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Abstract

In this paper, we investigate the effects of using threedhffit nurs-
ery sizing policies on overall and garbage collection penfnces.
As part of our investigation, we modify the parallel genienaal
collector in HotSpot to support a fixed ratio policy and heagila
ability policy (similar to that used in Appel collectorsh addition
to its GC Ergonomics policy. We then compare the performante
15 large and small multithreaded Java benchmarks; eachen gi
reasonably sized heap and utilizes all three policies. €kalt of
our investigation indicates that many benchmarks are then$d
heap sizing policies, resulting in overall performancdedénces
that can range from 1 percent to 36 percents. We also findrhat i
our server application benchmarks, more than one policy beay
needed. As a preliminary study, we introduchydorid policy that
uses one policy when the heap space is plentiful to yielchoti
performance and then switches to a different policy to imersur-
vivability and yield more graceful performance degradatimder
heavy memory pressure.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guagé: Processors—Memory management (garbage collection)

General Terms Experimentation, Languages, Performance

1. Introduction

Garbage collection (GC) is a process to automatically necthy-
namically allocated memory. It has been adopted as a laegeag
ture in many modern object-oriented languages including,Ja#,
and Visual Basic .NET. With garbage collection, progransrae
relieved from the burden of explicitly managing memory, dides
and error prone task. As of now, one commonly adopted GG strat
egy is generational garbage collection.

Generational collectors concentrate their collectiororgdf in
thenursery a memory area used for object creations [23]. Because
the nursery is usually configured to be smaller than the raatur
space (an area to host surviving objects from the nursémsetcol-
lectors often yield shorter GC pauses than most other Gé&gtes.
The three common ways to set the size of the nursery are:|{g¢o
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fixed nursery/mature ratio throughout execution (e.giakgener-
ational collector used inlotSpof the flagship Java Virtual Machine
from Sun Microsystems [7]); (ii) to adjust the nursery siaséd on
the amount of time spent in minor and full collection (e.gralel
generational collector in HotSpot); and (iii) to adjust thersery
size based on the amount available memory after each dotect
(e.g., Appel collectors such as the one in Jikes RVM [1, 8]).

As modern Java applications become more complex, they also
demand more heap memory during execution. A recent reldase o
jvm2008oenchmark suite from SPEC clearly shows this trend [19].
This Java benchmark suite is a collection of desktop anchscie
tific applications, which replaces the aging and well-stddvm98
[20]. There are two notable runtime differences betweer2d08
and jvm98: (i) a much higher degree of execution concurréncy
jvm2008 than that of jvm98; and (ii) a much higher level of pea
usage in jvm2008 than that of jvym98. In jym98, there is onlg on
multithreaded applicatiomtrt, which employs two threads. On the
other hand, all applications in jvym2008 are multithreadedst ap-
plications employ eight threads except samflow which employs
over three hundred threads). All applications in jym98 aanwith
as little as 16MB of heap [6]. However, several benchmarks in
jvm2008 need the heap to be at least several hundred megabyte
to run.

Furthermore, Java is now widely used in the development of
application servers. An application server is a softwastesy that
delivers applications to clients. It also handles busihegk and
data accesses for these applications. The leading tedynaked
to develop application servers is Java Platform Entergiton
or JEE (formerly known as J2EE) from Sun Microsystems. Many
commercial and open-source implementations of the JEfophat
include IBM WebSphere [9], JOnAS [13], and JBoss [10]. Ryasi
investigations have shown that it is very common for apfiica
servers to be utilizing hundreds to thousands of concutteatds
[29, 30]. These threads allocate objects from heaps thatean
several gigabytes in sizes.

This Work. It is unclearif and howusing different nursery sizing
policies can affect the performance of these concurrenthasag-
intensive desktop, scientific, and server applicationsaBee nurs-
eries are used for initial object allocations, they must &efully
sized to provide ample time for short-lived objects to dimipto
minor collection. Therefore, we hypothesize that imprépsized
nurseries can lead to sub-optimal performances due to sixees
minor and full collection overheads.

In this work, we investigate the effects of using the threfe di
ferent heap sizing policies on performances of 15 multiatesl



benchmarks from jvm2008 and DaCapo benchmark sujgéswWe
also investigate the effects of nursery sizing policiesjy2005
and jAppServer2004 two application server benchmarks from
SPEC [17, 18].

