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Abstract

A rectangular layout is a partition of a rectangle into a érset of interior-disjoint rectangles. Rect-
angular layouts appear in various applications: as rectangartograms in cartography, as floorplans
in building architecture and VLSI design, and as graph dngai Often areas are associated with the
rectangles of a rectangular layout and it might hence beatdsiif one rectangular layout can represent
several area assignments. A layoudaisa-universalf any assignment of areas to rectangles can be re-
alized by a combinatorially equivalent rectangular laydie identify a simple necessary and sufficient
condition for a rectangular layout to be area-universaéaangular layout is area-universal if and only
if it is one-sided More generally, given any rectangular layoutand any assignment of areas to its
regions, we show that there can be at most one layout (up fedmtal and vertical scaling) which is
combinatorially equivalent t@ and achieves a given area assignment. We also investigatarsjues-
tions for perimeter assignments. The adjacency requirtsiienthe rectangles of a rectangular layout
can be specified in various ways, most commonly via the dugdlyof the layout. We show how to find
an area-universal layout for a given set of adjacency requénts whenever such a layout exists.

1 Introduction

Motivation. Raisz [15] introducedectangular cartogramsn 1934 as a way of visualizing spatial infor-
mation, such as population or economic strength, of a seegbns like countries or states. Rectangular
cartograms represent geographic regions by rectanglesasitioning and adjacencies of these rectangles
are chosen to suggest their geographic locations to thesvjevwhile their areas are chosen to represent the
numeric values being communicated by the cartogram. Thieatipn inherent in replacing the complicated
shapes of geographic regions by rectangles is a featurebfdagrams: as Raisz writes, “simple distortion
of the map would be misleading,” because it is important tplesisize that a cartogram is not a map.

Often more than one numeric quantity should be displayedcastagram for the same set of geographic
regions. The first three figures Raisz shows, for instanee,cartograms of land area, population, and
wealth within the United States. To make the visual comparisf multiple related cartograms easier, it is
desirable that the arrangement of rectangles be combialffcequivalent in each cartogram, although the
relative sizes of the rectangles will differ. This natuwyathises the question: when is this possible?

Mathematically, a rectangular cartogram iseatangular layout a partition of a rectangle into finitely
many interior-disjoint rectangles. We call a layoQtarea-universalif, no matter what areas we require
each of its regions to have, some combinatorially equitdout £’ has regions with the specified areas.
For instance, the four-region rectangular layout showowetlith three different area assignments is area-
universal: any four numbers can be used as the areas of taagkzs in a combinatorially equivalent layout.

Figure 1: Three area assignments for an area-universaltlayo
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2 1 Introduction

Area-universal rectangular layouts are useful not onlydigplaying multiple side-by-side cartograms
for different sets of data on the same regions, but also foanhycally morphing from one cartogram into
another. Additionally, rectangular layouts have otherliappons in which being able to choose a layout
first and then later assigning varying areas while keepiegcttimbinatorial type of the layout fixed may be
an advantage: in circuit layout applications of rectangldgiouts [20], each component of a circuit may
have differing implementations with differing tradeoffsttveen area, energy use, and speed; in building
design it is desirable to be able to determine the areas f&frelift rooms according to their functionl [6];
in treemap visualizations, alternative area-universgbliés may be of use in controlling rectangle aspect
ratios [4]; and in graph drawing applications [10] the arefaectangles may need to vary according to the
labels or other features to be placed in the drawing. Thispttinterest to identify the properties that make
a rectangular layout area-universal, and to find area-tsavéayouts when they exist.

Results. We identify a simple necessary and sufficient con-

dition for a rectangular layout to be area-universal: a-rect _|
angular layout is area-universal if and only if itase-sided I |
One-sided layouts are characterized via tmeaximal line
segments A line segment of a layout is formed by a se-
guence of consecutive inner edges/af A segment ofL
that is_ not contained in any _other_segment is maximal. In %igure 2: The left layout is one-sided, but
o_ne—S|ded layout every maximal line §egrr1_emhgst be the the right one is not: the maximal segment
S|c_zle of_at least one rectangke any ve_rtlces_lnterlo_r tc._‘s are i ot the side of any rectangle.

T-junctions that all have the same orientation, pointingyaw

from R (Figure[2). Given an area-universal layoutand an assignment of areas for its regions, we de-
scribe a numerical algorithm that finds a combinatoriallyiealent layoutZ’ whose regions have a close
approximation to the specified areas. These results carube fa Section 4.

More generally, given any rectangular layoutand any assignment of areas to its regions, we show in
Sectiori B that there can be at most one layout (up to horizantavertical scaling) which is combinatorially
equivalent taL and achieves the given area assignment. This result wagpsgvknown only for two spe-
cial classes of rectangular layouts, namsigeable layoutglayouts that can be obtained by recursively par-
titioning a rectangle by horizontal and vertical lines) dndhape destructable layouf$9] (layouts where
the rectangles can be iteratively removed such that theineamgarectangles form an L-shaped polygon).

In Sectior b we investigatperimeter cartogramsn which the perimeter of each rectangle is specified
rather than its area. Again, any rectangular layout can haweost one combinatorially equivalent layout
for a given perimeter assignment; it is possible in polyradrtime to find this equivalent layout, if it exists.

The rectangles of a rectangular cartogram should have the sa
adjacencies as the regions of the underlying map. Hencelpéile
graph of the cartogram should be the same as the dual graph of
the map. Here, thdual graphis the graph that has one node per
region and connects two regions if they are adjacent, whered-
gions are considered to be adjacent if they share a 1-diomasi
part of their boundaries. The dual of a rectangular cartogoa
layout must be a triangulated plane graph satisfying ceaddi-
tional conditions. We call such graplpsoper graphs(see Sec-
tion[2 for a detailed definition). Every proper graghhas at least
onerectangular dual a rectangular layout whose dual graph is
G. However, not every proper graph has an area-universangelar dual; Rinsma [16] described an outer-
planar proper graply and an assignment of weights to the verticeg;afuch that no rectangular dual gf
can have these weights as the areas of its regions (Fipufé 83, it is of interest to determine which proper
graphs have an area-universal rectangular dual. In SéGtiva describe algorithms that, given a proper
graphg, find an area-universal rectangular duabpff it exists. These algorithms are not fully polynomial,
but are fixed-parameter tractable for a parameter relatétetoumber of separating four-cyclesgn

I

Figure 3: A graph that is not the dual
of an area-universal layout: the rect-
angle dual to the bottom center vertex
may not be arbitrarily large [16].
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Motivated by architectural plans, where only a subset ofrtwen adjacencies might be specified, Ri-
nsma [17] considered a weaker version of the problem dextritbove: given a treg does there exist
a rectangular layouL such thatZ is a spanning tree of the dual graph 6 She showed that such a
layout always exists, but the layouts constructed by hewriitlgn are not necessarily area-universal. In
Sectior ¥ we modify her construction to yield area-univielasgouts, proving that for every tre& there is
an area-universal layout such thatT is a spanning tree of the dual graphsaf

2 Preliminaries

As stated above, a rectangular layout (or sometimes sitapiud is a partition of a rectangle into a finite
set of interior-disjoint rectangles. We assume that no fegions meet in a single point, as it is true (with
a notable exception in the American Southwest) for most ggage partitions of interest. We denote the
dual graph of a layout by G(£). A layout £ such thatG = G(L) is called arectangular dualof graphg.

