utilize a well known structure called cut locus in differential geometry to cut down the size of the Rips com-
plexes. Let p be any point in a m-dimensional smooth compact Riemannian manifoldM . The cut locus C(p) ⊂M is
the space of points where the minimizing geodesics issued from p stop being minimizing. It is known that M \ C(p)
is a ball and hence most of the topology of M is contained in C(p). Specifically, ranks of all homology groups (under
Z2 coefficient ring) of C(p) coincide with those of M except for the full dimensional one. The cut locus being one
dimensional lower object than M can be approximated by a subsample of size much smaller than a sample of M . As
a result the Rips complexes get much smaller which in turn facilitate computations of persistent homology groups, see
Table 1.

In this paper we explore the above approach for surfaces embedded in an arbitrary Euclidean space, that is, M
is a compact smooth 2-manifold sitting in R

k for some k > 2. We assume M to be connected and hence only its
one dimensional homology group is interesting. We present an algorithm that computes a subsample P ′ ⊂ P from
a sample P of M where P ′ approximates a cut locus C(p) when P is sufficiently dense. We distinguish our set up
from the framework where M is presented with some linear approximation. Cut loci in the presence of an explicit
representation of the surface have been used to compute various types of optimal cycles on the surface, see [12, 16].
One may argue that a linear approximation of the surface can be computed from its point sample first, and then known
methods for computing a cut locus can be used. Since we are considering M sitting in high dimensional embedding
space, this option is not very practical though theoretically possible. Also, our ulterior goal is to explore the cut locus
approach for general dimensional manifold. This paper is a step toward that goal.

2 Geodesics and cut locus
We briefly review some of the key concepts related to geodesics, see [14] for details. Let M ⊂ R

k be a compact,
connected, smooth manifold without boundary. Assume that the metric in M is induced by the scalar product< ·, · >
in R

k.

Geodesics. A curve γ: I ⊂ R → M is a geodesic if the acceleration representing the rate of change of the tangent
γ̇(t) has no component along M for all t ∈ I . More formally, the covariant derivative D

dt
(γ̇(t)) is 0 for all t ∈ I .

Given a vector u in the tangent space TMp at a point p ∈ M , there is a geodesic γ(t) parameterized by arc lengths
where γ(0) = p and γ̇(0) = u/||u||. The geodesic γ is said to be issued from p. Notice that two points p and q in M
may have multiple geodesics between them. Among them, the ones minimizing the length (if they exist) are called the
minimizing geodesics between p and q. Since M is compact, it is geodesically complete, implying that any two points
admit a minimizing geodesic. If the minimizing geodesic between p, q ∈ M is unique, we denote it as γpq with the
understanding that γpq(0) = p.

Distances. One can define the distance of a point p to a set X ⊆ M as dM (p,X) = infx∈X `px where `px is the
length of a minimizing geodesic between p and x in M . We use similar notation dE(p,X) to denote the Euclidean
distance between a point p and a subset X of R

k. Abusing the notation we write dM (p, q) = dM (p, {q}) and
dE(p, q) = dE(p, {q}) for any two points p and q. It is known that dE(p, q) 6 dM (p, q) where p, q ∈ M ⊂ R

k. We
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also have Hausdorff distances dE
H and dM

H between two sets X and Y defined as

dE
H (X,Y ) = max{sup

y∈Y

dE(y,X), sup
x∈X

dE(x, Y )}

dM
H (X,Y ) = max{sup

y∈Y

dM (y,X), sup
x∈X

dM (x, Y )}.

Exponential map. Let p ∈ M be an arbitrary point. We are interested in the geodesics issued from p. There
is a natural map called the exponential map which takes a vector in the tangent space TMp at p and maps it to a
point on the geodesic issued from p by going over a distance of the length ||u||. Formally, expp:TMp → M where
expp(u) = γ(||u||) so that γ(0) = p and γ̇(0) = u

||u|| . Since M is compact, the map expp is defined for entire TMp

meaning that each geodesic issued from p continues to be geodesic for the infinite interval [0,∞]. However, such a
geodesic may cease to be minimizing at some point.

Cut point and locus. A cut point of a geodesic γ issued from p is the point where γ ceases to be minimizing. The locus
C(p) of all cut points on geodesics issued from p is called the cut locus of p, see Figure 1. There is a related concept
called conjugate locus. This is the locus of all conjugate points where the exponential map is critical. Formally, a
point q = γ(t) is a conjugate point of p = γ(0) if and only if tγ̇(0) is a critical point of expp.

At a cut point q ∈ C(p) of a geodesic γ, only two things may happen:

(a) Either there is another minimizing geodesic σ starting from p so that σ(t) = γ(t) = q for some t ∈ (0,∞], or

(b) q is the first conjugate point of p along γ.

In Figure 1, point q satisfies (a) and point s0 satisfies (b). It is obvious that, for any point q ∈ M \ C(p), the geodesic
between p and q which has not crossed C(p) is minimizing.

Injectivity radius and reach. For an m-dimensional manifold M , the exponential map allows us to map rays from
the tangent space TMp ≈ R

m to the geodesics in M . Denote an open Euclidean ball with center at 0 = exp−1
p (p)

and radius r as B(0, r). The map expp is injective on B(0, r) if and only if r is smaller than or equal to the geodesic
distance of p to C(p). This motivates the definition of injectivity radius of M given by

i(M) = inf
p∈M

dM (p, C(p)).

Injectivity radius can be seen as the intrinsic counterpart of a well known extrinsic measure called the reach,

ρ(M) = inf
p∈M

dE(p, Y )

where Y is the medial axis of M [17]. Because of the property (b) of the cut points, expp on B(0, r) is not only
injective but also a diffeomorphism if r < i(M). The image expp(B(0, r)) is a geodesic ball of radius r in M
centered around p.

Cut locus topology. One may observe that the injectivity of expp can be extended to the entire open set M \ C(p).
It follows that M \ C(p) is homeomorphic to an open m-ball if M is a m-manifold. This indicates that the topology
of M is contained mostly in C(p). We make this statement more precise using homology groups. For a topological
space X, let Hj(X) denote the j-dimensional homology group defined over the field Z2. The rank of Hj(X) is called
the jth Betti number of X and denoted βj(X). In what follows we write X1 ≈ X2 for two groups X1 and X2 if they are
isomorphic. The following results relate topology of M to its cut locus [9, 21].

Proposition 2.1 Let M be a compact Riemannianm-manifold without boundary and p ∈ M be any point.

1. M \ {p} deformation retracts to C(p) and M \C(p) deformation retracts to p;

2. for 0 6 j 6 m− 1, Hj(M) ≈ Hj(C(p)).