There are two performance metrics that we use in our invastig
tion: execution time and throughput. Execution time is usezl/al-
uate multithreaded applications from DaCapo. Throughpusid
to evaluate the remaining benchmarks. We observe garbéige-co
tion behaviors (minor and full collection invocations aimde spent
in each of them) an¥inimum Mutator Utilization(MMU) to fur-
ther analyze the impacts of using different nursery sizialicies
on performance. Our investigation reveals that some beadtsm
respond well to the fixed-nursery policy while others reshomll
to the variable-nursery policies. Furthermore, serveliegjions
that exhibit dynamic and fluctuating workload may requirereno
than one policies to perform well throughout execution. Wieo-
duce ahybrid scheme that dynamically switches policies as work-
load profiles change.

The remainder of this paper is organized as follows. Section
2 provides the background information about HotSpot. $acti
3 describes the three sizing policies used in this work. i&ect
4 describes the experimental methodologies used to corthlisct
work. Section 5 reports the results of our investigatiorctiea 6
describes our hybrid policy. Section 7 briefly discussesesofithe
existing related research efforts, and the last sectionladas this

paper.

2. Parallel Collector in HotSpot

Parallel collector in HotSpot uses copying to collect thesety
(minor collectior) and mark-compact to collect the entire heal (
collectior). Both types of collection can be set to utilize multiple
collector threads. The nursery is further partitioned thtee areas:
edenand two survivor spacedrom and to, which collectively
account for 20% of the nursery in the default configuration of
HotSpot. Object allocations initially take place in #denspace. If
theedenspace is full, and there is available space inftbe-space

the from-spaceis used to service subsequent allocation requests.
In this technique, minor collection is invoked when both éuken
andfrom spaces are full. The collection process consists mainly of
copying any surviving objects into the-spaceand then swapping
the names of the two survivor spaces (frem-spacebecomedo-
space and vice versa). Thus, the-spacds always empty prior to

a minor collection invocation [21], and it is used as an aginea

for longer living objects to die within the nursery. It is wlomoting
that the aging area is only effective when the number of abpie
objects from the eden and tfrem spaces are small. If the number
of surviving objects become too large, most of these objergs
promoted directly to the mature generation.

Similar to most copying collectors, HotSpot usepy-reserve
space to ensure that the amount of available memory in therenat
generation is large enough to accommodate surviving abfeamn
a minor collection. It is possible that all objects in theseny sur-
vive a minor collection and thus, the size of the copy-resepace
is usually set to be the same as the size of the nursery. Wigen th
amount of the copy-reserve space is less than the nursérypfu
lection is invoked. The full collector in HotSpot performargage
collection in four phases: marking, precompaction, adjggpoint-
ers, and compaction. The marking phase goes through theetst
and marks all reachable objects. The precompaction phase- ca
lates a new target address for each object after compaciera
codes the address into the object. The next phase updatesfany
ences to an object to the new target address. This is donenpjysi
reading the value encoded in the object as part of the prezctiop

1The version of DaCapo benchmarks that we used is dacapc06

phase [11]. The last phase slides objects toward the lowlesess
of the mature space.

To be able to adjust the size of the nursery space, the paralle
collector initializes the starting address of the maturacspat
the lowest address of the heap. In this layout, the compactio
process slides objects toward the lowest address, leavinged
memory at the top (higher-address) of the mature space.t Righ
above the mature space is the nursery. After each minorctiolfe
the eden space is empty, allowing a straight-forward adtjest of
the nursery size.

3. Nursery Sizing Policies

In this section, we described three common sizing polidias we
will study in this paper. The first policy is GC Ergonomicseds
by parallel collector in HotSpot. (We refer to GC Ergonomécss
default) This policy dynamically adjusts the ratio based on minor
and mature collection overheads. The second policy is miaing

the same ratio between nursery and mature space througkeut e
cution. This is the policy used by the serial collector in Siobt.
(We refer to this policy afixed ratia) The third approach is adjust-
ing the nursery size based on the object occupancy in therenatu
space [1, 8]. (We refer to this policy &gap availability)

3.1 GC Ergonomics Policy (Default)

HotSpot's parallel collector uses this policy to strike sabae be-
tween maintaining small heap size and incurring small ggelzal-
lection overhead. In this policy, the collector monitore thver-
heads of minor and full collection invocations. Such infatian
is then used to determine the size of to/from spaces, the \aflu
the tenuring threshold, the size of the nursery, and thedfiziee
entire heap. By adjusting these parameters, the policynptteto:
(i) keep GC pauses below a specified goal, (ii) achieve a fipéci
throughput goal, and (iii) achieve small heap footprint][22

To achieve these three goals, the implementation of GC er-
gonomics policy makes sizing decisions in the followingestd

1. If a GC pause time is greater than the desired goal, theypoli
adjusts the corresponding generation size in hope of aclgiev
the desired goal in the next collection invocation. It casoal
adjust tenuring threshold to reduce minor collection ogarh
by promoting more objects into the mature space [24, 25].