G (L) is a plane triangulated graph and is unique for any layoutlot every plane triangulated graph has a
rectangular dual, and if it does, then the rectangular duabt necessarily unique.

Kozminski and Kinnen [11] proved that a plane triangulateap G has a rectangular dual if and only if
we can augmeng; with four external vertices in such a way that thdended graph &5) has the following
two properties:(i) every interior face is a triangle and the exterior face is adgangle;(ii) E(G) has no
separating triangles—separating triangldas a separating cycle (a simple cycle that has vertices Insttle
and outside) of length thréklf a plane triangulated grap§ allows such an augmentation, then we say that
G is aproper graph A rectangular dual of an extended graph of a proper g@aan be constructed in
linear time [10] and it immediately implies a rectangulaabior G (Figurel4).

4

Figure 4: A proper graplg;, an extended grapl(G), and a rectangular dual of E(G).

An extended grapE(G) determines uniquely which vertices of a proper grgpare associated with the
corner rectangles of every rectangular duajothat corresponds t&(G). For a given proper graph there
might be several possible extended graphs and hence spwassiblecorner assignmentsin many cases
we assume that a corner assignment, and hence an extengéditaa already been fixed, but if this is not
the case then it is possible to test all corner assignmesntheae can be only polynomially many of them.

A rectangular layoutZ naturally induces a labeling of its

extended dual grapB(G). If two rectangles of. share a ver- . ".‘.
tical segment, then we color the corresponding edd&(if) [ —-0—
blue (solid) and direct it from left to right. Corresponding >é{_’d‘\ \
if two rectangles ofL share a horizontal segment, then we < 4 —o"~ “. \(:)_Jl
color the corresponding edgeli{ G) red (dashed) and direct \—o—— :q—’ i
it from bottom to top (Figur€ls). v

This labeling has the following propertie§) around each ( e

inner vertex in clockwise order we have four contiguous sets

of incoming blue edges, outgoing red edges, outgoing bluEigure 5: A rectangular layout and the
edges, and incoming red edgd§) the left exterior vertex regular edge labeling of its extended dual.
has only blue outgoing edges, the top exterior vertex hasreal incoming edges, the right exterior vertex
has only blue incoming edges, and the bottom exterior vérésxonly red outgoing edges.

IMore generally, we call a separating cycle of lengeseparating k-cycle



4 3 There can be only one

Such a labeling is calledragular edge labelinglt was introduced by Kant and He [10] who showed that
every regular edge labeling of an extended grgpG) uniquely defines an equivalence class of rectangular
duals of a proper grapfy. Given any extended graf( G), a regular edge labeling f&(G) can be found
in linear time and the rectangular dual defined by it can a¢ésoedmstructed in linear time [10]. Regular edge
labelings have also been studied by Fusy [8, 9], who refettscim adransversal structures

Two layouts£ and £’ areequivalent denoted byL ~ £/, if they induce the same regular edge labeling
of the same dual graph. We say that a rectangular lagowith n rectanglesRy, ..., R, realizes a weight
functionw: Ry, ...,Ry — R,w(i) > 0 as arectangular cartogranif there exists a layout’ ~ £ such that for
any 1<i < nthe area of rectanglg equalsw(r;). Correspondingly, we say that a layoUtrealizesw as a
perimeter cartogranif there exists a layout’ ~ £ such that the perimeter of each rectanglecbfequals
the prescribed weight. A layout is area-universalf it realizes every possible weight function.

It will be convenient to define a weaker equivalence relation
on layouts than equivalence, which we aatier-equivalence I |
For a layoutZ, we define a partial order on the vertical max- | I
imal segments, in whick, < s, if there exists ax-monotone
curve that has its left endpoint B, its right e_ndpoint on Figure 6: Two inequivalent but order-
52,_and th_at does not cross_ any horizontal _maX|mal Segmeméquivalent rectangular layouts.

This partial order can equivalently be defined by a directed

acyclic multigraph that has a vertex per maximal segmentaaineldge from the segment on the left bound-
ary of each rectangle to the segment on the right boundaryeo$ame segment; this graph isstplanar
graph, a planar DAG in which the unique source and the unimiease both on the outer face. The dual
of this st-planar graph defines in a symmetric way a partial order omtlizontal maximal segments. We
say that£L and £’ are order-equivalent if their rectangles and maximal segsneorrespond one-for-one in
a way that preserves these partial orders.

Observation 1 A rectangular layout with rectangular regions has- 1 maximal segments.

3 There can be only one

We first show that for any combination of layout and weightdtion there can be at most one rectangu-
lar cartogram or perimeter cartogram. More generally, @ tyeometrically different but order-equivalent
layouts share the same bounding box, there is a rectangleerobthe layouts that is larger in both of
its dimensions than the corresponding rectangle in ther ddlyeut. The proof involves a graph-theoretic
argument in an auxiliary graph constructed from the two ldyo

Thus, let£ and £’ be two geometrically different order-equivalent layouighvthe same bounding box.
Thepush graph? of £ and £’ is a directed graph that has a vertex for each rectangieaind an edge from
vertexR; to vertexR; if the rectangles’ andR; are adjacent and the maximal segmentithat separates
R from R; is shifted inL’ towardsR; and away fronR; (Figure(T) .

o——.
{7 . )

~
e

Figure 7: A push graph. The layout is shown; the relative position of the maximal segments @ th
equivalent layout.’ is indicated by the arrows attached to the maximal segments.
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Figure 8: Cases for Lemnia 1.

Lemmal The push graph fof. andL’' contains a node with no incoming or no outgoing edges.

Proof. Assume for contradiction that the push graphhas no source or sink. TheHd must contain a
cycle. LetC be a simple cycle iH that encloses as few vertices as possible, and assume titissuof
generality thatC is oriented clockwise. By constructiof, cannot contain a rightward edge immediately
followed by a leftward edge or an upward edge immediatelpfodd by an downward edge. Hence it must
contain a rightward edgethat is followed by a downward edge. We distinguish threesa®pending on
the relative positions of the bottom sides of the two redesig andR that are connected kg/(Figure[8):

(a) If the bottom edge df lies below the bottom edge & then# must contain an edg® that connects
L to the rectangle beloWR. This edgeg’ shortcutsC, contradicting the minimality of.

(b) If the bottom edges df andR are aligned along a maximal segment, ttlémust contain an edge
that points downward frorh. By following a directed chain of edges starting wiftwe either reach a
repeated vertex within this chain of edges, or a vertex thkrgs taC. In either case we have found
a cycle that encloses fewer vertices ti@rcontradicting the minimality of.

