
ar
X

iv
:0

81
2.

03
82

v1
 [

cs
.C

G
]

 1
 D

ec
 2

00
8

k-means requires exponentially many iterations even in the plane

Andrea Vattani

University of California, San Diego

avattani@ucsd.edu

Abstract

The k-means algorithm is a well-known method for partitioning n points that lie in the
d-dimensional space into k clusters. Its main features are simplicity and speed in practice.
Theoretically, however, the best known upper bound on its running time (i.e. O(nkd)) can be
exponential in the number of points. Recently, Arthur and Vassilvitskii [2] showed a super-
polynomial worst-case analysis, improving the best known lower bound from Ω(n) to 2Ω(

√
n)

with a construction in d = Ω(
√
n) dimensions. In [2] they also conjectured the existence of

super-polynomial lower bounds for any d ≥ 2.
Our contribution is twofold: we prove this conjecture and we improve the lower bound, by

presenting a simple construction in the plane that leads to the exponential lower bound 2Ω(n).

http://arxiv.org/abs/0812.0382v1

1 Introduction

The k-means method is one of the most widely used algorithms for geometric clustering. It
was originally proposed by Forgy in 1965 [7] and McQueen in 1967 [13], and is often known as
Lloyd’s algorithm [12]. It is a local search algorithm and partitions n data points into k clusters
in this way: seeded with k initial cluster centers, it assigns every data point to its closest center,
and then recomputes the new centers as the means (or centers of mass) of their assigned points.
This process of assigning data points and readjusting centers is repeated until it stabilizes.

Despite its age, k-means is still very popular today and is considered “by far the most
popular clustering algorithm used in scientific and industrial applications”, as Berkhin remarks
in his survey on data mining [4]. Its widespread usage extends over a variety of different areas,
such as artificial intelligence, computational biology, computer graphics, just to name a few (see
[1, 8]). It is particularly popular because of its simplicity and observed speed: as Duda et al.
say in their text on pattern classification [6], “In practice the number of iterations is much less
than the number of samples”.

Even if, in practice, speed is recognized as one of k-means’ main qualities (see [11] for
empirical studies), on the other hand there are a few theoretical bounds on its worst-case
running time and they do not corroborate this feature.

An upper bound of O(kn) can be trivially established since it can be shown that no clustering
occurs twice during the course of the algorithm. In [10], Inaba et al. improved this bound to
O(nkd) by counting the number of Voronoi partitions of n points in R

d into k classes. Other
bounds are known for some special cases. Namely, Dasgupta [5] analyzed the case d = 1, proving
an upper bound of O(n) when k < 5, and a worst-case lower bound of Ω(n). Later, Har-Peled
and Sadri [9], again for the one-dimensional case, showed an upper bound of O(n∆2) where
∆ is the spread of the point set (i.e. the ratio between the largest and the smallest pairwise
distance), and conjectured that k-means might run in time polynomial in n and ∆ for any d.

The upper bound O(nkd) for the general case has not been improved since more than a
decade, and this suggests that it might be not far from the truth. Arthur and Vassilvitskii
[2] showed that k-means can run for super-polynomially many iterations, improving the best
known lower bound from Ω(n) [5] to 2Ω(

√
n). Their contruction lies in a space with d = Θ(logn)

dimensions, and they leave an open question about the performance of k-means for a smaller
number of dimensions d, conjecturing the existence of superpolynomial lower bounds when
d > 1. Also they show that their construction can be modified to have low spread, disproving
the aforementioned conjecture in [9] for d = Ω(log n).

A more recent line of work that aims to close the gap between practical and theoreti-
cal performance makes use of the smoothed analysis introduced by Spielman and Teng [15].
Arthur and Vassilvitskii [3] proved a smoothed upper bound of poly(nO(k)), recently improved

to poly(nO(
√
k)) by Manthey and Röglin [14].

1.1 Our result

In this work we are interested in the performance of k-means in a low dimensional space. We
said it is conjectured [2] that there exist instances in d dimensions for any d ≥ 2, for which
k-means runs for a super-polynomial number of iterations.

Our main result is a construction in the plane (d = 2) for which k-means requires expo-
nentially many iterations to stabilize. Specifically, we present a set of n data points lying in
R

2, and a set of k = Θ(n) adversarially chosen cluster centers in R
2, for which the algorithm

runs for 2Ω(n) iterations. This proves the aforementioned conjecture and, at the same time,
it also improves the best known lower bound from 2Ω(

√
n) to 2Ω(n). Notice that the exponent

is optimal disregarding logarithmic factor, since the bound for the general case O(nkd) can be
rewritten as 2O(n logn) when d = 2 and k = Θ(n). For any k = o(n), our lower bound easily
translates to 2Ω(k), which, analogously, is almost optimal since the upper bound is 2O(k logn).