If the pause time goal is met, the policy considers theutjine
put performance. If the throughput is below the desired,gbal
adjusts the heap in hope of meeting the throughput goal.

. If the pause time and throughput goals are met, the policy
decreases the generation sizes to reduce footprint.

2.

Specifically, to determine if the nursery size should be rgeld
or reduced to meet a pause time requirement, a pause estimato
is used to make decisions. The estimator monitors the oelstip
between nursery and mature space si2gsand pause timédy/, to
find the slope of the function Y=f(X). If the slope is biggeathO,
it decreases the generation size to reduce collection pismedor
this generation. To meet a throughput requirement, thenasir
first determines if the actual throughput (recordednasator cos)
meets the requirement, if it does not, the size of the geioarat
with larger GC time is adjusted. There is also an estimatadjost
the tenuring threshold [24, 25]. If both of these goals ar¢, the
policy tries to reduce the heap size to conserve memory usage
while ensuring that the two goals continue to be met.



3.2 Fixed Ratio Policy (FR)

We implement this policy so that users can set the size of the

nursery using a command-line argument that specifies the rat

between the nursery and the mature space (e.g. the ratiof 1/

nursery and 2/3 mature or 1:2 is used as the default ratigyftems
using X86-64 processors). Our command-line interfacenslar

to HotSpot's serial collector, which uses this policy. Oseg, the
ratio stays fixed throughout an execution. For examplegifiitial
heap size is 99MB, using the fixed ratio approach with 1:2rati
the nursery size is set to 33MB, and the mature space sizétis se
66MB. If later on, the heap is enlarged to 198MB, the ratiausen
the nursery and mature space remains the same at 1:2; thz is,
nursery size is now 66MB and the mature space size is 132MB.

3.3 Heap Availability Policy (HA)

In this policy, the nursery size is variable depending ondbe
ject occupancy in the mature space. If copying is used tecbll
the nursery, a copy-reserve space is also used to ensureesstc
ful completion of minor collection. The availability basgdlicy
adjusts the nursery size after each minor collection.ditti the
nurseryn, occupies half of the heap and copy-reserve spagec-
cupies the other half= cr = %). When the nursery is full, the
surviving objectsyn, are copied to the copy-reserve space. Once
done, the nursery occupies half of the available space ihd¢he,
and the copy-reserve occupies the other half(cr = W).
This nursery resizing process repeats until a certain biashold
is reached or back-to-back allocation failures in the myreecur
(we use the latter criterion in our implementation). At thaint, the
system makes a full collection invocation. Appel generatlaol-
lectors and Jikes RVM generational collector have utilitesiHA
policy [1, 8]. Note that our implementation of this policyilites
no survival spacef.e., noto andfrom spaces).

4. Experiment

Computing Platform. We conduct our experiment on an Intel
Xeon system with four 2 GHz dual-core processors (total af8 p

window of 100 ms and within this time, the mutator runs for 70
ms and the garbage collection runs for 30 ms. Therefore, thia-m
tor utilization is 70%. MMU is the minimum utilization acresll
execution windows of the same size.

In terms of performance, benchmarks from the DaCapo suite re
port their results using time (seconds). On the other hdh8P&C
benchmarks report their scores using either operationsnparte
(jvm2008), Business Operation Per Second or BOPS (jbb2005)
jAppServer Operations Per Second or JOPS (jAppServer20dzt)
also report our results using these performance metrics.

Because large servers must be able to handle varying work-
load while yielding graceful performance degradation, 18e aon-
duct experiments to investigate the effects of using dffiesizing
policies on the performance degradation behaviors of jB52thd
jAppServer2004.

HotSpot Configuration. We follow Sun’s suggestion by setting
the initial ratio between the nursery and mature space t@Xite.,
the mature space is twice as big as the nursery). Our inatistig
shows that the ratio has very little effect on performanamo$t ap-
plications. However, in the two server benchmarks, the ssiggl
ratio yields the best throughput performance leading upécaar-
geted workload level. The difference can be as much as 20% in
jbb2005. We also use the default configuration of GC Ergonemi
that is, the pause target is left as undefined, and the thputigr-
get is left as 99% (mutator utilization is 99%). Based on tue-
figuration, the default collector makes generation siziagisions

to maximize throughput performaneadnot to control GC pause
We choose this configuration to force the GC ergonomics yolic
to keep trying to maximize throughput but without having ® b
concerned with maintaining low GC pause time.