If the coefficient ring in the homology group is a field which is not necessarily Z2, the second assertion remains true
if M is orientable and is true only for 0 6 j 6 m− 2 if M is non-orientable.
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3 Surface cut locus
We consider the case when M ⊂ R

k is a surface (2-manifold). The cut locus of an arbitrary smooth surface M could
be structurally intractable in the sense that it may not even be triangulable. Fortunately, there is a large class called
real-analytic surfaces that do not exhibit this pathological behavior. These surfaces can be described locally by a real
analytic function (locally agrees with Taylor series expansion). It is known that the cut locus of any real-analytic,
compact k-manifold is triangulable [4]. Henceforth, we assume that M is real-analytic.

3.1 Structural properties
A cut locus of a real-analytic surface is a graph, namely it consists of curve segments which are joined at vertices.
Myers [22, 23] showed some more structural properties of cut loci. Let q be any point on a cut locus C(p). In general,
there could be one or more minimizing geodesics joining p and q. These geodesics may be separated or clumped
together. To be precise consider a parameterization θ 7→ γθ where γθ is the geodesic γ with γ̇(0) making an angle θ
with a fixed reference vector v ∈ TMp. If q is a conjugate point to p, it is conceivable that there is an interval [θ1, θ2]
so that all geodesics γθ with θ ∈ [θ1, θ2] connect p and q. A remarkable result of Myers is that, this is not possible ifM
is a real-analytic surface unless the cut locus degenerates to a single point. We use this important structural property
in our proofs. Actually, Myers [22, 23] proved more. Let the number of minimizing geodesics connecting p to a point
q ∈ C(p) be the order of q.

Proposition 3.1 If C(p) is not a single point, the order of a point q ∈ C(p) is equal to the number of edges in C(p)
incident to q.

Henceforth we assume thatC(p) is not a single point which happens only for geometric spheres and can be handled
easily. One implication of Proposition 3.1 is that only finitely many minimizing geodesics connect a point to any point
in its cut locus. Also, the degree of a vertex in the cut locus C(p) is exactly equal to its order. In particular, leaves–the
degree 1 vertices have exactly one geodesic coming into it. Generally, the cut locus C(p), being a graph, contains
cycles with tree structures attached to them. We call q ∈ C(p) a tree point if either q is a leaf in C(p) or C(p) \ {q}
contains a component whose relative closure in C(p) is a tree. Otherwise, q is called a cycle point.

Figure 1: Cut locus on Kitten: cut locus drawn on a plane with tree points shaded lighter(left), cut locus embedded on
the surface (right).

Notice that, for a tree point q which is not a leaf, C(p) \ {q} contains a component contractible to q in M . In
Figure 1, C(p) has two cycles since the surface has genus 1. The points q, r, s0, s1, s2 are tree points. Observe that
even though q belongs to a cycle, it separates a tree and hence is a tree point by our definition. The order of q and r
is three. The point s0 is a conjugate point and its order is one. The two minimizing geodesics to s2 are homotopic to
each other. They separate a disk from the surface which contains all minimizing geodesics to the segment from s0 to
s2. However, for a cycle point this is not true. We show that two minimizing geodesics coming into a cycle point from
p cannot be homotopic in M .

Proposition 3.2 Suppose q ∈ C(p) is a cycle point. A minimizing geodesic γ connecting p and q cannot be homotopic
to any other minimizing geodesic σ 6= γ connecting p and q.
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Proof. The two minimizing geodesics γ and σ meet only at p and q since two minimizing geodesics issued from
p cannot meet in M \ C(p). Therefore, γ and σ form a simple cycle in M . If γ and σ were homotopic, this cycle
would bound an open disk, say D in M . If D does not intersect C(p), we have an interval [θ1, θ2] where γ = γθ1

and
σ = γθ2

such that all minimizing geodesics {γθ}, θ ∈ [θ1, θ2] connect p and q. This would violate proposition 3.1.
So, assume that D ∩C(p) is non-empty. We claim that D ∩C(p) cannot contain a cycle. For if there were a cycle

inC(p) embedded in a disk, it would contradict the fact thatM \C(p) deformation retracts to p and hence is connected
(Proposition 2.1). We are left with the only option of D∩C(p) being a non-empty tree. Therefore, q is a tree point by
definition. But, this violates the assumption that q is a cycle point. It follows that γ and σ are not homotopic.

3.2 Geodesic spread

p

C(p)

σγ τ

Recall that our goal is to compute the topology of M from a cut locus C(p). Unfor-
tunately, we cannot compute an approximation of the entire cut locus C(p). Instead, we
approximate a subset of it which still retains the topological information of C(p). This sub-
set can be defined in terms of a notion of geodesic spread, which we now develop. A subset
of C(p) retains the essential topology of C(p) if it consists of points where two minimizing
geodesics meet after spreading apart by an amount of at least i(M), the injectivity radius of
M . We formalize and prove this fact and then design an algorithm to approximate such a
subset.

Spread spd. Let γ : [0, t0] → M and σ : [0, t1] → M be two minimizing geodesics parameterized by arc lengths
which connect p ∈ M to γ(t0) ∈ C(p) and σ(t1) ∈ C(p) respectively. Let t0 6 t1. The distance spd(γ, σ) is defined
as

spd(γ, σ) = max
t∈[0,t0]

{dM (γ(t), σ(t))}.

This distance measures how far apart two geodesics get when traveling from p to the cut locus. In the figure above
spd(γ, σ) = τ .

Consider a function ω:C(p) → R where ω(q) is the maximum of spd(γ, σ) over all pairs of minimizing geodesics
γ, σ connecting p and q. For any τ > 0, we also defineCτ (p) ⊆ C(p) as the set of points {q ∈ C(p)} where ω(q) > τ .
We aim to approximate a superset of Cτ (p) for some τ 6 i(M). The reason is that such a subset of C(p) contains
all information about the one dimensional homology group of M . To prove this fact, we establish first the following
result.

Proposition 3.3 Let γ1, γ2 be two minimizing geodesics connecting p and q ∈ C(p). If w(q) < i(M), γ1 and γ2 are
homotopic.

Proof. Consider the minimizing geodesic σt connecting γ1(t) and γ2(t), 0 6 t 6 tc where γ1(tc) = γ2(tc) = q, the
cut point along γ1 and γ2. We have σt(0) = γ1(t) and let σt(b) = γ2(t). Consider the map f : R× [0, tc] →M given
by f(s, t) = σt(s). We show that the restriction of this map for s ∈ [0, b] is smooth.