A common practice for seeding k-means is to choose the initial centers as a subset of the
data points. We show that even in this case (i.e. cluster centers adversarially chosen among the

1

data points), the running time of k-means is still exponential.
Also, using a result in [2], our construction can be modified to an instance in d = 3 dimensions

having low spread for which k-means requires 2Ω(n) iterations, which disproves the conjecture
of Har-Peled and Sadri [9] for any d ≥ 3.

Finally, we observe that our result implies that the smoothed analysis helps even for a small

number of dimensions, since the best smoothed upper bound is nO(
√
k), while our lower bound

is 2Ω(k) which is larger for k = ω(log2 n). In other words, perturbing each data point and then
running k-means would improve the performance of the algorithm.

2 The k-means algorithm

The k-means algorithm allows to partition a set X of n points in R
d into k clusters. It is seeded

with any initial set of k cluster centers in R
d, and given the cluster centers, every data point is

assigned to the cluster whose center is closer to it. The name “k-means” refers to the fact that
the new position of a center is computed as the center of mass (or mean point) of the points
assigned to it.

A formal definition of the algorithm is the following:

0. Arbitrarily choose k initial centers c1, c2, . . . , ck.

1. For each 1 ≤ i ≤ k, set the cluster Ci be the set of points in X that are closer to ci than
to any cj with j 6= i.

2. For each 1 ≤ i ≤ k, set ci =
1

|Ci|
∑

x∈Ci
x, i.e the center of mass of the points in Ci.

3. Repeat steps 1 and 2 until the clusters Ci and the centers ci do not change anymore. The
partition of X is the set of clusters C1, C2, . . . , Ck.

Note that the algorithm might incur in two possibile “degenerate” situations: the first one
is when no points are assigned to a center, and in this case that center is removed and we will
obtain a partition with less than k clusters. The other degeneracy is when a point is equally
close to more than one center, and in this case the tie is broken arbitrarily.

We stress that when k-means runs on our constructions, it does not fall into any of these
situations, so the lower bound does not exploit these degeneracies.

Our construction use points that have constant integer weights. This means that the data
set that k-means will take in input is actually a multiset, and the center of mass of a cluster Ci

(step 2 of k-means) is computed as
∑

x∈Ci
wxx/

∑

x∈Ci
wx, where wx is the weight of x. This

is not a restriction since integer weights in the range [1, C] can be simulated by blowing up the
size of the data set by at most C: it is enough to replace each point x of weight w with a set
of w distinct points (of unitary weight) whose center of mass is x, and so close each other that
the behavior of k-means (as well as its number of iterations) is not affected.

3 Lower bound

In this section we present a construction in the plane for which k-means requires 2Ω(n) iterations.
We start with some high level intuition of the construction, then we give some definitions
explaining the idea behind the construction, and finally we proceed to the formal proof.

In the end of the section, we show a couple of extensions: the first one is a modification of
our construction so that the initial set of centers is a subset of the data points, and the second
one describes how to obtain low spread.

A simple implementation in Python of the lower bound is available at the web address
http://www.cse.ucsd.edu/~avattani/k-means/lowerbound.py

2

Morning

Watching Wi−1

Afternoon

Watching Wi−1

Night

Sleeping until

Wi+1 calls

Wi+1’s call: Wi is awoken

If Wi−1 falls

asleep, Wi

wakes it up

1st call

If Wi−1 falls

asleep, Wi

wakes it up

2nd call

Figure 1: The “day” of the watchman Wi, i > 0.

3.1 High level intuition

The idea behind our construction is simple and can be related to the saying “Who watches the
watchmen?” (or the original latin phrase “Quis custodiet ipsos custodes?”).

Consider a sequence of t watchmen W0,W1, . . . ,Wt−1. A “day” of a watchman Wi (i > 0)
can be described as follows (see Fig. 1): Wi watches Wi−1, waking it up once it falls asleep,
and does so twice; afterwards, Wi falls asleep itself. The watchman W0 instead will simply fall
asleep directly after it has been woken up. Now if each watchman is awake in the beginning of
this process (or even just Wt−1), it is clear that W0 will be woken up 2Ω(t) times by the time
that every watchman is asleep.

In the construction we have a sequence of gadgets G0,G1, . . .Gt−1, where all gadgets Gi with
i > 0 are identical except for the scale. Any gadget Gi (i > 0) has a fixed number of points and
two centers, and different clusterings of its points will model which stage of the day Gi is in.
The clustering indicating that Gi “fell asleep” has one center in a particular position S∗

i .
In the situation when Gi+1 is awake and Gi falls asleep, some points of Gi+1 will be assigned

temporarily to the Gi’s center located in S∗
i ; in the next step this center will move so that in

one more step the initial clustering (or “morning clustering”) of Gi is restored: this models the
fact that Gi+1 wakes up Gi.

Note that since each gadget has a constant number of centers, we can build an instance with
k clusters that has t = Θ(k) gadgets, for which k-means will require 2Ω(k) iterations. Also since
each gadget has a constant number of points, we can build an instance of n points and k = Θ(n)
clusters with t = Θ(n) gadgets. This will imply a lower bound of 2Ω(n) on the running time of
k-means.