(c) If the bottom edge df lies above the bottom edge Bf then# must contain an edg® that connects
the rectangle below to R. As in case (b) by following a chain of edges backwards siguftiom €
we can find a cycle that encloses fewer vertices thacontradicting the minimality of.

O

Theorem 1 For any layoutL and any weight functiow there is at most one layout (up to affine trans-
formations) that is order-equivalent ftoand that realizes as a rectangular cartogram.

Proof. Let £ and L’ be order-equivalent with the same area, but geometricifigrent; scaleL’ horizon-
tally and vertically so they have the same bounding box. Lefrmplies that one of the layouts contains
a rectangleR that is at least as large both horizontally and verticalhg atrictly larger in one of the two
dimensions, than the corresponding rectangle of the otliners,R cannot have the same area in both layouts
and only one of the layouts can realize d

For perimeter, such strong uniqueness does not hold: there a
equivalent layouts that are not affine transformations ohedher
in which the perimeters of corresponding rectangles arelequ
(Figure[9). However, if we fix the outer bounding box of the-lay
out, the same proof method works:

Figure 9: Two equivalent layouts in
which corresponding rectangles have
the same perimeter.

Theorem 2 For any layoutt. and any weight functiow there is
at most one layout’ that is order-equivalent to with the same
bounding box and that realizesas a perimeter cartogram.

More generally the same result holds for any type of cartograwhich rectangle sizes are measured by
any strictly monotonic function of the height and width oétlectangles.
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4 Area-universality and one-sidedness

As the next lemma states, all layouts are area-universahieek sense involving order-equivalence in place
of equivalence. The proof uses Theoffidm 1 to invert the map #ectors of positions of segments in a layout
to vectors of rectangle areas, along a line segment fromréd@e\eector ofL to the desired area vector.

Lemma 2 For any layout. and weight functionv, there exists a layout’ that has a square outer rectangle,
is order-equivalent td@., and realizesv as a rectangular cartogram.

Proof. The outer rectangle of’ is uniquely determined (up to congruence) by having a soslaape and
having an area equal to the sum of the weights. By scalingtatally and vertically, we may assume
without loss of generality that has the same outer square; $dbe the side length of this square, and
without loss of generality let it be placed in a Cartesiamplaith the coordinate§(x,y) | 0 < x,y < s}.

Coordinatize the space of layouts that are order-equivéen with the same bounding box by supplying
a Cartesian coordinatg for each maximal segment af; its x-coordinate for a vertical maximal segment, or
its y-coordinate for a horizontal maximal segment. These coatds satisfy the linear constraints.@; < s;
additionally, each rectangle having segmiemn its left side and segmein its right side (or segmenbn
its bottom side and segmepobn its top side) corresponds to a constrajnt ¢j. Conversely, any assignment
of coordinateg; satisfying these constraints determines a layout thatderegquivalent toC. This finite
set of linear inequalities is satisfied by the points in annopenvex polytopeP; by Observatiom |1P has
dimensionn— 1 wheren is the number of rectangles in the layout.

Consider the quadratic functidiY that maps a poinp in P to the weight function describing the areas
of the rectangles in the layout correspondingdtol he domain and range of this function are bth- 1)-
dimensional: there amerectangle areas to determine, but the total area is fixethesiotage otV lies in an
(n—1)-dimensional linear subspaceRf. By Theoreni 1L this functiolV is one-to-one irP. Because it is
just a quadratic functionlV can be extended to all ®"~* and in particular to the closure & the points
on the boundary dP are mapped bW to improper weight functions in which the weight of some agcfle
is zero. We need to show thatis in the image oP. We show more generally that the whole line segment
W(L)w is within the image oP. Letw be the farthest point fro/(£) on this line segment such that the
open line segmew (L)W is within the image oP. The inverse image of segmeM{ L)w forms a curve
within P that has as its endpoinis and some other layout* such thaW(L*) =w. L* must be interior
to P becausev is a linear interpolant ofV(L£) andw and therefore has all weights nonzero. Thwisself
is also within the image dP. If w=w we are done. Otherwise, in a neighborhoodvafW is a smooth
one-to-one function from and to én— 1)-dimensional space, and hence is invertible; we may uséoitas
inverse to extend the inverse image of segnvnt )w' pastw/, contradicting the assumption thatis the
farthest point fronW (L) to which the inverse image can be extended and completingrtu. O

One may findZ’ by hill-climbing to reduce the Euclidean distance betwdendurrent weight function
and the desired weight function. No layaatcan be locally but not globally optimal, because within any
neighborhood of the inverse image of the line segment connecting its weigbtor to the desired weight
vector contains layouts that are closemto Alternatively, one can find.’ by a numerical procedure that
follows this inverse image by inverting the Jacobean maifi¥ at each step. We do not know whether
it is always possible to find.’ exactly by an efficient combinatorial algorithm (as may kyase done for
the subclass of sliceable layouts), or whether the genelatien involves roots of high-degree polynomials
that can be found only numerically.

Theorem 3 The following three properties of a layottare equivalent:

1. L is area-universal.
2. Every layout that is order-equivalent £ois equivalent taC.
3. L is one-sided.
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Proof. We show that property 2 implies property 1, that the negatiogoroperty 3 implies the negation of
property 1, that property 3 implies property 2, and that tegation of property 3 implies the negation of
property 2.

2= 1: Let L be alayout satisfying the property that every layout thatder-equivalent ta& is equivalent
to £, and letw be an arbitrary weight function; we must show tiiatealizesw as a rectangular cartogram.
By Lemmd 2, there exists a layout that is order-equivalent ta and realizesv; by the assumptionf’ is
equivalent toL, as desired.

(=2) = (—1): Suppose there exists a layottthat is order-equivalent but inequivalent £o By scaling
horizontally and vertically, we may assume tiiaand £’ have the same bounding box. lvebe the weight
function given by the areas of the rectangleszin By Theoremi1l,£’ is the only layout that is order-
equivalent taL and realizesv as a rectangular cartogram; therefore, there can be notlthettus equivalent
to L and realizesv as a rectangular cartogram, showing thds not area-universal.

3= 2: Let L be a one-sided layout, and be order-equivalent ta. Then£’ must be one-sided, because
the property of each maximal segment being a side of a rdetégreserved under order-equivalence. For
every pair of adjacent rectangl& andR; in £ or in £’, R, andR; are adjacent with a given orientation
if and only if they are on opposite sides of a common maximgirsnt with the given orientation, and this
property of being on opposite sides of a common maximal sagmealso preserved by order-equivalence,
so order-equivalence preserves the adjacencies of réesang. and £'.