Let Sp(M) ⊂ Tp(M) × Tp(M) be the smooth 2-manifold defined by

Sp(M) = {(v1, v2)|‖v1‖ = ‖v2‖ = 1}.

Let φp : R × Sp(M) →M ×M be the smooth map defined by

(t, v1, v2) 7→ (expp(tv1), expp(tv2)).

For two points x, y ∈ M where dM (x, y) 6 i(M), let u(x, y) denote the unit tangent vector of the minimizing
geodesic between x and y at x. Now consider the map ψ : [0,∞] ×M ×M → M restricted to the open set of
{x, y} ⊆ M ×M where dM (x, y) < i(M) and ψ(s, x, y) = expx(su(x, y)). The map ψ is also smooth. Therefore,
the composition ψ ◦ (idR ×φp) is smooth (idR is the identity on R). Since f(s, t) = ψ((idR ×φp)(s, t, γ̇1(0), γ̇2(0)),
one concludes that f is smooth.

Consider the continuous function F : [0, 1] × R → M given by F (w, t) = f(wdM (γ1(t), γ2(t)), t). We have
F (0, t) = γ1(t) and F (1, t) = γ2(t). Thus, F is a homotopy between γ1 and γ2 proving the claim.

Combining Proposition 3.2 and Proposition 3.3 we conclude:
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Proposition 3.4 A point q ∈ C(p) is a tree point if ω(q) < i(M).

Next we show that any closed set containing cycle points captures the topology of C(p). The closure is needed to
take care of points such as q in Figure 1. Let ClY denote the relative closure of a set Y ⊆ C(p).

Proposition 3.5 Let X ⊆ C(p) be any closed set containing all cycle points of C(p). Then, H1(X) ≈ H1(C(p)).

Proof. Let Y ⊆ X be the set of all cycle points. Since X is closed, ClY ⊆ X . First we show that H1(ClY ) ≈
H1(C(p)). If ClY = Y , there is no tree point in the closure of cycle points. It meansC(p) = ClY since otherwise the
only possibility is thatC(p) is disconnected which contradicts the fact thatM is connected. So, assume that Y ⊂ ClY
and let y be any point in ClY \ Y . Since Y contains all cycle points, y is a tree point. The tree rooted at y trivially
contracts to y. Contracting all such trees for all points y ∈ ClY \ Y , we are left with a set, say Y ′ ⊇ ClY so that

H1(Y
′) ≈ H1(C(p))

since contracting trees to points does not alter homology. We claim that Y ′ = ClY . If not, consider the set Y ′′ =
Y ′ \ ClY . The set Y ′′ is not connected to ClY and hence C(p) is not connected, an impossibility. It follows that

H1(Y
′) ≈ H1(ClY ) ≈ H1(C(p)).

Observe that adding any subset of C(p) to ClY does not add any cycle. If it did, β1(C(p)) would be larger than
β1(ClY ). Therefore, for any X ⊇ ClY , β1(X) = β1(ClY ) which proves that β1(X) = β1(C(p)), or H1(X) is
isomorphic to H1(C(p)).

As a corollary of Proposition 2.1, Proposition 3.4, and Proposition 3.5 we obtain:

Theorem 3.1 For any closed set X where Cτ (p) ⊆ X ⊆ C(p), τ 6 i(M), we have H1(X) ≈ H1(C(p)) ≈ H1(M).

Proof. The complement ofX , C(p)\X , contains only tree points by Proposition 3.4. Therefore,X contains all cycle
points. Propositions 2.1 and 3.5 imply the conclusion immediately.

In our algorithm we approximate a superset of Cτ (p) for some τ 6 i(M) to honor Theorem 3.1. The algorithm
approximates geodesics by shortest paths in an appropriate graph G spanned by a given point set P ⊂M . For a point
q ∈ P and a graph G with vertices in P , let

γG

pq = shortest path between p and q in G and

dG(p, q) = Euclidean length of γG
pq .

When the fixed source p is understood for all geodesics and shortest paths, we write

γq = γpq and γG

q = γG

pq .

The algorithm approximates the distance spd(γq, γs) between the two geodesics emanating from p by computing a
distance similar to spd between the shortest paths γG

q and γG
s .

If this approximate distance is larger than a threshold τ , it selects end vertices q and s if they are close such as
the ones in Figure 2 (the two shortest paths are approximating the two geodesics shown with dotted curves). If τ
is relatively small compared to i(M), the algorithm at least approximates an appropriate subset X of C(p) which
satisfies Theorem 3.1. At the same time the algorithm should not compute points far away from C(p) even though it
captures all points of X . Observe that if spd(γq , γs) is not small, the two geodesics cannot come close unless they are
near p or near a cut point. We use this observation to restrict all output points near C(p). We need to define an open
set containing C(p) to make our statement precise. For η > 0, let

Wη(p) = {γ(t)|t > tc − η > 0 where γ(tc) ∈ C(p)}

which is a space that deformation retracts to C(p) along the minimizing geodesics originating from p.

Proposition 3.6 For any η > 0 and τ > 0 there exists a number ν = ν(η, τ) > 0 so that if x ∈ M \Wη(p), there is
a ν-neighborhood U of x where for any two points u, u′ ∈ U , spd(γu, γu′) < τ . Same statement also holds for the
distance dE

H (γu, γu′).
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Figure 2: Geodesics approximated by shortest paths.

Proof. LetC0(R,M) denote the space of all continuous functions from R toM . DefineG : M \Wη(p) → C0(R,M)
by taking G(x) = γx where γx(0) = p. Since x is not in C(p), γx is well defined. Let L be the length of γx. Define
an open set

Uτ = {α: R →M | dM (α(t), γx(t)) < τ for 0 6 t 6 L}.

Since G is continuous by the continuity of geodesic flows, the inverse image G−1(Uτ ) of the open set Uτ is open. It
follows that there is a ν-neighborhood of x contained in G−1(Uτ ) as claimed.

3.3 Geodesic and spread approximation
We approximate the minimizing geodesics by shortest paths from p in an appropriate graph built on the point data that
samples M . For this approximation to be good, we need that P sample M well.

Sampling condition. We say P ⊂ M is an ε-sample if each point x ∈ M has a point in P within geodesic distance
of ε, that is, dM (x, P ) 6 ε.

For a point set P ⊆ M , let Gδ(P ) denote the graph with vertices in P and edges that connect any two points
p, q ∈ P within Euclidean distance δ, that is, dE(p, q) 6 δ. Consider a sequence {Pn} of point sets converging to M ,
that is, the sequence {εn} approaches 0 where Pn is an εn-sample of M . For δn = Θ(

√
εn), define the sequence of

graphs {Gn = G
δn(Pn)}. For two points p, q ∈ Pn, let γ̃n = γGn

pq be the shortest path between them in Gn. Let W (p)
be an open set containing the cut locus C(p). We have the following claim.