3.2 Definitions and further intuition

For any i > 0, the gadget Gi is a tuple (Pi, Ci, ri, Ri) where Pi ⊂ R
2 is the set of points of

the gadget and is defined as Pi = {Pi, Qi, Ai, Bi, Ci, Di, Ei} where the points have constant
weights, while Ci is the set of initial centers of the gadget Gi and contains exactly two centers.
Finally, ri ∈ R

+ and Ri ∈ R
+ denote respectively the “inner radius” and the “outer radius”

of the gadget, and their purpose will be explained later on. Since the weights of the points do
not change between the gadgets, we will denote the weight of Pi (for any i > 0) with wP , and
similarly for the other points.

As for the “leaf” gadget G0, the set P0 is composed of only one point F (of constant weight
wF), and C0 contains only one center.

The set of points of the k-means istance will be the union of the (weighted) points from

all the gadgets, i.e.
⋃t−1

i=0 Pi (with a total of 7(t − 1) + 1 = O(t) points of constant weight).
Similarly, the set of initial centers will be the union of the centers from all the gadgets, that is
⋃t−1

i=0 Ci (with a total of 2(t− 1) + 1 = O(t) centers).
As we mentioned above, when one of the centers of Gi moves to a special S∗

i , it will mean
that Gi fell asleep. For i > 0 we define S∗

i as the center of mass of the cluster {Ai, Bi, Ci, Di},
while S∗

0 coincides with F .

3

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei

S∗
i−1

Morning

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei

S∗
i−1

1st Call (pt. I)

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei

S∗
i−1

1st Call (pt. II)

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei

S∗
i−1

Afternoon

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei

S∗
i−1

2nd Call (pt. I)

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei

S∗
i−1

2nd Call (pt. II) / Night

S∗

i

Figure 2: The “day” of the gadget Gi. The diamonds denote the means of the clusters. The
locations of the points in figure gives an idea of the actual gadget used in the proof. Also,
the bigger the size of a point is, the bigger its weight is.

For a gadget Gi (i > 0), we depict the stages (clusterings) it goes through during any of its
day. The entire sequence is shown in Fig. 2.

Morning This stage takes place right after Gi has been woken up or in the beginning of the
entire process. The singleton {Ai} is one cluster, and the remaining points form the other
cluster. In this configuration Gi is watching Gi−1 and intervenes once it falls asleep.

1st call Once Gi−1 falls asleep, Pi will join the Gi−1’s cluster with center in S∗
i−1 (pt. I). At

the next step (pt. II), Qi too will join that cluster, and Bi will instead move to the cluster
{Ai}. The two points Pi and Qi are waking up Gi−1 by causing a restore of its morning
clustering.

Afternoon The points Pi, Qi and Ci will join the cluster {Ai, Bi}. Thus, Gi ends up with
the clusters {Ai, Bi, Ci, Pi, Qi} and {Di, Ei}. In this configuration, Gi is again watching
Gi−1 and is ready to wake it up once it falls asleep.

2nd call Once Gi−1 falls asleep, similarly to the 1st call, Pi will join the Gi−1’s cluster with
center in S∗

i−1 (pt. I). At the next step (pt. II), Qi too will join that cluster, and Di will
join the cluster {Ai, Bi, Ci} (note that the other Gi’s cluster is the singleton {Ei}). Again,
Pi and Qi are waking up Gi−1.

Night At this point, the cluster {Ai, Bi, Ci, Di} is already formed, which implies that its
mean is located in S∗

i : thus, Gi is sleeping. However, note that Pi and Qi are still in
some Gi−1’s cluster and the remaining point Ei is in a singleton cluster. In the next step,
concurrently with the beginning of a possible call from Gi+1 (see Gi+1’s call, pt.I), the points
Pi and Qi will join the singleton {Ei}.

4

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei
Pi+1

Qi+1

S∗
i−1

S∗

i

(1− ǫ)Ri+1

Gi’s 2nd Call (pt. II) / Gi’s Night

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei
Pi+1

Qi+1

Gi+1’s call (pt. I)

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei
Pi+1

Qi+1

Gi+1’s call (pt. II)

(1 + ǫ′)ri+1

ri
Ri

Pi Qi

Ai

Bi

Ci

Di

Ei
Pi+1

Qi+1

Gi+1’s call (pt. III) / Gi’s morning

Figure 3: Gi+1’s call: how Gi+1 wakes up Gi. The distance between the two gadgets is
actually much larger than it appears in figure.

The two radiuses of the gadget Gi (i > 0) can be interpreted in the following way. Whenever
Gi is watching Gi−1 (either morning or afternoon), the distance between the point P and its
mean will be exactly Ri. On the other hand, the distance between Pi and S∗

i−1 – where a Gi−1’s
mean will move when Gi−1 falls asleep – will be just a bit less than Ri. In this way we guarantee
that the waking-up process will start at the right time. Also, we know that this process will
involve Qi too, and we want the mean that was originally in S∗

i−1 to end up at distance more
than ri from Pi. In that step, one of the Gi’s means will be at distance exactly ri from Pi, and
thus Pi (and Qi too) will come back to one of the Gi’s cluster.