For each application in jym2008 and DaCapo, we initialize th
minimumand maximumheap sizes to be twice as large as the
minimum requirement shown in Table 1. We set up the size this
way to ensure that all three policies have the same amourgag h
throughout execution. Otherwise, the GC Ergonomics potiay
reduce the heap size (i.e., when the throughput goal is raet);
action that can negatively impact performance. We find thahs
initial heap sizes allow many applications to execute wittod)

cessors). The system has 16 GB of physical memory. We used thegfficiencies while invoking reasonable numbers of GC intiocs.

parallel collector in HotSpot with necessary modificatiemsup-
port three nursery resizing policies. When we run jAppSeve4,

For our server applications, we configure the heap size td yie
the optimal throughput for a specific workload level. We $&t t

the described system is used to host JBoss, a widely used open heap size of jbb2005 to 1GB. This heap size is large enough for

source Java application server.

Benchmarks.The focus of our work is to investigate the effects of
sizing policies on performance of heap-intensive, mukitied ap-
plications. We choose to focus on this type of benchmarkamez
they are more representative of modern applications, wteth
more on thread-level parallelism and create heavy allonatres-
sure on heap allocators. Based on this selection criteeaeed to
subset DaCapo benchmark suite to only include four mudtétied
applications. We include every application in the jvm200&es
However, we do not include the start-up versions of theséGpp
tions, which are mainly used to evaluate performances af opti-
mizers. For server-side benchmarks, we use two benchmanks f
SPEC:jbb2005[18] andjAppServer200417]. The basic charac-
teristics of these benchmarks are provided in Table 1. Natewe
determine the minimum heap requirement for each applicdiio
using the parallel collector that utilizes the GC Ergonagolicy.

Metrics. We investigate the garbage collection performance by ob-
serving the number of minor and full GC invocations and theeti
spent in each GC invocation. We also regdimimum Mutator Uti-
lization as a metric that describe disruptions of application exe-
cution due to garbage collection [2, 5]. Mutator utilizatis ex-
pressed as a fraction of time that an application or a mutater
cutes within a given time window. For example, given an ekeou

jbb2005 to achieve the highest throughput performance wen
workload is 7-warehouse. For jAppServer2004, the worklead
controlled by increasing or decreasing the injection rai@,trans-
actions per second injected into the application servehéyltiver.

In our experiment, we set the heap size to 256MB. With this
setting, jAppServer2004 exhibits a linear throughput @enance
improvement when the injection rate is between 1 and 40. To
achieve good CPU utilization during garbage collection,cea-
figure HotSpot to utilize 8 minor collection threads and 8 &all-
lection threads.

Methodology. We execute each benchmdilte times and report
the best, the worst, and the average scorBlse average scores
are also used to provide graphical illustrations in the sextion.
For MMU illustrations, we randomly pick one of the five runs to
calculate mutator utilization. That same run is also useport
garbage collection performance for each application.

5. Evaluation

We report the performance of each benchmark in Table 2. Blotic
that each benchmark suite uses a different performancécuriedr
example, DaCapo suite reports the result of each benchmasdct
onds. On the other hand, jym2008 reports the results in tpasa



Benchmark Description [ Total allocations [ Minimum Number of
| “objects (million) | bytes (GB) | heap requirement (MB)| threads

DaCapo (only include multithreaded applications running with lasge” configuration)

eclipse Execute non-GUI JDT performance test of Eclipse IDE. 129 11.70 49 16

hsqldb Execute a number of transactions against a 10 0.60 323 407
model of a banking application.

lusearch Perform a text search of keywords over 17 2.59 9 70
a corpus of literature data.

xalan Transforms XML documents into HTML. 59 7.05 33 14

jvm2008 (exclude start-up versions)

compiler.compiler Java compiler from OpenJDK 7 compiling itself. 392 21.10 313 8

compiler.sunflow Java compiler from OpenJDK 7 compiling sunflow 449 25.33 194 8
a sub benchmark from jvm2008.

compress Compress data with a modified LZW method. 1 19.06 88 8

crypto.aes Encrypt and decrypt data using 2 96.44 39 8
the AES and DES protocols.

crypto.rsa Encrypt and decrypt data using 504 37.15 6 8
the RSA protocols.

crypto.svf Sign and verify using various protocols. 90 108.56 15 8

derby An open-source database written in pure Java. 597 28.01 463 8

mpegaudio An MP3 encoder using JLayer 10 42.66 5 8

scimark.fft (large) A subset of a floating point benchmark from NIST. <1 541 579 8

scimark.lu (large) A subset of a floating point benchmark from NIST. <1 737 612 8

scimark.sor (large) A subset of a floating point benchmark from NIST. <1 0.73 353 8

scimark.sparse (large) A subset of a floating point benchmark from NIST. <1 4.86 511 8

scimark.mc A subset of a floating point benchmark from NIST. <1 0.71 9 8

serial Serializes and deserializes primitives and objects. 547 28.73 333 8
using data from the JBoss benchmark.