Proposition 3.7 Let {Pn} be a sequence of εn-sample ofM converging to it. For δn = Θ(
√
εn), let {Gn = Gδn(Pn)}

be a sequence of graphs induced by {Pn}. For any open setW (p) containing the cut locusC(p), p ∈ Pn, the sequence
of paths {γ̃n} between p and a point q ∈ (M \W (p)) ∩ Pn converges uniformly to the unique minimizing geodesic γ
between p and q in M .

We prove the above proposition using a technique proposed by Hildebrandt, Polthier, and Wardetzky [19] to
prove a similar result for convergence of geodesics on polyhedral surfaces. First, we need results on approximating
geodesic distances. Actually, the proposition is proved by showing that the convergence in path lengths translates into
a convergence in actual paths. Recall that dG(p, q) denote the length of the shortest path between two vertices p and q
in a graph G.

Proposition 3.8 Let p and q be two points as defined in Proposition 3.7. There exist two reals λn and λn so that

(1 − λn)dM (p, q) 6 dGn
(p, q) 6 (1 + λn)dM (p, q)

where λn, λn → 0 as n→ ∞.
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Proof. Let p = v0, v1, ..., vk = q be the sequence of vertices on γ̃n. Assuming εn sufficiently small, we have
δn 6 πρ(M) where ρ(M) is the reach of M . Therefore,

dE(vi, vi+1) 6 δn 6 πρ(M).

Under this condition we can apply Corollary 4 of [2] to claim

dE(vi, vi+1) > (1 −O(δn))dM (vi, vi+1)

> (1 −O(
√
εn))dM (vi, vi+1)

which immediately gives

dGn
(p, q) > Σk−1

i=0 (1 −O(
√
εn))dM (vi, vi+1) (1)

> (1 −O(
√
εn))dM (p, q).

On the other hand, for εn 6 δn/4, Theorem 2 of [2] provides

dGn
(p, q) 6 (1 + 4εn/δn)dM (p, q). (2)

In our case, since δn = Θ(
√
εn), the condition of εn 6 δn/4 is satisfied for sufficiently small εn. We get

dGn
(p, q) 6 (1 +O(

√
εn))dM (p, q).

The proposition is established where both λn and λn are O(
√
εn) which goes to zero as εn goes to zero.

Proof. [Proposition 3.7] We will work on paths in M . To do so, we consider the path γn which consists of minimizing
geodesics between all pairs of consecutive vertices on γ̃n. Assuming that γn is arc length parameterized, we have

dM (γn(t), γn(t′)) 6 |t− t′| (3)

for any t, t′ in the domain of γn. We deduce from inequalities 1 and 2

|t− t′| 6 2dGn
(p, q) 6 4dM (p, q) 6 4diam(M). (4)

where diam(M) is the diameter of M .
Let k = 4diam(M) and C0([0, k],M) denote the space of all continuous functions c : [0, k] → M . Interpret any

path
c : [0, b] →M, b 6 k

as an element of C0([0, k],M) by considering c̃ : [0, k] →M where

c̃(t) =

{

c(t) for 0 6 t 6 b
c(b) for b 6 t 6 k.

Observe that the family {γn} belongs to C0([0, k],M) due to the inequality 4. It follows from inequality 3 that the
family {γn} is equicontinuous. Also, the inequality 4 implies that the sequence {γn} is uniformly bounded. Therefore,
Arzelá-Ascoli theorem from functional analysis applies to establish that the set of accumulation points of {γn} is not
empty in the compact-open topology on C0([0, k],M).

Let γ be an accumulation point of {γn}. For a path c : [0, b] → M , b 6 k, let `(c) denote its length which is the
supremum over all partitions of Z = {t0 = 0 6 t1 6 ... 6 tm = b}, that is, `(c) = supZ Σm

i=1dM (c(ti−1), c(ti)).
We have

dGn
(p, q) 6 `(γn) 6 (1 + O(

√
εn))dGn

(p, q)

for small εn (apply the bound in the inequality 1). Then, Proposition 3.8 implies that `(γn) → dM (p, q). The length
functional `:C0([0, k],M) → [0,∞] is lower semicontinuous. Therefore,

`(γ) 6 lim inf `(γn) = dM (p, q).

Hence γ is a minimizing geodesic connecting p and q. Since q lies outside an open neighborhood of the cut locus
of p, there is a unique such geodesic between p and q meaning that the sequence {γn} converges to the minimum
geodesic γ between p and q. Moreover, Arzelá-Ascoli theorem says that this convergence is uniform. One can deduce
from Proposition 3.8 that dGn

(p, q), the length of γ̃n approaches `(γn) as n → ∞. It follows that γ̃n converges to γ
uniformly as well.
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Corollary 3.1 For any µ > 0, η > 0, there exists ε = ε(µ, η) > 0 so that if P is an ε-sample and p and q are two
points in P with q 6∈ Wη(p), the shortest path γG

q between p and q in GΘ(
√

ε)(P ) satisfies dE
H(γG

q , γq) 6 µ where γq

is the minimizing geodesic connecting p and q in M .

The above corollary relates shortest paths between vertices to the minimizing geodesics between them. We can
state a similar fact for all minimizing geodesics issued from p.

Proposition 3.9 For any µ > 0, η > 0, there exists ε > 0 so that if P is an ε-sample, then for any minimizing geodesic
γq issued from p with q 6∈ Wη(p) there is a shortest path γG originating from p in GΘ(

√
ε)(P ) where dE

H(γq , γ
G) 6 µ.

Proof. Let q̄ ∈ (M \ Wη(p)) ∩ P be the closest point to q in terms of geodesic distance. For any µ and η, we
can choose ε to be small enough so that dE

H(γq , γq̄) < µ/2 by appealing to Proposition 3.6. The claim follows since
dE

H(γq̄ , γ
G
q̄ ) 6 µ/2 can be assumed for sufficiently small ε.

Now we show how we approximate the spread. Once we approximate the minimizing geodesics with the shortest
paths in G = Gδ(P ), δ = Θ(

√
ε), we can approximate the spread spd(γq , γs) between two minimizing geodesics

to q and s respectively. For this we consider the shortest paths γG
q and γG

s , and for each v ∈ γG
q we find the set of

vertices V ⊂ γG
s that have nearly equal distance from the root p as v. The shortest paths from v to all vertices of

γG
s in V approximate the distance dM (γq(t), γs(t)) where v = γq(t). We take the largest one among these paths to

approximate the length dM (γq(t), γs(t)). Let the length of this largest path be `(v). Define

spdG(γG

q , γ
G

s ) = max
v∈γG

q

{`(v)}

which is computed by APPROXSPD. See Figure 3 for an illustration of the computed spread values.