Now we analyze the waking-up process from the point of view of the sleeping gadget. We
suppose that Gi (i > 0) is sleeping and that Gi+1 wants to wake it up. The sequence is shown
in Fig. 3.

Gi+1’s call Suppose that Gi+1 started to waking up Gi. Then, we know that Pi+1 joined
the cluster {Ai, Bi, Ci, Di} (pt. I). However, this does not cause any point from this cluster
to move to other clusters. On the other hand, as we said before, the points Pi and Qi will
“come back” to Gi by joining the cluster {Ei}. At the next step (pt. II), Qi+1 too will join
the cluster {Ai, Bi, Ci, Di, Pi+1}. The new center will be in a position such that, in one
more step (pt. III), Bi, Ci and Di will move to the cluster {Pi, Qi, Ei}. Also we know that
at that very same step, Pi+1 and Qi+1 will come back to some Gi+1’s cluster: this implies
that Gi will end up with the clusters {Bi, Ci, Di, Ei, Pi, Qi} and {Ai}, which is exactly the
morning clustering: Gi has been woken up.

As for the “leaf” gadget G0, we said that it will fall asleep right after it has been woken up by
G1. Thus we can describe its day in the following way:

5

Night There is only one cluster which is the singleton {F}. The center is obviously F which
coincides with S∗

0 . In this configuration G0 is sleeping.

G1’s call The point P1 from G1 joins the cluster {P0} and in the next step Q1 will join the
same cluster too. After one more step, both P1 and Q1 will come back to some G1’s cluster,
which implies that the G0’s cluster is the singleton {F} again. Thus G0, after having been
temporarily woken up, fell asleep again.

3.3 Formal Construction

We start giving the distances between the points in a single gadget (intra-gadget). Afterwards,
we will give the distances between two consecutive gadgets (inter-gadget). Henceforth xAi

and
yAi

will denote respectively the x-coordinate and y-coordinate of the point Ai, and analogous
notation will be used for the other points. Also, for a set of points S, we define its total weight

wS =
∑

x∈S wx, and its mean will be denoted by µ(S), i.e. µ(S) =
P

x∈S
wx·x

wS
. We suppose

that all the weights wP , wQ, wA, . . . have been fixed to some positive integer values, and that
wA = wB and wF = wA + wB + wC + wD.

We start describing the distances between points for a non-leaf gadget. For simplicity, we
start defining the location of the points for an hypotetical “unit” gadget Ĝ that has unitary
inner radius (i.e. r̂ = 1) and is centered in the origin (i.e. P̂ = (0, 0)). Then we will see how to
define a gadget Gi (for any i > 0) in terms of the unit gadget Ĝ.

The outer radius is defined as R̂ = (1 + δ) and also we let the point Q̂ be Q̂ = (λ, 0). The
values 0 < δ < 1 and 0 < λ < 1 are constants whose value will be assigned later. The point Ê
is defined as Ê = (0, 1).

The remaining points are aligned on the vertical line with x-coordinate equals to 1 (formally,
xÂ = xB̂ = xĈ = xD̂ = 1). As for the y-coordinates, we set yÂ = −1/2 and yB̂ = 1/2.

The value yĈ is uniquely defined by imposing yĈ > 0 and that the mean of the cluster

M = {Â, B̂, Ĉ, P̂ , Q̂} is at distance R̂ from P̂ . Thus, we want the positive yĈ that satisfies the

equation ||µ(M)|| = R̂, which can be rewritten as

(

wA + wB + wC + wQλ

wM

)2

+

(

wCyĈ
wM

)2

= (1 + δ)2

where we used the fact that wAyÂ + wByB̂ = 0 when wA = wB .
We easily obtain the solution

yĈ =
1

wC

√

(wM(1 + δ))2 − (wA + wB + wC + wQλ)2

Note that the value under the square root is always positive because λ < 1.
It remains to set yD̂. Its value is uniquely defined by imposing yD̂ > 0 and that the mean of

the cluster N = {B̂, Ĉ, D̂, Ê, P̂ , Q̂} is at distance R̂ from P̂ . Analogously to the previous case,
yD̂ is the positive value satisfying ||µ(N)|| = R̂, which is equivalent to

(

wB + wC + wD + wQλ

wN

)2

+

(

wDyD̂ + wB(1/2) + wCyĈ + wE

wN

)2

= (1 + δ)2

Now, since the equation a2 + (b+ x)2 = c2 has the solutions x = ±
√
c2 − a2 − b, we obtain the

solution

yDi
=

1

wD

∣

∣

∣

∣

√

(wN (1 + δ))2 − (wB + wC + wD + wQλ)2 − wB/2− wCyĈ − wE

∣

∣

∣

∣

Again, the term under the square root is always positive.
Finally, we define Ŝ∗ in the natural way as Ŝ∗ = µ{Â, B̂, Ĉ, D̂}.
Now consider a gadget Gi with i > 0. Suppose to have fixed the inner radius ri and the center

Pi. Then we have the outer radius Ri = (1 + δ)ri, and we define the location of the points in

6

terms of the unit gadget by scaling of ri and translating by Pi in following way: Ai = Pi + riÂ,
Bi = Pi + riB̂, and so on for the other points.