sunflow A multi-threaded global illumination rendering systen. 316 0.55 19 316

xml.transform Test implementations of java.xml.transform. 532 32.86 39 8

xml.validation Test implementations of java.xml.validate. 543 61.08 109 8

jbb2005 A Java program emulating 3-tier sytem 323 19.86 373 8
focusing on the middle tier (Wh = 8).

jAppServer2004 A JEE benchmark emulating an automobile maker 2096 181.44 177 1116
and its network of dealers (Tx = 40).

Table 1. Benchmark Characteristics

per minutes. Thus, for the results of DaCapo benchmarkayerlo O Default HA B FR
reported value means higher performance. For the rest,lehig 1 40 -
reported value means higher performance. The best aveeafpe-p

mance for a particular benchmark appears in bold face. 130 4 _

5.1 Performances of DaCapo and jvm2008

In eclipse xalan, compiler.compiler the entirescimarksuite, se-
rial, and xml.validate the performance differences are less than M
10%, meaning that sizing policies have small impacts on #re p 1.10 §
formance of these benchmark programs. For the remainirtg eig

benchmark programs, the performance differences withapgfi- 1.00 -
cation, as illustrated in Figure 1, range from 10% to 36% when
normalized against the policy that yields the lowest pentance. 0.90 1

The results also indicate that in three out of eight appbicast the
HA policy outperformddefaultand FR.

0.80

5.1.1 Discussion

We report the garbage collection behavior of each apptinaii
Table 3. Note that applications that show performance rdiffees
of 10% or more appear in bold face. Flusearch crypto.aes
crypto.svf derby, sunflow andxml.transform we can clearly see ~ Figure 1. Performance improvements in applications that are sen-
significant differences in the number of minor or full colien sitive to sizing policies

invocations among policies. However,hisgldh there is very little

different in the number of both minor and full GC calls. In the

remainder of this section, we analyze possible causes ¢isattr

in performance differences in these eight applications. collection (50% in the fixed ratio approach and 60% in the HA
hsqgldb. As stated earlier, the number of GC calls are very similar approach). This is an indication that setting the heap sibe twice
across all policies (the HA policy invokes one more minor GC the minimum heap requirement may not provide sufficient heap
calls). However, the fixed and default policies outperfolra HA space for this application. By analyzing garbage collectime, we
policy by as much as 20%. Further analysis reveals that bsgld find that FR spends less time in full collection (3.76 seconstead
spends a significant portion of total execution time on ggeba of 5.87 and 4.65 seconds as in HA and default, respectively).

compiler.
sunflow
crypto.aes
crypto.svf
derby
sunflow
xml.transform
hsqldb
lusearch




Default HA FR

Benchmark (heap size) Min. T Max. | Avg. Min. T Max. | Avg. Min. T Max. | Avg.
DaCapo (Each benchmark report result in seconds; thereforglower value is better.)
eclipse (98MB) 62.61 65.07 63.63 64.11 ] 67.28 65.60 63.08 65.44 63.92
hsqldb (646MB) 8.39 9.50 8.79 9.11 ] 11.01 9.99 8.02 8.68 8.33
lusearch (18MB) 6.69 7.45 7.10 8.90 9.61 9.33 7.38 7.99 7.65
xalan (66MB) 33.77 34.29 33.99 3219 34.02 33.24 32.98 35.26 33.97
jvm2008 (Each benchmark reports result in operations per mnute; therefore, higher value is better.)
compiler.compiler (626MB) 241.2 | 243.24 242.05 || 254.09 266.6 262.38 240.58 | 246.28 243.99
compiler.sunflow (388MB) 76.3 77.5 76.97 88.92 91.75 90.36 75.86 78.87 77.40
compress (176MB) 224.33 | 236.34 229.17 || 210.41 | 219.42 216.66 218.45 | 237.56 228.54
crypto.aes (78MB) 33.42 34.01 33.67 39.94 41.1 40.68 33.71 34.01 33.88
crypto.rsa (12MB) 184.74 | 190.02 187.08 || 183.45| 187.16 185.40 185.22 | 189.31 187.76
crypto.signverify (30MB) 151.84 | 154.28 153.00 185.5 | 187.18 186.38 152.69 | 155.36 153.95
derby (926MB) 72.5 75.16 73.25 53.05 54.64 54.21 72.91 74.69 73.59
mpegaudio (10MB) 64.23 66.33 65.47 61.64 62.84 62.44 64.32 66.54 65.61
scimark.fft (1.16GB) 20.57 20.83 20.74 20.51 20.94 20.77 20.59 20.78 20.69
scimark.lu (1.22GB) 5.19 5.67 5.50 5.56 5.71 5.61 5.13 5.78 5.48
scimark.mc (18MB) 159.06 | 159.78 159.46 || 150.33 | 160.09 157.81 159.43 | 164.46 160.66
scimark.sor (706 MB) 29.48 30.6 30.28 30.57 30.99 30.81 29.83 30.57 30.24
scimark.sparse (1.02GB) 11.27 12 11.75 12.37 12.88 12.68 11.28 12.06 11.60
serial (666MB) 51.4 54.33 52.78 48.52 50.14 49.36 52.24 53.75 53.17
sunflow (38MB) 28.55 33.13 32.18 28.37 32.82 29.52 31.64 33.1 32.58
xml.transform (78MB) 97.37 98.33 97.75 87.56 90.06 88.74 95.9 98.64 97.70
xml.validate (218MB) 198.08 | 203.87 201.23 || 200.78 | 205.55 203.28 196.91 | 200.85 198.76
Java Server Benchmarks (Each benchmark reports result in tansactions per second; therefore, higher value is better.)
jbb2005 at 7WH (1GB) 102977 | 116372 ] 112559.20(] 91916 | 98001 | 95081.20 109211 | 116124 | 113721.00
jAppServer2004 at 40Tx (256MB]  26.68 27.63 27.29 26.46 | 26.79 26.70 26.80 27.26 27.06