APPROXSPD(γG
q , γ

G
s )

1. Assume G = Gδ(P ) is available; `max := 0;

2. for each vertex v on γG
q do

(a) Determine the vertex set V = {w} so that
w ∈ γG

s and dG(p, v) − δ 6 dG(p, w) 6

dG(p, v) + δ;

(b) Compute the largest length ` of the shortest
paths from v to w ∈ V in Gδ(P );

(c) if (` > `max) `max := `;

3. Return `max.

Proposition 3.10 For any φ > 0 and η > 0 there is an ε > 0 so that if P is an ε-sample and δ = Θ(
√
ε) then for q, s ∈

M \W2η(p), APPROXSPD(γG
q , γ

G
s ) returns spdG(γG

q , γ
G
s ) where spd(γq , γs)−φ < spdG(γG

q , γ
G
s ) < spd(γq , γs)+φ.

Proof. Let v and v′ be the vertices on γG
q and γG

s respectively realizing spdG(γG
q , γ

G
s ), that is, dG(v, v′) = spdG(γG

q , γ
G
s ).

For convenience, we write a ∈ b ± c if b − c 6 a 6 b + c. Notice that a ∈ b ± c implies b ∈ a ± c. If ε is chosen
sufficiently small, all vertices on γG

q and γG
s can be assumed to be outside Wη(p) since q and s are outside W2η(p).

This means we can apply Corollary 3.1.
Let v̄ be the closest point on γq to v. We have seen dG(p, v) ∈ dM (p, v) ± O(

√
ε)dM (p, v). Since dE(v, v̄) 6 µ

(Corollary 3.1), we have

dG(p, v) ∈ dM (p, v̄) ±O(
√
εdM (p, v) + µ). (5)

We also have dM (p, v′) ∈ dG(p, v′) ± O(
√
ε)dG(p, v′). The algorithm ensures dG(p, v′) ∈ dG(p, v) ± δ from

which we get dM (p, v′) ∈ dG(p, v) ± O(
√
εdG(p, v′) + δ). Combining previous observations with the inequality 5,

we get

dM (p, v′) ∈ dM (p, v̄) ± O(
√
εdM (p, v)

+
√
εdG(p, v′) + µ+ δ) (6)
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Figure 3: Pairs of vertices connected in Gδ are shaded according to the spread value computed for the two shortest
paths joining the source to the vertices in the pairs; the darker the shades, the larger is the spread. Notice that pairs
near the cut locus have distinctly large spread values.

Let v̄′ denote the closest point on γs to v′ and let z = γs(t) if v̄ = γq(t). Using dE(v′, v̄′) 6 µ (Corollary 3.1) we
obtain from the inequality 6

dM (p, v̄′) ∈ dM (p, v̄) ±O(
√
εdM (p, v)

+
√
εdG(p, v′) + µ+ δ)

= dM (p, z)± O(
√
εdM (p, v)

+
√
εdG(p, v′) + µ+ δ). (7)

Since both v̄′ and z belong to γs, the inequality 7 provides

dM (z, v̄′) = O(
√
εdM (p, v) +

√
εdG(p, v′) + µ+ δ)

from which we obtain
dM (z, v′) = O(

√
εdM (p, v) +

√
εdG(p, v′) + µ+ δ).

It follows

dM (v̄, z) ∈ dM (v, v′) ± (dM (v′, z) + dM (v, v̄))

= dM (v, v′) ±O(
√
εdM (p, v)

+
√
εdG(p, v′) + µ+ δ)

= dG(v, v′) ±O(
√
εdG(v, v′) +

√
εdM (p, v)

+
√
εdG(p, v′) + µ+ δ).

It follows that there is a φ1 which goes to zero as ε does where dG(v, v′) 6 dM (v̄, z) + φ1 6 spd(γq , γs) + φ1.
A very similar proof can show that there are two vertices u ∈ γG

q , u
′ ∈ γG

s with dG(p, u) ∈ dG(p, u′) ± δ so that
spd(γq , γs) 6 dG(u, u′) + φ2. Since dG(u, u′) 6 dG(v, v′) by the definition of v and v′, we have spd(γq , γs) 6

dG(v, v′) +φ2 where φ2 → 0 as ε→ 0. For any given φ, one can satisfy φ > max{φ1, φ2} by choosing ε sufficiently
small. Then, we obtain the result as claimed.

4 Cut locus approximation
The algorithm CUTLOCUS below implements the following strategy. It selects all pair of points q, s ∈ P which are
close and admit shortest paths γG

q and γG
s respectively in G = G

δ(P ) where spdG(γG
q , γ

G
s ) is more than a threshold.

9



CUTLOCUS(p ∈ P, κ, ξ, δ)

1. Compute the graph G = G
δ(P ); C := ∅;

2. Compute shortest paths from a point p ∈ P to
all vertices in Gδ(P );

3. for each q ∈ P − {p} do
for each pair q, s ∈ P with dE(q, s) 6 ξ do

if APPROXSPD(γG
q , γ

G
s ) > κ

then C := C ∪ {q, s};

4. Return C.

4.1 Justification
Proposition 4.1 For a sufficiently small positive η and any positives µ and φ, there is an ε > 0 so that if P is ε-sample,
δ = Θ(

√
ε) and ξ > 2(µ+ δ + η), then the following is true: CUTLOCUS( p ∈ P, κ, ξ, δ ) computes a sample point

q ∈ P for each x ∈ Cτ (p) where dE(q, x) 6 µ+ η + δ and τ > κ+ φ+O(µ).

Proof. Let x ∈ Cτ (p) for some τ > 0. There are two geodesics γ1 and γ2 connecting p and x where spd(γ1, γ2) > τ .
Let x1 and x2 be two points in γ1 and γ2 respectively on the boundary ofWη(p). By Proposition 3.9, there is an ε > 0
so that there are two shortest paths γG

1 and γG
2 in the graph Gδ(P ) for δ = Θ(

√
ε) where dE

H(γG
i , γxi

) = O(µ) for any
η and µ.

Let v1 and v2 be the closest vertices to x1 and x2 respectively on the paths γG
1 and γG

2 . We get

dE(v1, x) 6 dE(v1, x1) + dE(x1, x) 6 µ+ δ + η.