As for the gadget G0, there are no intra-gadget distances to be defined, since it has only one
point F .

For any i ≥ 0, the intra-gadget distances in Gi have been defined (as a function of Pi, ri,
δ and λ). Now we define the (inter-gadget) distances between the points of two consecutive
gadgets Gi and Gi+1, for any i ≥ 0. We do this by giving expliciting recursive expressions for ri
and Pi.

For a point Ẑ ∈ {Â, B̂, Ĉ, D̂}, we define the “stretch” of Ẑ (from Ŝ∗ with respect to
µ{Ê, P̂ , Q̂}) as

σ(Ẑ) =

√

d2(Ẑ, µ{Ê, P̂ , Q̂})− d2(Ẑ, Ŝ∗)

The stretch will be a real number (for all points Â, B̂, Ĉ, D̂), given the values λ, δ and the
weights used in the construction.

We set the inner radius r0 of the leaf gadget G0 to a positive arbitrary value, and for any
i ≥ 0, we define

ri+1 =
ri

1 + δ

wF + wP + wQ

wP + (1 + λ)wQ
σ(Â) (1)

where we remind that wF = wA + wB + wC + wD.
Now recall that S∗

i = µ{Ai, Bi, Ci, Di} for any i > 0, and S∗
0 = µ{F} = F . Assuming to

have fixed the point F somewhere in the plane, we define for any i > 0

xPi
= xS∗

i−1
+Ri(1− ǫ) (2)

yPi
= yS∗

i−1

where 0 < ǫ < 1 is some constant to define. Note that now the instance is completely defined
in function of λ, δ, ǫ and the weights. We are now ready to prove the lower bound.

3.4 Proof

We assume that the initial centers – that we seed k-means with – correspond to the means of
the “morning clusters” of each gadget Gi with i > 0. Namely, the initial centers are µ{Ai},
µ{Bi, Ci, Di, Ei, Pi, Qi} for all i > 0, in addition to the center µ{F} = F for the leaf gadget G0.

In order to establish our result, it is enough to show that there exist positive integer values
wA, wB , wC , wD, wE , wF , wP , wQ (with wA = wB) and values for λ, δ and ǫ, such that the
behavior of k-means on the instance reflects exactly the clustering transitions described in
Section 3.2. The chosen values (as well as other derived values used later in the analysis) are in
Table 1. The use of rational weights is not restrictive, because the mean of a cluster (as well as
k-means’ behavior) does not change if we multiply the weights of its points by the same factor
– in our case it is enough to multiply all the weights by 100 to obtain integer weights.

Finally, for the value of ǫ, we impose

0 < ǫ < min

{

d2(Ŝ∗, Ĉ)

(1 + δ)2
,

λ

1 + δ
,
σ(Â)− σ(B̂)

σ(Â)
, 1− (1 + λwQ)(wF + wP + wQ)

(1 + δ)wF

}

Throughout the proof, we will say that a point Z in a cluster C is stable with respect to
(w.r.t) another cluster C′, if d(Z, µ(C)) < d(Z, µ(C′)). Similarly, a point Z in a cluster C is
stable if Z is stable w.r.t. any C′ 6= C. Also, similar definitions of stability extends to a cluster
(resp. clustering) if the stability holds for all the points in the cluster (resp. for all the clusters
in the clustering).

We consider an arbitrary gadget Gi with i > 0 in any stage of its day (some clustering), and
we show that the steps that k-means goes through are exactly the ones described in Section 3.2
for that stage of the day (for the chosen values of λ, δ, ǫ and weights). For the sake of convenience

7

Chosen values Unit gadget Other derived values used in the proof

δ = 0.25 r̂ = 1 (0.1432, 1.0149) � N � (1.44, 1.015)

λ = 10−5 R̂ = (1 + δ) = 1.025 (0.9495, 0.386) � M � (0.9496, 0.3861)

wP = 1 P̂ = (0, 0) 1.003 ≤ α ≤ 1.004

wQ = 10−2 Q̂ = (λ, 0) = (10−5, 0) 1.0526 ≤ β ≤ 1.05261

wA = 4 Â = (1,−0.5) 0.99 ≤ γ ≤ 0.99047

wB = 4 B̂ = (1, 0.5) 1.0003 ≤ σ(Â) ≤ 1.0004

wC = 11 (1, 0.70223) � Ĉ � (1, 0.70224) 1.0001 ≤ σ(B̂) ≤ 1.0002

wD = 31 (1, 1.35739) � D̂ � (1, 1.3574) 1 ≤ σ(Ĉ) ≤ 1.0001

wE = 274 Ê = (0, 1) 0.9999 ≤ σ(D̂) ≤ 0.99992

Table 1: The relation � denotes the less-or-equal component-wise relation.

and w.l.o.g, we assume that Gi has unitary inner radius (i.e. ri = r̂ = 1 and Ri = R̂ = (1 + δ))
and that Pi is in the origin (i.e. Pi = (0, 0)).