(=3) = (—2): If L is not one-sided, let be a maximal segment af that has more than one rectangle
on both sides o§; without loss of generality assume ttsis horizontal. We may form an order-equivalent
but inequivalent layout.’ by moving the vertical maximal segments that abut the top sfd rightwards
and the vertical maximal segments that abut the bottom didéeftwards until the order of their endpoints
changes, as in Figukeé 6. O

5 Finding perimeter cartograms

Although our proof of uniqueness for rectangular cartograjaneralizes to perimeter, our proof that any
layout and weight function have a realization as an ordeivatgnt cartogram does not generalize: there
exist one-sided layouts and weight functions that cannoeakzed as a perimeter cartogram (Fidure 10).

2
5

2

Figure 10: The outer rectangles each contribute at most pih@fuishared boundary to the perimeter of the
central rectangle, which is too large to be realized.

Nevertheless, one can test in polynomial time whether disalexists for any layout and weight function.
The technique involves describing the constraints on thigngéers of rectangles as linear equalities that
reduce the dimension of the space of layouts to at most twbfaming a low-dimensional linear program
from inequality constraints expressing the equivalence td the other layouts within this low-dimensional
space.

Theorem 4 For any layout.. and any weight functiomw we can find a layout’ that is equivalent ta&. and
that realizesv as a perimeter cartogram, if one exists.

Proof. As in the proof of Lemm&l2, we may specify a layout by supplyamg coordinate per maximal
segment; together with the length and height of the bountimgthis gives us a set af+ 1 real values
to be determined in a way consistent with the given weighttion and layout. Each value of the weight
function determines an equality constraint among thesahlas, stating that a certain linear combination
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of differences of segment positions equals the given péem&he constraints that the resulting layout be
equivalent toL may be translated into linear inequality constraints jregatat the segment on the left side
of each rectangle must have a smaller coordinate value treaeegment on the right, the segment on the
bottom side of each rectangle must have a smaller coordiadie than the segment on the top, and that the
three-way junctions appearing along any maximal segmethieofayout appear in the correct order.

The equality constraints determine a linear subsi@aieR"* which we may find by Gaussian elimina-
tion. If there exists a layout’ realizingw, then, by Theorem] % contains only a single point with the same
bounding box height and width as, and hence has dimension at most two; conversely, if thertiing of
this linear subspace is greater than two we may immediatédy from TheoremI2 that no solution exists.

If the dimension of the subspace is at most two, on the othmat,h@e may translate all the inequality con-
straints inR™? into linear inequality constraints in this two-dimensibeabspace, and solve the resulting
two-dimensional linear program in linear time using stadddgorithms (e.g. see [12]). O

The same algorithm can be used to find an order-equivalenttagther than an equivalent layout, by
restricting the inequality constraints to the subset tled¢ignine order-equivalence.

6 Finding one-sided layouts

Recall that every proper triangulated plane graph has argatar dual, but not necessarily a one-sided
rectangular dual. Since one-sided duals are area-uniyvérgaof interest to find a one-sided dual for a
proper graph if one exists. Our overall approach is, firspdudition the graph on its separating four-cycles;
second, to represent the family of all layouts for a propapgras a distributive lattice, following Fusy [8, 9];
third, to represent elements of the distributive latticgpaditions of a partial order according to Birkhoff’'s
theorem|[[2]; fourth, to characterize the ordered part#tithmat correspond to one-sided layouts; and fifth, to
search in the partial order for partitions of this type. Olgoathms are not fully polynomial, but they are
polynomial whenever the number of separating four-cyatethé given proper graph is bounded by a fixed
constant, or more generally when such a bound can be givemagely within each of the pieces found in
the partition we find in the first stage of our algorithms.

6.1 Eliminating nontrivial separating four-cycles

Recall that sseparating four-cyclén a plane graplg is a cycle of four vertices that has other vertices both
inside and outside it. We say that a separating four-cycleigrivial if the number of vertices inside it
is greater than one. Although a plane graph may have a qiadtahber of separating four-cycles (for
instance this is true for the complete bipartite gréh,_») it is possible to represent all separating four-
cycles in linear space by finding all maximal complete bipadubgraph&,; of G: a separating four-cycle

is exactly a four-cycle in one of these graphs that is not a &fa;. Such a representation may be found
in linear time [7]. In an extended grafh(G), we allow the external vertices to be included as part of its
separating four-cycles.

If G is a proper graph with a corner assignméti;), andC is a separating four-cycle iB(G) we
may form two minors ofG, the separation componentsf G with respect toC. The inner separation
componentGc is the subgraph induced by the vertices interior to the cyael its extended gragh(Ge)
is the subgraph induced by the vertices on or interior to ylde¢ interpreting the vertices f as a corner
assignment for its interior vertices. Theter separation component(g) \ Gc is formed by replacing the
interior of C by a single vertex. We definenainimal separation componeanf G to be a minor ofG formed
by repeatedly splitting larger graphs into separation aamepts until no nontrivial separating four-cycles
remain. A partition ofE(G) into minimal separation components may be found in lineaetby applying
the algorithm for finding all maximal complete bipartite gulphsK,; as described above, and then for
each such subgraph separating the exterior oKthesubgraph from each of the subgraphs within one of
the inner faces of thi&,; subgraph.
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Figure 11: An extended graph with a nontrivial separating-wycle (left), its outer separation component
(center), and its inner separation component (right).

Lemma3 An extended grapk(G) is dual to a one-sided layout if and only if both its inner andeo
separation components are dual to one-sided layouts.

Proof. In any layout dual tcE(G), the region enclosed by the four rectangles of the sepgragnleC
must be a four-sided polygon, that is, a rectangle. If we fycalione-sided layout oE(G) by replacing
the contents of this rectangle by a single rectangular arday removing the exterior of this rectangle, we
obtain one-sided layouts &(G) \ Gc andE(Gc) respectively.

Conversely, suppose we have one-sided layouts of Both) \ Gc andE(Gc). We may transform the
layout of the inner separation componé&itiGc) so that its bounding box matches the rectangle in the center
of C in the layout for the outer separation componEf&) \ Gc, and combine these two layouts to obtain
a layout ofE(G). The adjacencies between rectangles and maximal segnfehts @mbined layout are
unchanged except for the segments bounding the centrahgdet By the one-sidedness of the layout for the
outer separation component, each such segment forms afside of the rectangles dual to the vertices of
C (the inner rectangle on the other side of the segment has thideare subsets of the sides of the rectangles
dual toC), and this property remains true in the combined layoutctviis therefore one-sided. d

Corollary 1 Anextended grapB(G) is dual to a one-sided layout if and only if all of its minimeafsration
components are dual to one-sided layouts.

Thus, if we seek to determine whether an extended gExg}) is dual to a one-sided layout, we may
assume without loss of generality thaf{G) has no nontrivial separating four-cycles. The same idea of
cutting the input on separating four-cycles has been pusilyoapplied to the problem of finding sliceable
duals for a given proper graph [5./13].