It follows that dE(v1, v2) 6 2(µ+ δ+ η). Assuming ξ > 2(µ+ δ+ η), the shortest paths γG
v1

and γG
v2

are checked for
their distance by APPROXSPD.

We have spd(γv1
, γv2

) > spd(γx1
, γx2

) − O(µ) since both γvi
and γxi

makes O(µ) distance with γG
vi

. For a
sufficiently small η > 0, spd(γx1

, γx2
) = spd(γ1, γ2) > τ by definition of x being in Cτ (p). Thus, spd(γv1

, γv2
) >

τ − O(µ). APPROXSPD(γG
v1
, γG

v2
) returns a value more than τ −O(µ) − φ by Proposition 3.10. The vertices v1 and

v2 are output by CUTLOCUS if τ − O(µ) − φ > κ, or equivalently if τ > O(µ) + φ+ κ. Either of v1 and v2 can be
taken as q since both of them satisfy the stated properties of q in the lemma.

Proposition 4.2 For any η > 0, there exist ε > 0 and ξ > 0 so that the following holds. Let v be a vertex computed
by CUTLOCUS( p ∈ P , κ, ξ, δ ) where P is an ε-sample of M and δ = Θ(

√
ε). There is a point x ∈ C(p) so that

dE(x, v) 6 2η.

Proof. If dE(v, C(p)) 6 2η, we are done. So, assume otherwise, that is, v lies outside the 2η-neighborhood of C(p)
in R

k. Since v is computed by CUTLOCUS, there is another vertex v′ computed by CUTLOCUS so that dE(v, v′) 6 ξ
and the shortest paths γG

v and γG
v′ satisfy spdG(γG

v , γ
G
v′) > κ. By Proposition 3.10,

spd(γv, γv′) > spdG(γG

v , γ
G

v′) − φ

for any φ as long as ε is sufficiently small. Therefore, we have spd(γv, γv′) > κ− φ.
Observe that we can assume dE(v′, C(p)) > η since otherwise v′ satisfies the lemma. We want to apply Propo-

sition 3.6 to γv and γv′ with τ = κ− φ. For this τ , let ν = ν(τ, η) satisfy the proposition. If we choose ξ 6 ν, one
should have spd(γv, γv′) < τ reaching a contradiction.

Theorem 4.1 For any ε′ > 0, there is an ε > 0 and a ξ > 2ε′ so that if P is an ε-sample, δ = Θ(
√
ε), and 0 < κ <

i(M) − O(ε′), then P ′ ⊂ P returned by CUTLOCUS(p, κ, ξ, δ) has dE
H(P ′, X) = O(ε′) where Cτ ⊆ X ⊆ C(p) for

τ < i(M).
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Proof. Observe that for any ε′ > 0 we can satisfy ε′ > µ+ δ + η+ φ by assuming ε to be sufficiently small. Then, if
ξ is chosen where ξ > 2ε′, we have ξ > 2(µ+ δ + η). Therefore, we can apply Proposition 4.1 to claim that for each
point x ∈ Cτ (p), CUTLOCUS(p, κ, ξ, δ) outputs a point with distance dE(x, p) = O(ε′) where τ = κ + φ + O(µ).
When κ falls into the stated range, we have τ < i(M).

From Proposition 4.2 we get that if ξ is sufficiently small, all points computed by CUTLOCUS are within 2η =
O(ε′) distance of C(p). If ε is small enough, such a ξ can be chosen satisfying all constraints. Combining all, we get
that CUTLOCUS computes a set P ′ where dE

H(P ′, X) = O(ε′) and Cτ (p) ⊆ X ⊆ C(p) for τ < i(M).

5 Computing homology
Our algorithm for homology computation first estimates a sample density parameter with which we build a graph where
shortest paths are computed. Rips complexes are constructed with an input parameter on the point set approximating
a cut locus. Persistent Betti numbers are computed on these Rips complexes.

Estimating density. Observe that we need an estimate of ε to construct the graph Gδ(P ) since we set δ = Θ(
√
ε).

We estimate ε by using a procedure that was suggested in [3] to build a sequence of subsamples in the context of
computing witness complexes [25].

Let {p0} = L0 ⊂ L1 ⊂ ... ⊂ Lk = P whereLi+1 = Li∪{pi+1} with pi+1 being the furthest point in P \Li from
Li, that is, pi+1 = argmaxq∈P\Li

dE(q, Li). Define ε̃i = dE(pi+1, Li). We show that ε̃i approximates a sampling
density εi defined as follows. A sample Li ⊂M is a tight εi-sample if Li is an εi-sample ofM and there is an x ∈M
for which dM (x, Li) = εi.

To prove that ε̃i approximates εi we need Proposition 5.2 which in turn uses Lemma 3 of [2]. Let 1
r0

=
maxγ,t{‖γ̈(t)‖} where γ varies over all unit speed geodesics in M and t ∈ R.

Proposition 5.1 ([2]) For any two points p, q ∈ M , if dM (p, q) 6 πr0, then dE(p, q) > 2r0 sin(dM (p,q)
2r0

).

Recall that the reach ρ(M) is the smallest distance between M and its medial axis. The reach ρ(M) bounds r0
from below. See [13] for a proof of this fact.

Proposition 5.2 For any two points p, q ∈M , if dM (p, q) 6 ρ(M)/2, then dE(p, q) > 9
10dM (p, q).

Proof. First, observe that dM (p, q) 6
ρ(M)

2 6 πr0 which allows us to apply Proposition 5.1. Second, sin(t) > t−t3/6
for t > 0. Plugging this into the bound given by Proposition 5.1 and writing ` = dM (p, q), we get

dE(p, q) > (1 − `2

24r20
)` > (1 − `2

24ρ(M)2
)`.

Since ` 6 ρ(M)/2, we have

dE(p, q) > (1 − 1

96
)` >

9

10
dM (p, q).

Notice that the choice of the factor 9
10 is a little arbitrary. We could have taken the factor 95

96 which would tighten
other constants slightly.

Proposition 5.3 Let {Li} be the sequence of subsamples as described above. If Li ⊂ P is a tight εi-sample and P is
an ε-sample of M respectively, then for ε < εi 6 ρ(M)/2, one has 9

10 (εi − ε) 6 ε̃i 6 εi.

Proof. Consider a point x ∈ M so that dM (x, Li) = εi. Since Li is a tight εi-sample such a point exists. Let w be
the closest point to x in P \Li. We claim that w is also the closest point to x in P . If not, there is a point in Li which
is closest to x in P . Then, dM (x, Li) 6 ε contradicting that ε < εi.