Morning

We need to prove that the morning clustering of Gi is stable assuming that Gi−1 is not sleeping.
Note that this assumption implies that i > 1 since the gadget G0 is always sleeping when G1 is
in the morning. Since the singleton cluster {Ai} is trivially stable, we just need to show that
N = {Bi, Ci, Di, Ei, Pi, Qi} is stable. It is easy to understand that it suffices to show that Bi,
Qi and Pi are stable w.r.t {Ai} (the other points in N are further from Ai), and that Pi is
stable w.r.t any Gi−1’s cluster. Letting N = µ(N), we have xN = (wB +wC +wD +λwQ)/wN ,

and yN =
√

(1 + δ)2 − x2
N .

The point Pi is stable w.r.t. {Ai}, since d(Pi, N) = (1 + δ) <
√

12 + (0.5)2 = d(Pi, Ai). To

prove the same for Qi, note that d(Qi, Ai) =
√

(1− λ)2 + (0.5)2 > R̂, while on the other hand

xN > xQi
implies d(Qi, N) < R̂.

As for Bi, d
2(Bi, N) = (xB − xN)2 + (yB − yN)2 = ||Bi||2 + R̂2 − 2(xNxBi

+ yNyBi
). Thus,

the inequality d(Bi, N) < d(Bi, Ai) = 1 simplifies to 5/4 + R̂2 − 2xN − yN < 1, which can be
checked to be valid.

It remains to prove that Pi is stable w.r.t. any Gi−1’s cluster. It is easy to understand that,
in any stage of Gi−1’s day (different from the night), the distance from any Gi−1’s center to Pi is
more than the distance between Ci−1 and Pi. We observe that d2(Pi, Ci−1) = (xPi

− xS∗
i−1

)2 +

d2(S∗
i−1, Ci−1) = R2

i (1 − ǫ)2 + r̂d2(Ŝ∗
i−1, Ĉ), using (2). The assumption ǫ < d2(Ŝ∗, Ĉ)/(1 + δ)2

directly implies d2(Pi, Ci−1) > (1 + δ) = d(Pi, N).

1st Call

We start analyzing the part I of this stage. Since we are assuming that Gi−1 is sleeping, there
must be some Gi−1’s cluster C with center in S∗

i−1 (note that Gi−1 can be the leaf gadget G0

as well). By (2) we have d(Pi, S
∗
i−1) < Ri, and so Pi will join C. We claim that Qi (any other

Gi’s point is implied) is instead stable, i.e. d(Qi, N) < d(Qi, S
∗
i−1). We already know that

d(Qi, N) < R̂, so we show d(Qi, S
∗
i−1) > R̂. Using (2), we have R̂(1− ǫ) + λr̂ > R̂, which holds

for ǫ < λ/(1 + δ).

We now analyze the next iteration, i.e. the part II of this stage. We claim that Qi will
join C ∪ {Pi}, and Bi will join {Ai}. To establish the former, we show that d(Qi, µ(N ′)) > R̂
where N ′ = N − {Pi}. Since Pi is in the origin, we can write N ′ = αN with α = wN /wN ′ .
Thus, the inequality we are interested in is (λ − αxN)2 + (αyN)2 > R̂2 which can rewritten
as (α2 − 1)R̂ > 2λαxN . Finally, since α > 1, R̂ > 1 and xN < 1, the inequality is implied by
α(1− 2λ) > 1, which holds for the chosen values.

It remains to prove that Bi is not stable w.r.t. {Ai}, i.e. d(Bi, N
′) > d(Bi, Ai) = 1. Again,

starting with the inequality (1 − αxN)2 + (1/2 − αyN)2 > 1, we get the equivalent inequality
1/4 + α2R̂ > α(2xN + yN), which is easy to verify.

8

Finally, we prove that Ci is instead stable w.r.t. N ′. Similarly we get x2
Ci

+ y2Ci
+ α2R̂2 −

2α(xNxCi
+ yNyCi

) < (yAi
− y2Ci

), which is implied by 3/4 + α2R̂2 < yCi
(1 + 2αyN).

Afternoon

The last stage ended up with the Gi’s clusters N ′′ = {Ci, Di, Ei} and {Ai, Bi}, since Pi and Qi

both joined the cluster C of Gi−1. We claim that, at this point, Pi, Qi and Ci are not stable and
will all join the cluster {Ai, Bi}.