6.2 The distributive lattice of regular edge labelings

Fusy [8/9] (see alst [18]) defines a family of moves by which megular edge labeling can be changed to
another. LeC be a four-cycle irE(G) in which the colors alternate between red and blue aroundyttie.
Then a move consists of reversing the colors of the edgesnithwhen such a move is made, there can
be only one way of setting the orientations of the recolomgks. In a graph with no nontrivial separating
four-cycles, each move changes the edge labeling eithesioigie edge (as shown in Figurel 12) or of all
four edges surrounding a degree-four vertex. At each ofwledr five vertices adjacent to the recolored
edges, one of the boundaries between incoming red edgesnimg blue edges, outgoing red edges, and
outgoing blue edges shifts by one position in the cyclic omdeof edges around the vertex. These shifts
are the same direction for each affected vertex, and carbalsuerpreted as twisting the boundary between
two rectangles in the dual layout by 90 degrees in the oppdsiction. Consider the graph with one vertex
per regular edge labeling &(G) and with an edge between every two labelings connected bypfahese
moves; direct each edge of this graph from the labeling irctvkine boundaries are more clockwise to the
labeling in which the boundaries are more counterclockwiBleen this graph of labelings is acyclic and
defines a partial ordering on the family of all regular eddeelengs ofE(G). Figure[18 shows an example,
in which the edges in the graph of labelings are directed fitmeriower labelings to the higher ones.
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Figure 12: A move formed by recoloring the interior of an aitgingly-colored four-cycle in a regular edge
labeling, and its effect on the dual rectangular layout. h@ tase shown, the cycle is not separating: it
contains a single edge df, but no vertices.

Moreover, as Fusy shows, the partial order defined in this iwaydistributive lattice A lattice is a
partially ordered set in which each pair of elemefdasb) has a unique smallest upper bound (such an
element is called thipin of aandb and is denotedV b) and a unique largest lower bound (such an element is
called themeetof aandb and is denoted A b). A distributive latticeis a lattice in which the join and the meet
operations are distributive over each othey: (bAc) = (aVvb) A (aVvc)andan (bve) = (aAb) Vv (arc).

An elementb of a lattice is said t@overan element if a < b andb are immediate neighbors in the lattice,
that is,a < b and there exists no elemensuch thata < ¢ < b. In the distributive lattice defined in this
way from the regular edge labelings®fG), the covering pairs are exactly the pairs of labelings cotate

by Fusy’s moves. The minimal element of the lattice may badoinom any lattice element by repeatedly
performing clockwise moves until no more such moves areiplessand the maximal element may similarly
be found by repeatedly performing counterclockwise moVés.say that a sequence of moves of the latter
type, in which each move is counterclockwisetrnienotone

Birkhoff’s representation theorem for distributive la#s [2] states that the elements of any finite distribu-
tive lattice may be represented by sets, in such a way thatith@and meet operations may be represented
by unions and intersections of sets. More preciselyPldte the partial order induced by the subset of
the lattice consisting of elements that have exactly ondgqumessor in the covering relation. Then we may
represent any lattice elemenby a partition of the partial order into two sets(x),U (x)) whereL(x) con-
sists of the memberg of P with y < x andU (x) consists of the remaining membersRf Clearly, L(X)
is downward-closed (if < zin P andz € L(x), theny € L(x)) and conversely (x) is upward-closed. If
x andy are two members of the distributive lattice, therC y if and only if L(x) C L(y) if and only if
U (x) D U(y), xAYis represented by the partitigh(x) NL(y),U (x) UU (y)), andx V' y is represented by the
partition (L(x) UL(y),U(x)NU(y)). The lattice itself can be reconstructed as the set of alitjpens of P
into downward- and upward-closed subsg@tdJ ): each such partition corresponds in this way to a lattice
elementx.

6.3 The partial order of flippable items

We have seen that the layouts of an extended gEgh) may be described as partitions of a partial order
P into a downward-closed and an upward-closed sultsitithe order induced from the distributive lattice
of layouts by the subset of layouts that have exactly one d@#ah neighbor. Our goal in this section is to
describe a partial order equivalentRoin a more concrete way, with elements that are not whole ksyou
themselves but rather that correspond to individual festof rectangular layouts and their dual graphs, in
a way that helps us relate the distributive lattice openatimore closely to their effect on a layout. Our
more concrete partial order, and the partitions of it intosaisL(L£) andU (L) that correspond to each
rectangular layouL, are depicted alongside the layouts in Fidure 13.

Define aflippable itemin the extended grapB(G) to be either a degree-four vertexr an edgee that is
not adjacent to a degree-four vertex, with the additionapprty that there exists some regular edge labeling
of E(G) in which the four-cycle surrounding or e is alternately colored and oriented. Thus, a flippable
item is the edge that changes color, or the endpoint of a deuofedges that change color, in some move
of E(G). If xis a flippable item, and_ is a rectangular layout represented by an element of theldigve
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Figure 13: The family of rectangular layouts dual to a giveterded graplE(G), the corresponding
regular edge labelings, and the corresponding partialrqgraditions. Two layouts are shown connected to
each other by an edge if they differ by reversing the colohiitl single alternatingly-colored four-cycle;
these moves are labeled by the identity of the edge or veamtaimed by the four-cycle.

lattice of labelings, defind(L) as the number of moves involvingon any monotone sequence of moves
from the minimal lattice element t6.

Lemma4 The numbery(L) is well defined and independent of the monotone path choseadtiL from
the minimal element.

Proof. By Birkhoff’s theorem, the length of any two upward pathswetn two elements of a distributive
lattice is equal (it is equal to the size of the differencehs downward-closed subsets of the partial order
representing those elements). By results of Birkhoff arekiKB], any three elemendsb, ¢ of a distributive
lattice have a unique median(a,b,c) = (aVvb)A(avc)A(bvc) = (anb)V (anc)V (bAc) belonging

to shortest paths between any two of the three items (Figdlye We prove by induction the following
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m(a,b,c)

c

Figure 14: The median of three elements in a Figure 15: Notation for the proof of Lemrha 4.
distributive lattice.

strengthening of the lemma: It < £’ be two layouts. Then for any itemy and any two monotone paths
from L to £/, xis flipped the same number of times on both paths. Note thattirber of times is flipped,
modulo four, must be the same on both paths, as the color &@mtation ofx may be determined from the
number of flips modulo four. As base cases for the strengtigeiifi the distance fron to £’ is one, there
can only be one monotone path, and if the distance is two, pathcan flipx only once while the number
of flips of x on both paths must be the same mod 4x swust be flipped equally often.

To finish, suppose that we have two monotone pathsom L to £, andty, from L to £, such that we
can perform one more upward flj from £, to £’ and a flipF, from £, to £'. We must show that the
number of flips ofx on the two pathsyF; andmuF; are equal. Lem=m(L, L3, £»). Then there must exist
a pathri from £ to m, and flipsk; andF4 from mto £, and £, respectively, such thatzF; andmgF,4 are
monotone paths front to £, and £, respectively. By induction the number of flips xbn 1y equals the
number of flips ofx on TzF3, and the number of flips of on T, equals the number of flips of on TF4.
Thus, the numbers of flips afon £, and £, can only differ by one, and the numbers of flipsxafn Ty F; and
LR, can only differ by two. But again, these numbers of flips mesefual mod 4, so the result holdd]

Lemma5 The numberfy(L) is O(n), wheren is the number of rectangles in the layout.