We have dM (w, x) 6 ε since P is an ε-sample. Let p be the closest point to w in Li. Then,

dM (w, p) > dM (x, p) − ε > dM (x, Li) − ε = εi − ε.
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Since Li is an εi-sample, dM (w, p) 6 εi 6
ρ(M)

2 . We can apply Proposition 5.2 to claim dE(w, p) >
9
10dM (w, p).

Then, we have ε̃i > dE(w, p) >
9dM (w,p)

10 >
9
10 (εi − ε). This proves the lower bound on ε̃i.

To prove the upper bound, consider the pair (u, p), p ∈ Li, u ∈ P \ Li which realizes the distance ε̃i. Since Li is
an εi-sample and u ∈ M \ Li, ε̃i 6 dM (u, p) 6 εi.

Now we have all ingredients to compute β1(M) from a dense sample P of M . For any compact set X ⊆ R
k, let

X
α denote its α-offset in R

k, that is,

X
α = {x ∈ R

k | inf
y∈X

dE(x, y) 6 α}.

Let C denote the set of critical points of the distance function dE restricted to the domain of X. The distance

wfs(X) = inf
x∈X

inf
c∈C

dE(x, c)

is called the weak feature size of X [6].

Rips complexes. The α-Rips complex of a point set P ⊂ R
k is defined as a simplicial complex Rα(P ) where a

simplex σ with vertices in P is in Rα(P ) if and only if all edges of σ has length at most 2α. Chazal and Oudot [7]
show that the jth Betti number βj(X) = rankHj(X) can be computed from Rips complexes as follows.

Let P ⊆ X be a point sample of X with the Hausdorff distance dE
H(P,X) 6 ε. The natural inclusion Rα(P )

ι
↪→

R4α(P ) also induces a homomorphism ι∗ at the homology level

Hj(Rα(P ))
ι∗→ Hj(R4α(P )).

The integer
βα,4α

j (P ) = rank (image ι∗)

denotes the jth persistent Betti number given by the inclusion of Rα(P ) into R4α(P ). Persistent Betti numbers can
be computed by the persistence algorithm pioneered by Edelsbrunner, Zomorodian and Letscher [15] and extended
later by Zomorodian and Carlsson [27]. It is shown in [7] that for any offset X

λ, 0 < λ 6 wfs(X), one has βj(X
λ) =

βα,4α
j (P ) if 2ε 6 α 6 1

4 (wfs(X) − ε). After computing the complexes Rα(P ) and R4α(P ) one can compute the
persistent Betti numbers by following the persistence algorithm [15, 27] on a filtration that adds the simplices of
R4α(P ) \ Rα(P ) to Rα(P ).

Algorithm. We want to follow the same approach for the cut locus that we approximate by CUTLOCUS. Let X ⊆
C(p) be the closed set approximated by the point set L′

i ⊆ Li that CUTLOCUS computes. By Theorem 3.1 and
Theorem 4.1, H1(X) ≈ H1(M) if appropriate parameter values are passed to CUTLOCUS andLi is sufficiently dense.
Let

ρ1 = sup
α

(H1(X
α) ≈ H1(X)) .

Following [11], one may call ρ1 the first homological feature size of X . It turns out that wfs(X) is bounded above
by ρ1. The technique of [7] can be used to show that βα,4α

1 (L′
i) is equal to β1(X) if 4ε′i 6 α 6

1
4 (ρ1 − ε′i) where

dE
H(L′

i, X) 6 ε′i.
For a large range of i, Li remains a dense sample of M . Also, by Proposition 5.3 the estimated sampling density

ε̃i of Li follows closely its actual density εi for a large range of i as long as εi remains larger than ε. Therefore, to
estimate εi properly, we consider all Lis iteratively in the algorithm. Theorem 4.1 requires that dE

H(L′
i, X) is at most

ξ
2 . If ξ satisfies 3ξ 6 1

4 (ρ1 − ε′i), we have that 4ε′i 6 3ξ 6 1
4 (ρ1 − ε′i). The constraints on ξ can be satisfied if εi is

small enough. Then, taking α = 3ξ we can compute β3ξ,12ξ
1 (L′

i) which equals β1(X).
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TOPODATA(P, κ, ξ)

1. Initialize L = ∅;

2. while L 6= P do

(a) compute p := argmaxq∈P dE(q, L);
L := L ∪ {p}; P := P \ {p};

(b) compute ε̃ := dE(p, L);

(c) Compute L′ :=CUTLOCUS(p ∈
L, κ, ξ,

√
ε̃);

(d) Output β3ξ,12ξ
1 (L′) by considering the in-

clusion R3ξ(L′)
ι
↪→ R12ξ(L′);

The output of TOPODATA can be plotted against the filtration of the point sample and the most persistent Betti
numbers can be selected as outlined in [7]. Since ε̃i estimates εi for a large range of i, the persistent Betti numbers
computed in step 2(d) remain stable for a large interval assuming that the original sample is dense enough for L′

i to
remain dense for X for a large range of i. Notice that we do not have any relation established between ρ1, the first
homological feature size of X and the injectivity radius of M . It is conceivable that a point sample which is dense
for M may not provide dense enough sample for X . For this we assume that the original sample is so dense that L′

i

remains dense for X for a large range of i. In particular, we assume that ε is sufficiently small so that ξ can be chosen
sufficiently small satisfying 2ε′i < ξ 6

1
12 (ρ1 − ε′i) for Theorem 4.1 to hold and for computation of β1(X) to remain

correct.

Time complexity. Let P have n sample points. First, we determine the time complexity of the algorithm CUTLOCUS.
Computation of the graph Gδ cannot take more thanO(n2) time since it involves checking pairwise distances of points
in P . Computation of the shortest paths from a source in step 2 of CUTLOCUS takes O(n2) time. For step 3 we need
to determine shortest paths between different vertices in Gδ . We compute all pairs shortest paths in Gδ and keep the
pairwise distances in a matrix form. Once this is computed, step 3 of CUTLOCUS can be implemented in O(n3) time.
Therefore, CUTLOCUS runs in O(n3) time.

In TOPODATA steps 2(a-b) can be performed inO(n2) time with a straightforward pairwise distance computations.
Step 2(c) takes O(n3) time as we argued. Since persistence algorithm takes time cubic in its input size, step 2(d) takes
O(k3) time where k is the number of simplices in R12ξ(L′). Since C(p) is smooth everywhere except at its vertices,
the analysis of [7] can be carried out to claim that k = O(n). It implies that the step 2(d) takes O(n3) time.
Accounting for all iterations, we obtain that TOPODATA runs in O(n4) time.