Let C′ = C ∪ {Pi, Qi}; note that the total weight wC′ of the cluster C′ is the same if Gi−1

is the leaf gadget G0 or not, since by definition of wC = wF = wA + wB + wC + wD. We start
showing that d(Pi, µ(C′)) > r̂ = 1 which proves that the claim is true for Pi and Qi. By defining
d = xPi

−xS∗
i−1

, the inequality can be rewritten as d− (wPd+wQ(d+λ))/wC′ > 1, which by (2)

is equivalent to (1−ǫ)(1+δ)wC/wC′ > 1+λwQ. It can be checked that (1+δ)wC/wC′ > 1+λwQ

and the assumption on ǫ completes the proof.
Now we prove that Ci is not stable w.r.t to {Ai, Bi}, by showing that d(Ci, N

′′) > yCi
where

N ′′ = µ(N ′′). Note that the inequality is implied by xCi
− xN ′′ > yCi

, which is equivalent to
wE/wN ′′ > yCi

that holds for the chosen values.

At this point, analogolously to the morning stage, we want to show that this new clustering
is stable, assuming that Gi−1 is not sleeping. Note that the analysis in the morning stage directly
implies that Pi is stable w.r.t any Gi−1’s cluster. It can be shown as well that Pi is stable w.r.t
to N ′′′ = {Di, Ei}, and Di is stable w.r.t. M = {Ai, Bi, Ci, Pi, Qi} (other points’ stability is
implied).

2nd Call

For the part I of this stage, i.e. we assume Gi−1 is sleeping, and so there is some Gi−1’s cluster
C with center in S∗

i−1. Similarly to the 1st call (part I), Pi will join C. The point Qi is instead

stable, since we proved d(Qi, S
∗
i−1) > R̂, while xM > xQi

implies d(Qi,M) < R̂.

We now analyze the next iteration, i.e. the part II of this stage. We claim that Qi will join
C ∪ {Pi}, and Di will join M′ = M− {Pi}. This can be proven analogously to the part II of
the first call, by using M ′ = µ(M′) = βM , where β = wM/wM′ .

Night

The last stage leaves us with the clusters {Ai, Bi, Ci, Di} and the singleton {Ei}. We want to
prove that in one iteration Pi and Qi will join {Ei}. In the afternoon stage, we already proved
that d(Pi, µ(C′)) > r̂, and since d(Pi, Ai) = r̂ = 1, the point Pi will join {Ei}. For the point Qi,
we have d(Qi, µ(C′)) = d(Pi, µ(C′)) + λ > r̂+ λ, while d(Qi, Ei) =

√
r̂2 + λ2 < r̂+ λ. Thus, the

point Qi, as well as Pi, will join {Ei}.

Gi+1’s call

In this stage, we are analyzing the waking-up process from the point of view of the sleeping
gadget. We suppose that Gi (i > 0) is sleeping and that Gi+1 wants to wake it up.

We start considering the part I of this stage, when only Pi+1 joined the cluster S =
{Ai, Bi, Ci, Di}. Let S ′ = S ∪ {Pi+1}. We want to verify that the points in S are stable
w.r.t. {Ei, Pi, Qi}, i.e. that for each Ẑ ∈ S, d(Ẑ, µ(S ′)) < d(Ẑ, µ{Ei, Pi, Qi}). This inequality
is equivalent to d(Ŝ∗, µ(S ′)) < σ(Ẑ), and given the ordering of the stretches, it is enough to
show it for Ẑ = D̂. By (2), we have that d(Ŝ∗, µ(S ′)) = (1 − ǫ)Ri+1wP /wS′ , and using (1) we
get d(Ŝ∗, µ(S ′)) = r̂(1 − ǫ)γσ(Â) where γ = (wP /wS′)(wS′ + wQ)/(wP + (1 + λ)wQ). Finally,

it is easy to verify that γσ(Â) < σ(D̂).

In the part II of this stage, Qi+1 joined S ′. Let S ′′ = S ′ ∪ {Qi+1}.. We want to verify that
all the points in S but A will move to the cluster {Ei, Pi, Qi}.

We start showing that d(Ai, µ(S ′′)) < d(Ẑ, µ{Ei, Pi, Qi}). This inequality is equivalent to
d(Ŝ∗, µ(S ′′)) < σ(Â), and we have d(Ŝ∗, µ(S ′′)) = (1−ǫ)Ri+1(wP +(1+λ)wQ)/(wP +wQ+wF).

9

Using (1) to substitute Ri+1, we get d(Ŝ∗, µ(S ′′)) = (1− ǫ)σ(Â), which proves that Ai will not
change cluster.

Similarly, we want to prove that, for Ẑ ∈ S, Ẑ 6= Â, it holds that d(Ŝ∗, µ(S ′′)) = (1 −
ǫ)σ(Â) > σ(Ẑ). Given the ordering of the stretches, it suffices to show it for Ẑ = B̂. Recalling
that ǫ < (σ(Â)− σ(B̂))/σ(Â), the proof is concluded.

3.5 Extensions

The proof in the previous section assumed that the set of initial centers correspond to the means
of the “morning clusters” for each gadget Gi with i > 0. A common initialization for k-means
is to choose the set of centers among the data points. We now briefly explain how to modify
our instance so to have this property and the same number of iterations.