Proof. Define a flipping graph where the nodes are the degree-foticegrand non-degree-four edges of
G and where two nodes are connected if they belong to the s@émngle of G. In any monotone sequence
of moves, whenever a move arncreased, (L), thenx cannot be flipped again until all its neighbors in the
flipping graph have been flipped. Thereforex @indy are adjacent in the flipping graplfii(£) and fy(L)

are always within one of each other. But because the outesqdg outer degree-four vertices) of the layout
can never change color or orientation, the flippable itenja@iridg them can havd, at most equal to one.
Therefore, the maximum value d§(£) for anyx is at most the length of the shortest path in the flipping
graph to one of the boundary nodes, an@fs). O

Let £ denote the maximal element in the distributive lattice bklings. We define a partial orde¢ G)
that has as its elements the pdixsi), wherex is a flippable element ands an integer satisfying & i <
fx(i). Thus, if elemenk hask different states in different layouts, it participatekin 1 pairs ofP; the pairs
correspond not to states but to transitions between statésis partial ordeP(G), we define(x,i) < (y, j)
when for all layoutsZ with fy(L£) <1, it holds thatfy(£) < j; that is, it is not possible to movE, from j
to j + 1 prior to movingfy fromi toi+ 1. We may represent a layoutby the partition ofP(G) into two
subsetd.(£) andU (L), where(x,i) € L(L) wheni < fy(L£) and(x,i) € U (L) otherwise.

Lemma6 We can construd®(G) fromE(G) in polynomial time.

Proof. We may computefx(i) for eachx, determining the set of elements R{G), by repeatedly per-
forming downward moves in the lattice of layouts until wealedhe minimal layout, repeatedly performing
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upward moves from there until we reach the maximal layoud, @unting the number of times a move in-
volves each element The partial order of the pairx,i) may be determined from the neighboring objects
of xin E(G): we may make an upward move involving péiri) in layout L if there is no pairx,i’) inU (L)
with i’ < i and when the regular edge labeling corresponding bas the boundaries between incoming red
edges, incoming blue edges, outgoing red edges, and ogtglie edges in a position that would allow such
a move at each of the vertices affected by a move Biach condition that one of these boundaries be in an
appropriate position can be characterized by a pair’) that must be moved prior t, i) in any monotone
sequence of moves starting from the minimal layout, whesadx' are two features oE(G) that belong

to the same triangle. The minimal péii) in U (L) can be characterized by a constraint that') < (i)

in the partial order for each < i. Thus, by such local considerations, we may f(@?) order relations
between pairs ifP(G) that include all covering relations I(G). These order relations define a directed
acyclic graph from which the partial ordB( G) itself may be recovered as the transitive closure.  [J

In Figure[13, each layout is placed next to the correspongarttion of P(G) into two subset$ (L) and
U(L£). Among the eight layouts in the figure, five of them have eyamtle downward neighbor, and these
five induce a partial order that is isomorphicReG). This isomorphism is no coincidence:

Lemma7 P(G) is order-isomorphic to the partial orderdefined in Birkhoff’s representation theorem, and
the representation of a layout as a patrtition of this pastidér is the same as the representation in Birkhoff’s
representation theorem.

Proof. We correspond elements Bf G) one-for-one with elements éf: each element dP is a layoutL

with only one downward move, to a layout. If this move is on itenx, then we associaté with the pair
(x,1) wherei = fx(L) — 1= fy(L'). This pair(x,i) is the single member of the singleton &) NU (L).
Conversely, if(x,i) is any pair inP(G), we may associate witfx, i) a layoutL that has only one downward
move, as follows: starting frond, repeatedly perform downward moves that do not redfy€) to i

or below, until no more such moves exist; letbe the resulting layout. Each move between two layouts
changes both the Birkhoff representati@nU ) and the representatigh(L£),U (L)) in corresponding ways.
Thus, the two representations are the same. S#i¢® andP have a one-to-one correspondence between
elements that causes the distributive lattices of theititjmars into downward and upward components to
have the same elements and the same covering relation, iy order-isomorphic. O

Thus, we may search through the space of all possible layouts given extended graph by instead
searching through partitions &f(G) into a downward-closed and an upward-closed subset; trahies
layouts correspond one-for-one with partitions of thisetyprhe layout represented by a given partition
(L,U) may be found by starting from the bottommost layout in theigleorder, and repeatedly performing
upward moves that do not increag L) (wherex is the flippable item involved in the move) to a value
such that(x,i — 1) € U, until no more such moves are possible.

6.4 Order-theoretic characterization of one-sidedness

We say that a flippable itemis freein a layoutZ£ if there is a move om available inL, andfixedotherwise.
Let F(L) denote the set of free flippable items f6r The following characterization of this set follows
immediately from our representation of the distributiviéi¢e of layouts in terms of the partial ordefL).

Lemma8 F (L) consists of the itemssuch that some pafr,i) is a minimal element d (L) or a maximal
element oL(L).

We may then characterize the one-sided layouts in terrig 6f:

Lemma9 Let layout L be dual to an extended graf{G). Then L is one-sided if and only iF (L)
contains no edges @f.
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Proof. If £ is not one-sided, let be a maximal segment af with multiple rectangles on both of its sides.
Then some edgeof the layout from whictsis formed must have as one of its endpoints a T-junction fdrme
by the corners of two rectangles on one sides,@&nd must have on the other endpoint a T-junction formed
by the corners of two rectangles on the other sidg af shown in Figure 12. These four rectangles form an
alternatingly-colored cycle in the regular edge labelingldo £, containing a single edge dual ¢pthus,

one may perform a move on this cycle that recolm@s shown in the figure, ared= F(L). Conversely, if an
edgee belongs td~ (L), the layout edge dual temust be part of a segment that (because of the alternating
coloring of the regular edge labeling cycle surroundi@ngan be extended in both directions to a maximal
segment ofz that is not one-sided. Thus, in this cageis itself not one-sided. O

Hence, the problem of finding a one-sided layoutEg¢G) becomes equivalent to one of searching for a
partition(L(L£),U (L)) of the partial ordeP(G) in which the free items consist only of degree-four vertices

6.5 Searching for extreme sets

We have seen in the previous section that one-sided layoutsspond to partitionsL,U) in which the
maximal elements df and the minimal elements bf correspond to degree-four vertices@f Each vertex
v of G can only take one of these roles: it can be a maximal elemelntoofa minimal element ofJ, but
not both, because only one movexis possible in any layout. Thus, &§ hask degree-four vertices, then
either the maximal elements bfor the minimal elements & consist of at mosk/2 members oP(G).
This motivates the following algorithm for finding one-sitleyouts dual to a given grapd:

For each possible extended graphG) of the given graphg, and each minimal component
G’ of the extended graph, test wheth@grhas a one-sided layout. If every minimal component
has a one-sided layout, form a layout #fG) by gluing these component layouts together. If
some minimal component does not have a one-sided layoutngither doe& (G).