Table 2. Overall performance of each benchmark. We run each

benghfivar times and report the worst, the best, and the average

performance scores. For each of the two server benchmagkepart the peak performance when running a sequence eéisiog workload.
We also report the workload setting that yields the peakudinput performance and the heap size that we use.

Therefore, FR vyields the shortest execution time. In termS©
pause time, the HA approach yields the shortest maximumepaus
time at about 500ms but has lowest MMU throughout execution.
On the other hand, the FR approach yields the highest MMU
throughout execution.

lusearch.For this application, the default approach yields the best
performance. This is because the overall cost of garbadection

is dominated by minor collection. Because HA makes many more
minor GC invocations, its performance is much lower tharséhaf
default and FR. The additional minor collection time in HAgles
that constantly reducing the nursery size may have resutexbre
promotion of objects to the mature space, and thus, higheomi
collection cost and one more full collection invocationténms of
MMU, the default policy has slightly lower utilization thanose of

the other two approaches. This is because the longest fldtbton
time of the default policy (51 ms) is higher than the longesk f
collection times of HA and FR (33 ms and 37 ms, respectively).

compiler.sunflow. In this application, the costs of minor and full
collection in default and FR are about the same. On the otlred,h
HA makes about 10% fewer minor collection invocations. By ob
serving the heap sizing behavior when HA is used, we see thstt m
objects can be reclaimed in minor collection, and therefiheac-
cumulation of lived objects in the mature space occurs gridun
such a scenario, there is a long period of time that the HAGeabr
would be able to maintain larger nursery than the initiak Sid
the other two approaches (33% of the heap size). A largeenurs
means fewer minor collection invocations and more time for o
jects to die in the nursery. In terms of time, HA reduces theani
collection time by 20%, and therefore, resulting in higheMM
as the time window surpasses 25 seconds. However, it alkisyie
longer full collection time.

derby, sunflow, and xml.transform. In these three applications,
the HA policy invokes more minor collections and full colliens.
Further investigation reveals that by constantly redudimegsize

of the nursery, the HA approach promotes significantly mdre o
jects from the nursery to the mature space, spending over 60%
more time in performing minor collection in the case of sunflo
However, these objects die soon after promotion. As a rethat
HA approach spends up to 30% less time performing the full col
lection. However, because the overall cost of garbageat@leis
dominated by minor collection cost, larger minor collentiimes

in HA significantly degrade overall performance of theseliapp
tions. In terms of MMU, we find that when the nursery space is
reduced to a very small size in HA, full collection can takectmu
longer to complete. For example, in derby, the longest folllec-
tion time is 1.2 seconds. In the other two policies, the |ehdell
collection times are less than 900 ms. Moreover, by makingetw
as many minor collection invocations as the other two pesicHA
also yields significantly lower MMU throughout execution.

crypto.aes and crypto.svf.In these two applications, HA signifi-
cantly reduces the number of minor collection invocationsib-
creases the number of full collection invocations. To bette-
derstand such behavior, we observe the total allocationesg
made by each of these applications and the minimum heap space
needed to successfully execute each of these programs.éilesge
these two applications are extremely dynamic memory intens
(crypto.aes allocates 96 GB of objects while crypto.svbcites
108 GB) but yet, most objects are short-lived as indicatesrball
minimum heap requirements (39MB for crypto.aes and 15MB for
crypto.svf). Moreover, these applications also allocatayrarge
objects (the average object sizes of crypto.aes and csyptare
48KB and 1.2KB, respectively).