In theory we do not gain any advantage by computing an approximation to the cut locus since in the worst case a
sample may have most points concentrated near a cut locus that is being approximated. However, this is too patholog-
ical to happen in practice. In fact, for a uniform distribution, a cut locus of length ` has roughly `

ε
points whereas the

surface with area A has roughly A
ε2 points implying a reduction by a factor of A

`ε
. Our experiments in 3D shows that

the number of points are drastically reduced by cut locus approximation, see Table 1.

6 Experiments and conclusions
We implemented the algorithms CUTLOCUS and TOPODATA and ran them on an Intel Xeon 2.66GHz, 4GB RAM
machine. We deviated from theory slightly in the implementation. If we let ξ = 2ε̃, it satisfies the required constraints
if ε is sufficiently small. Instead, in the implementation we take ξ = ε̃ to reduce the sizes of the Rips complexes. Also,
we take κ a multiple of ξ (see Table 1). Instead of computing β3ξ,12ξ(·) we compute βξ,2ξ(·) which gives correct result
in all cases that we tested.

Figure 4 shows some of the results. We also provide the time data for different steps of the algorithms in Table 1.
We observe that the point set output by CUTLOCUS is much smaller than the input point set. As a result the the sizes
of the Rips complexes become much smaller as the Table 1 shows. Consequently building the Rips complexes and
computing the persistent Betti numbers from them take less time. The gain in time outweighs the extra time required
to compute an approximation to the cut locus. In Table 1 we also show the times for the case when L = P .
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Model #v Locus κ L-Rip(#e,#f) L-Rip L-Perst G-Rip(#e,#f) G-Rip G-Perst
Torus 9.4k 1.08 8ξ 3.9k, 13.3k 0.01 0.04 219.6k, 1897.7k 9.63 44.85
Kitten 31.3k 12.05 6ξ 13.2k, 54.4k 0.07 0.18 940.5k, 10569.9k 81.11 507.15
2-Torus 39.7k 24.33 8ξ 14.1k, 47.7k 0.05 0.15 873.3k, 7063.5k 32.97 663.77
Genus3 63.9k 81.26 8ξ 19.2k, 74.3k 0.08 0.24 1709.7k, 17018.2k 112.05 1496.45
Botijo 68.4k 78.46 8ξ 32.5k, 138.2k 0.19 0.48 2016.9k, 22232.8k 173.80 1004.03
Mother 75.1k 119.61 8ξ 25.9k, 92.3k 0.11 0.31 1715.5k, 14437.1k 74.27 2712.46
Hip 104.2k 492.07 3ξ 103.4k, 439.4k 0.74 1.62 2202.7k, 17231.1k 203.88 4727.57
Pegasus 141.5k 519.84 4ξ 95.9k, 443.1k 0.73 1.41 2979.8k, 28279.1k 3900.71 7728.63

Table 1: #v column denotes the number of vertices for each point cloud. All times are in seconds. Locus column de-
notes the time for computing the cut locus with parameter passed to TOPODATA shown in κ column. The two numbers
in L-Rip(#e,#f) column are the number of edges and faces of the Rips complex of the subsample approximating the
cut locus. L-Rip and L-Perst column denote the time for computing this Rips complex and time for running persis-
tence on this Rips complex. G-Rip(#e,#f), G-Rip and G-Perst columns have the same meaning as the previous three
columns but correspond to the entire point cloud instead of the points approximating the cut locus.

A natural extension of our work would be to apply the approach to data sampled from high dimensional manifolds.
Our algorithm applies to these cases straightforwardly since it only involves computing distances on shortest path
graphs. However, we do not have a proof of correctness at the moment. We require a generalization of Theorem 3.1.
This needs a generalization of the definitions of tree and cycle points. Also, we would like to prove a stronger version
of Theorem 4.1 where the Hausdorff distance bound is in terms of ε instead of ε′. This would require strengthening of
Propositions 3.6 and 3.7 in terms of ε.

Notice that the persistence algorithm provides generators for homology classes in addition to their ranks. There-
fore, one may compute a set of cycles from the input point cloud data that represent a basis of the first homology group
of the sampled surface. However, these cycles are not guaranteed to be optimal or close to optimal in terms of lengths.
We plan to address this issue in future work.

Acknowledgments
We thank the anonymous referees and Frédéric Chazal whose comments helped greatly improve this paper. We also
thank Professor Dan Burghelea from the OSU Mathematics Department who explained some of the concepts from
differential geometry used in this paper. This work is supported by NSF funded research grant CCF-0830467.

References
[1] M. Belkin, P. Niyogi. Towards a Theoretical Foundation for Laplacian Based Manifold Methods. J. Comput.

System Sci., to appear.

[2] M. Bernstein, V. de Silva, J. Langford, and J. Tenenbaum. Graph approximations to geodesics on
embedded manifolds. Tech Report, Dept. Psychology, Stanford University, USA, 2000. Available at
http://isomap.stanford.edu/BdSLT.pdf

[3] J.-D. Boissonnat, L. J. Guibas, and S. Y. Oudot. Manifold reconstruction in arbitrary dimensions using witness
complexes. Proc. 23rd Ann. Sympos. Comput. Geom. (2007), 194–203.

[4] M. A. Buchner. Simplicial structure of the real analytic cut locus. Proc. American Math. Soc. 64 (1977), 118–121.

[5] F. Chazal and A. Lieutier. Topology guaranteeing manifold reconstruction using distance function to noisy data.
Proc. 22nd Ann. Sympos. Comput. Geom. (2006), 112–118.

[6] F. Chazal and A. Lieutier. The λ-medial axis. Graphical Models 67 (2006), 304–331.

[7] F. Chazal and S. Oudot. Towards persistence-based reconstruction in Euclidean spaces. Proc. 24th Ann. Sympos.
Comput. Geom. (2008), 232–241.

14



Figure 4: Top row: Cut locus approximation. Bottom row: Rips complexes of points approximating a cut locus in
Torus; 2 out of 8 unpaired edges (shown dark) computed by the persistence algorithm in the middle Rips complex
persist in the larger Rips complex on right since β1 = 2 here.

[8] E. W. Chambers, J. Erickson, and P. Worah. Testing contractibility in planar Rips complexes Proc. 24th Ann.
ACM Sympos. Comput. Geom. (2008), 251-259.

[9] I. Chavel. Riemannian Geometry: A Modern Introduction. Cambridge U. Press, New York, 1994.

[10] S.-W. Cheng, T. K. Dey, and E. A. Ramos. Manifold reconstruction from point samples. Proc. 16th Sympos.
Discrete Algorithms (2005), 1018–1027.

[11] D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Discrete Comput. Geom. 37
(2007), 103-120.
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