To test whetherg’ has a one-sided layout, lgtbe the number of degree-four vertices in
G’, and loop through all setS consisting of at mosk/2 members oP(G’), such that each
member ofSis a pair(x,i) wherexis a degree-four vertex @ and all such degree-four vertices
are distinct. For each s&of this type, form a partitior{L1,Us) in which L; consists of all
elements in the partial order that are less than or equal &beanent inS; if U; has no minimal
elements corresponding to single edgeg;ahen return the one-sided layout corresponding to
(L1,U;). Otherwise, form another partitidi.,,U,) in which U, consists of all elements in the
partial order that are greater than or equal to an eleme@t IhL, has no maximal elements
corresponding to single edges @f return the one-sided layout corresponding to this partiti
If neither partition formed in this way from each of the s8igives rise to a one-sided layout,
then G’ has no one-sided layout.

Theorem 5 Let K be the maximum number of flippable degree-four vertices inramimal separation
component ofG. Then the algorithm described above finds a one-sided layaailtto G, if one exists, in
time O(nk/2+0(1)),

Proof. The correctness of the algorithm follows from the sequerfderomas above. The choice of the
extended grapE (G) multiplies the number of steps of the algorithm by a facto®¢i*), and within each
minimal component;’ we loop throughO(n*/2) setsS, performing a polynomial amount of work for each
set. Thus, the total time is as stated. O

As special cases, it follows from Lemrha 9 that for an extengexbh with no flippable degree-four
vertex, a one-sided layout exists iff there is exactly onssfige layout, for only in that case c&{L) be
empty. Thus, we may find such a layout by constructing anyuagnd testing if it is one-sided. In an
extended graph with a single flippable degree-four vertexnesided layout must be either the minimal
or the maximal element of the distributive lattice of laygubr only those two elements can correspond to
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partitions(L,U ) in which L has no maximal elements brhas no minimal elements. Thus, in this case, we
need merely construct both layouts and test them for oredeigss.

6.6 Fixed-parameter tractability

Although conceptually straightforward, the algorithm dfebremb is dissatisfactory from the point of view
of fixed parameter tractability [14]: not just the constaadtor in theO-notation, but also the exponent of
n, grows with the parametd¢. We address this shortcoming by describing an alternatweslfparameter-
tractable algorithm for the same problem.

In a layoutL of an extended grapB(G) with no nontrivial separating four-cycles, define an ordgpeir
(v,w) of degree-four vertices to bestretched pairif there is no sequence of upward moves franthat
movesv without movingw and no sequence of downward moves franthat movesy without movingv.
That is, if all relevant pairs belong to the partial ord¥1G), (v, fy(L£)) > (W, fw(£)) and (v, fy(£) — 1) >
(w, fw(L) —1). We introduce a special symb@] and we also definév,0) to be a stretched pair if is
in its maximal state f,(£) = f,(£)) and we defing®,w) to be a stretched pair i is in its minimal
state fw(L) = 0). Thus, the stretched pairs form a directed graph on theexeetV consisting of the
degree-four vertices together with the special synthoWe say that a stretched pdir,w) fixesan edge
eif (v, fy(£) —1) > (e fe(£) — 1) (or v= 0 and fe(£) = 0) and (w, fw(L)) < (e fe(L)) (or w= 0 and
fo( L) = fe(L)).

Lemma 10 If an edgee is fixed by a stretched pai cannot belong t& (L).

Proof. Let the stretched pair b@,w). Becausgy, fy(£) —1) > (e, feo(£L) — 1) (orv=0and fs(L) = 0),
(e fe(£) — 1) is not a maximal element df(£). Similarly, (e, fe(£)) is not a minimal element df (L),
becauséw, fy (L)) < (e fe(L)) (orw=0andfs(L) = fe(L)). Thereforegis fixed in L. O

Lemma 11 Upward moves on flippable items that are part of the samegiieamave a strict cyclical order.

Proof. First assume that the triangle consists of three non-ddgreeedgese;, &, andes. In every valid
regular edge labeling, a triangle (i) cannot be mono-cadlaned (ii) the two edges with the same color must
both be oriented towards or from the shared vertex.ep&nde, have the same color in a layodt Any
move onez would violate property (i). Furthermore, it is easy to wetifiat we cannot do an upward move
on bothe; ande; (if this is allowed by the surrounding edges). Assume thataredo an upward move on
e resulting in£’. In £ we cannot do a move og. Another upward move og; can only be performed
after performing upward moves on all surrounding edgedudieg e, andes. Hence we can only do an
upward move ores. Continuing this argumentation, the sequence of upwardesowe;, e, andes from

L must beeyp,es3,e,€e1,.... Hence the upward moves @, e, andes must follow a strict cyclical order.

If a triangle contains a degree-four vertex, only two fliplealkemsv ande are part of this triangle. Using
similar argumentation as above, upward moves ande have to alternate and hence these moves also must
follow a strict cyclical order. O

Lemmal2 Let(y,]) cover(x,i) in the partial ordeP(G). Thenx andy belong to the same triangle gf.

Proof. If (y,]) covers(x,i), there must exist a monotone sequence of moves, starting tlre minimal
element of the distributive lattice of regular edge labgdinsuch that the penultimate move of the sequence
changesfy(£) fromi to i+ 1 and the final move of the sequence chanfy¢é£) from j to j+1. Butif x
andy did not belong to the same triangle Gf then the four-edge cycle surroundigigvould not have its
colors or orientation changed by the movexpand the final move opcould have been performed one step
earlier, contradicting the assumption tlati) is above(y, j) in the partial order. O

Lemma 13 Supposéx,i), (x,i+1), (y,]) and(y, j+ 1) all belong toP(G). Then(x,i) < (y, j) if and only
if (%i+1) <(y,j+1).
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Proof. By Lemmd12 it suffices to prove that,(i, j) covers(x,i) then(y, j+1) > (x,i+1). For, if we can
prove this, then the opposite implication, thatyfj + 1) covers(x,i+ 1) then(y, j) > (x,i) will follow by
clockwise-counterclockwise symmetry. And(¥f j) > (x,i) but(x,i) and(y, j) do not form a covering pair,
then we can find a chain of covering pairs connecting themep#nrtial order, and this result will prove that
there exists a corresponding chain of order-related painssteps higher, proving th&, j + 1) > (x,i +1).
By Lemmall1l and 12, upward moves grandy alternate if(y, j) covers(x,i). It easily follows that
(1) < (v, ) ff (xi+1) < (y.j+1). O

Lemma 14 LayoutL is one-sided if and only if every flippable edgés fixed by some stretched pair.