Benchmark [ Default HA [ Fixed

[ Minor T Full | Minor T Full [ Minor T Full |
eclipse 583 14 599 25 593 14
hsqldb 8 5 9 5 8 5
lusearch 916 6 1946 7 915 6
xalan 1467 139 1142 155 1433 125
compiler.compiler 2048 186 2405 154 2038 183
compiler.sunflow 3001 344 2693 301 3034 354
compress 269 108 671 25 282 113
crypto.aes 6308 | 1010 2785 | 1540 6300 | 1023
crypto.rsa 6134 99 9112 84 6135 103
crypto.svf 12974 | 1731 5293 | 2884 | 13067 | 1716
derby 2639 3 5422 3 2622 3
mpegaudio 9347 163 | 25785 116 9820 209
scimark.fft 22 18 19 11 22 13
scimark.lu 22 10 14 13 20 11
scimark.mc 154 3 253 8 152 4
scimark.sor 6 3 4 2 6 3
scimark.sparse 36 9 17 7 32 8
serial 1293 3 2356 5 1302 3
sunflow 17060 198 | 35412 125 | 16658 194
xml.transform 19685 407 | 26552 709 | 19698 406
xml.validate 1467 139 1142 155 1433 125
bb2005 (8-warehouse) 28 2 5217 51 1675 11
bb2005 (23-warehouse) 13877 | 1312 | 41533 989 | 14054 | 1288
AppServer2004 (25 Tx)| 2523 99 | 11196 70 2527 86
AppServer2004 (50 Tx) 205 | 2599 | 22664 238 164 | 2706

Table 3. Comparing garbage collection behavior when different
sizing policies are used

In applications with such allocation and lifespan behasjior
nursery sizing can play an important role in determiningfqrer
mance. FR allocates about 33% of the heap for nursery, which i
too small for such extreme allocation requests. Thus, nfB10ris
called very frequently. The default approach also initiedi 33%
of the heap for nursery. Even when its adaptive mechanisiin per
odically enlarges the nursery size, such enlargementsairam
mediate so the system still suffers from excessive mindecton
invocations. On the other hand, HA initially has a largerseuy
size. Since these objects die very young, not many objeetprar
moted, and nursery sizes stay large. Having larger nusseggilts
in fewer minor collection invocations.

As these programs continue to execute, they start to maintai
consistent heap residencies. While these residenciematbghen
compared to the total size of allocation requests (e.gptorges
maintains an average residency of about 28MB or 36% of the
heap), when programs reach these residencies, the nuizesyo$
HA are often smaller than those of FR and default. Becausethe
applications also allocate large objects, such allocateam trigger
more frequent full collection invocations in HA, resultimglower
MMU throughout execution and longer maximum GC pause times.

5.2 Performances of jbb2005 and jAppServer2004

In this section, we investigate the throughput performaofceur
server benchmarks. Unlike other benchmarks used in thiy,stu
application servers are longer running, and their servaraahds
can vary over time. In most instances, the periods of higleer d
mands often “coincide with the times when the service has the
most value” [28]. Thus, it is crucial for these servers tohstand
heavy workload and have graceful performance degradaébawb

ior when they are faced with unexpected heavy demands.

We set up our experiment to observe the peak throughput per-
formance of each application and its degradation behavioe the
workload is heavier than the optimal workload that the sysie
configured to handle. In these two benchmarks, we can inerea
workload by increasing the number of warehouses in jbb20@5 a
the number of transaction requests in a period of time (figec

rate) in jAppServer2004. Theoretically, as we increassdhe/o
parameters (warehouse and injection rate), the througtgatior-
mance also increases. However, computing resource lioritaand
garbage collection disruptions can cause throughput pedoce
to degrade as we increase these parameters. In the systewetha
use, increasing workload can cause the system to fail inednpr
dictable ways. Failures sometimes appear as out-of-meatooys.
Other times, failures can appear as random errors that taeisgs-
tem to behave erratically.