Consider the unit gadget Ĝ for simplicity. One of the center will be the point Ê. In the
beginning we want all the points of Ĝ except Â to be assigned to Ê. To obtain this, we
will consider two new data points each with a center on it. Add a point (and center) Î with
xÎ = xÂ = 1 and such that yÂ − yÎ is slightly less than d(Â, Ê). In this way Â will be assigned

to this center. Also, we add another point (and center) Ĵ very close to Î (but further from Â)
so that, when B̂ joins the cluster {Î} moving the center towards itself, the point Î will move
to the cluster {Ĵ}. By modifying in this way all the gadgets in the instance, we will reach the
morning clustering of each gadget in two steps. Also it is easy to check that the new points do
not affect the following steps.

Har-Peled and Sadri [9] conjectured that, for any dimension d, the number of iterations of
k-means might be bounded by some poynomial in the number of point n and the spread ∆ (∆
is ratio between the largest and the smallest pairwise distance).

This conjecture was already disproven in [2] for d = Ω(
√
n). By using the same argument,

we can modify our construction to an instance in d = 3 dimension having linear spread, for
which k-means requires 2Ω(n) iterations. Thus, the conjecture does not hold for any d ≥ 3.

4 Conclusions and further discussion

We presented how to construct a 2-dimensional instance with k clusters for which the k-means
algorithm requires 2Ω(k) iterations. For k = Θ(n), we obtain the lower bound 2Ω(n). Our result
improves the best known lower bound [2] in terms of number of iterations (which was 2Ω(

√
n)),

as well as in terms of dimensionality (it held for d = Ω(
√
n)).

We observe that in our construction each gadget uses a constant number of points and wakes
up the next gadget twice. For k = o(n), we could use Θ(n/k) points for each gadget, and it
would be interesting to see if one can construct a gadget with such many points that is able to
wake up the next one Ω(n/k) times. Note that this would give the lower bound (n/k)Ω(n/k),
which for k = nc (0 < c < 1), simplifies to nΩ(k). This matches the optimal upper bound
O(nkd), as long as the construction lies in a constant number of dimensions.

A polynomial upper bound for the case d = 1 has been recently proven in the smoothed
regime [14]. It is natural to ask if this result can be extended to the ordinary case.

Acknowledgements

We greatly thank Flavio Chierichetti and Sanjoy Dasgupta for their helpful comments and
discussions. We also thank David Arthur for having confirmed some of our intuitions on the
proof in [2].

10

References

[1] Pankaj K. Agarwal and Nabil H. Mustafa. k-means projective clustering. In PODS ’04:
Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 155–165, New York, NY, USA, 2004. ACM Press.

[2] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Nina Amenta
and Otfried Cheong, editors, Proc. of the 22nd ACM Symposium on Computational Geom-
etry (SOCG), pages 144–153. ACM Press, 2006.

[3] David Arthur and Sergei Vassilvitskii. Worst-case and smoothed analysis of the ICP algo-
rithm, with an application to the k-means method. In Proc. of the 47th Ann. IEEE Symp.
on Foundations of Comp. Science (FOCS), pages 153–164. IEEE Computer Society, 2006.

[4] Pavel Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Soft-
ware, San Jose, CA, USA, 2002.

[5] Sanjoy Dasgupta. How fast is k-means? In COLT Computational Learning Theory, volume
2777, page 735, 2003.

[6] Richard O. Duda, Peter E. Hart, and David G. Stork. In Pattern Classification, John Wiley
& Sons, 2000.

[7] Forgy, E.W. Cluster analysis of multivariate data: efficiency versus inter- pretability of clas-
sifications. In Biometric Society Meeting, Riverside, California, 1965. Abstract in Biometrics
21 (1965), 768.

[8] Frédéric Gibou and Ronald Fedkiw. A fast hybrid k-means level set algorithm for segmenta-
tion. In 4th Annual Hawaii International Conference on Statistics and Mathematics, pages
281–291, 2005.

[9] Sariel Har-Peled and Bardia Sadri. How fast is the k-means method? In Algorithmica,
41(3):185–202, 2005.

[10] Mary Inaba, Naoki Katoh, and Hiroshi Imai. Variance-based k-clustering algorithms by
Voronoi diagrams and randomization. In IEICE Transactions on Information and Systems,
E83-D(6):1199–1206, 2000.

[11] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu. A local search approximation algorithm for k-means clustering. Comput. Geom., 28(2-
3):89–112, 2004.

[12] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–136, 1982.

[13] J. B. MacQueen: Some Methods for classification and Analysis of Multivariate Observa-
tions, In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability,
Berkeley, University of California Press, 1:281-297, 1967.

[14] Bodo Manthey, Heiko Röglin. Improved smoothed analysis of the k-means method. To
appear in Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6, 2009.

[15] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. In Journal of the ACM, 51(3):385–463,
2004.

11

	Introduction
	Our result

	The k-means algorithm
	Lower bound
	High level intuition
	Definitions and further intuition
	Formal Construction
	Proof
	Extensions

	Conclusions and further discussion