Proof. If eis in its minimal state inZ, let v = 0; otherwise,(e, fe(£) — 1) belongs toL(£) and there is a
maximal elementy, f (L) — 1) of L(L) above it in the partial order. K is in its maximal state i, let
w = 0; otherwise,(e, fo(L)) belongs tdJ (L) and there is a minimal elemefw, f,(L£)) of U(L) below
it in the partial order. We claim that,w) is a stretched pair. For, if all relevant pairs existR(G),
then P(G) contains a chain of inequalitv, f,(L£)) > (e fe(L)) > (W, fw(L)) where the first inequality
arises by Lemma_13 and the second comes from the construmftion Using Lemmd_1i3, we also get
(v, fu(£) —1) > (w, fw(L) — 1), so(v,w) must be stretched in. O

Lemma 15 If an edgee is fixed by a stretched pajv,w) in layout L, thene is fixed in any layout for which
(v,w) are stretched.

Proof. Assume thafv,w) are stretched i/, so that(v, f,(L)) > (w, fy(L")). This means thaf,(L’) —
fu(L) = fw(L') — fw(L), because ify, (L) — fy(L) < fw(L') — fw(L), then, by LemmB&a3y, fy (L) —1) >
(w, fw(L)), which implies that. does not exist. Also, because of Lemima 13 andl, (L)) > (w, fy (L)), it
must hold thatf, (L) — fy(£) < fw(L") — fw(L£). Now letk = f (L) — f (L) = fu (L") — fw(L). Because
e is fixed in £, we get that(e, fe(£) — 1) < (v, fy(£) — 1) and (w, fy (L)) < (g, fe(£)). By LemmallB
we also get thate, fo(L) +k—1) < (v, fy (L") — 1) and (w, fy (L)) < (e, fe(£L) + k). This implies that
k= fe(L') — fe(L), from which the lemma follows. O

Lemma 16 LetH consist of a set of pairs/,w) that should be stretched. Then in polynomial time we may
determine whether there exists a layauof E(G) in which all pairs inH are stretched.

Proof. We perform a sequence of upwards moves, starting from themaidayout, until either a layout
satisfying the requirements of is found or we reach the maximal layolt At each step, if the current
layout £ does not already meet the requirements, it must containrg\pai) that should be stretched but
aren't. Ifv= 0, we terminate the search, as no sequence of upward movesatawnminimal if it isn’t
already. Otherwise, we find a padi, fx(L£)) that is minimal inU (L) and below the paitv, f (L)) (possibly

v = X), and move upwards on Such a move must eventually be made to reach any layout teiisnhe
requirements of. and is abovel in the distributive lattice, so each move preserves thefsatlial solutions
and a solution will eventually be found if one exists. O

Theorem 6 LetK be the maximum number of degree-four vertices in any minsegharation component
of E(G), as before. Then it is possible to find a one-sided layoUuEfa}), if one exists, in tim@°(K*)nO(D),

Proof. As above, we test each minimal separation component separtithin each minimal separation
components, we try all possible choices of the informakigreonsisting of a set of stretched pairs. For each
value ofH, we determine whether the stretched pairsfifiix all of the edges irfE(G). There are 2K?)
choices, and each can be tested in polynomial time by Lemina 16 O

It may be possible to improve th€%* term in this time bound to2X°9K) | by using the embedding
structure ofE(G) to restrict the graph of stretched pairs to be a planar graythwe have not worked out
the details of such an improvement.
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7 Layouts with given dual spanning trees

Rinsma [[17] considered the question of finding a cartogramafgiven weight vector, such that the dual
graph G has a given tre€" as its spanning tree. She showed that, by a simple layouegsan which the
root of 7 is placed at the bottom of a layout and recursively constditdayouts for its children are placed
above it, such a cartogram can always be found. Howeverageuts are not, in general, area-universal.
For instance, in the layout shown in the center of Fiqure t6écdpced by her algorithm, the line segment
with rectangledD andF to its left and with rectangle& andH to the right is not one-sided, showing that
the tree in this example leads to a non-area-universal taaording to her algorithm.

E[Fn|1|s NS Fl 1] rlo
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Figure 16: A dual spanning treE, Rinsma’s non-area-universal layout, and our area-usaldsyout for7 .

However, a simple modification of Rinsma’s layout processhmused to generate area-universal layouts
that have the given tree as a spanning tree of the dual. ThHeotheroduces layouts in which the root of a
tree either covers the entire bottom edge of the layout oetitiee left edge of the layout. For a given tree,
to find a layout with the root at the bottom, use the same dlguarrecursively to generate layouts for each
subtree rooted at a child of the root with the child at the lfid place these subtree layouts in left-to-right
order above the bottom root rectangle. Symmetrically, @ &hayout with the root on the left, use the same
algorithm recursively to generate layouts for each subtoe¢ed at a child with the child on the bottom,
and place these subtree layouts in bottom-to-top orderetaigfint of the root rectangle. Thus, for a given
tree, the layouts with the root at the bottom and with the etdhe left are mirror images of each other, as
reflected across a line with slope one. The area-univergaltaesulting from this algorithm for the same
example tree is shown on the right of Figlré 16.

Theorem 7 For any treel the algorithm described above finds an area-universal taymavingT as a
spanning tree of the dual, in time linear in the siz& of

Proof. At each level of the recursion, each child is placed adjdgedatthe root of its subtree, sb is a

spanning tree of the dual, and the algorithm clearly runsaal time. Each maximal segment of the layout,
other than the outer boundaries of the root rectangle, resttygarates the root of a subtree from its children
or one child subtree from the next child subtree. If the segmseparates the root of a subtree from its
children, it forms a side of the root rectangle, and if it sapes one child subtree from the next, it forms a
side of the root of the second subtree. Thus, each maximalesggs the side of a rectangle and hence the
layout is one-sided. The result follows by Theorem 3. d

8 Conclusions and open problems

We presented a simple necessary and sufficient conditioa fectangular layout to be area-universal. We
also described how to find a layout that is equivalent or eedgiivalent to a given layout and that realizes
a given weight function as a cartogram. Furthermore, we slddwow find a one-sided and hence area-
universal layout for a given set of adjacency constraifitgjch a layout exists. We also investigated similar
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problems for perimeter in place of area. Unlike much paskveor rectangular layouts, we did not restrict
our attention to sliceable layouts, dual graphs withouassjng cycles, or other such special cases.

There remain several questions for further investigatibor instance, our algorithm for finding area-
universal rectangular cartograms is not fully polynoméaid it would be of interest to find faster algorithms
or determine if it is NP-complete to test whether an areaarsal cartogram exists for a given dual graph.
If an area-universal cartogram does not exist, but we arengan area assignment or a range of area as-
signments, can we efficiently find a layout realizing thisgrament or assignments? Past work on related
problems suggests that such problems might be difficult [1].
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