As stated in the earlier section, we set the heap size to 1GB
and 256MB for jbbh2005 and jAppServer2004, respectivelythWi
1GB heap size and using the default policy, jbb2005 can run to
completion when the number of warehouses (Wh) ranges from
1 to 23 warehouses. We set the ramp-up/ramp-down times to 2
minutes and measurement time to be 4 minutes in each run. For
jAppServer2004, the operational injection rate (Tx) ranfrem
1 to 54 when the default policy is used, and the heap is set to
256MB. We set the ramp-up/ramp-down times to 5 minutes and
measurement time to 10 minutes in each run.

When the default approach is used, we observe a linear serea
in JOPS when the injection rate ranges from 20 to 40. In tingea
we get an increase of 2.5 to 3 JOPS for every increase in Tx by
5. When the injection rate is increased beyond 40, the tlimouty
performance continues to increase but at a lower rate. Torens
that the observed behavior is not an expected throughpaivimh
we also conduct an experiment with 1GB heap. With a larger
heap, throughput improvement remains linear from 20Tx {680
Thus, we conclude that the non-linear performance imprevem
at 40Tx is due to a small heap size and increasing GC efforts.
The application becomes unstable at 55Tx and after. All of ou
experimental runs give out-of-memory errors at 60Tx. WhBrig=
used, the application exhibits unstable behaviors oncinjéetion
rate surpasses 50. The system sometimes fails due to aenobras
“connection refused” or “divided by 0".

We report the throughput performance of these two benchsnark
in Figure 3 and Table 2. As shown in Table 2, jbb2005 achieves
its peak throughput performance when the workload is equ@t t
warehouse. For jAppServer2004, we report the throughpdiope
mance at 40Tx. This is not the workload that achieves the peak
throughput performance, but it is the last workload befdre t
throughput improvement becomes non-linear (highlightieydot-
ted box in Figure 3(a)). As shown in Figure 3(a) and (b), whan e
ploying HA, these two server benchmarks can handle highek-wo
load than those of the default and FR policies before failing

100000
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Figure 2. Minimum mutator utilization (MMU)

5.2.1 Discussion

To better understand the impacts of sizing policies on tijinput
performance, we investigate the MMUs of these two benchsnark
under different workload settings. Figure 2(h) and (i) sthates
MMUs of jbb2005. With 8-warehouse, the MMUs of FR and de-
fault are higher than that of HA throughout execution. Meep
the MMUs of these two policies surpass 80% for most of the ex-
ecution windows. They both are also higher than that of HA. Be
cause default also adjusts nursery size, it can reducerigeso GC

pause to be the same as HA. However, as the system is pushed t

its limit (i.e., when Wh is equal to 23), the MMU of HA degrades
much more gracefully than those of FR and default, whictugiiy
show no utilization for most of the window sizes.

Figure 2(j), (k), and (1) illustrate MMUs of jAppServer20@4
25Tx, 40Tx, and 50Tx, respectively. Again, at 25Tx, the MMUs
of FR and default are higher than that of HA. However, as the
workload increases to 40Tx, the MMUs of FR and default become
lower than that of HA. It is worth noticing that when the windo
size is 5 seconds (5e+03ms), the MMUs of default is 90% at
25Tx, but drops to 40% at 40Tx. When the workload is 50Tx,

the MMU at the same window size is only 20%. On the other
hand, the MMUs of HA at the same window size are 60%, 57%,
and 40% at 25Tx, 40Tx, and 50T, respectively. From thisltesu
the MMU performance of HA appears to degrade more gracefully
Furthermore, it also appears that as the workload beconsegene

the maximum GC pause remains the same for HA. On the contrary,
FR and default experience longer pauses as the workloaghises.

As stated in Section 2, copying generational collectorsroft
utilize copy-reserve space, a space equaled to the size niitkery
6ocated in the mature generation, to ensure that minorataiecan
complete successfully. If the amount of copy-reserve idlemthan
the nursery, there is a chance that minor collection willdaie to
a larger volume of surviving objects than the size of comeree,
and therefore, full collection is invoked.

Because the optimal ratio for the default and FR approaches i
1:2, the nursery occupied a large portion of the heap. Thezeit
becomes exceedingly difficult under heavy demands to miniata
large enough copy-reserve space to allow successful moliece
tion invocations. When such condition occurs, the systerokies
full collection instead of minor collection. We discovelathunder



heavy workload, this condition occurs repeatedly, leadingany the default policy to the HA policy. To identify a suitablelwa of
consecutive full collection invocations. consecFailure, we conduct an experiment using different values
For example, in the FR policy, jbb2005 invokes garbage colle  across several applications. Our experiment indicataswhacan
tion 14502 times before running out of memory at 24-warebous detect these performance degradation zones by monitarirtgyd
(not shown in the table). During the first 13506 GC invocagion  consecutive full collection invocations. In the next sudtsm, we

only 645 of these invocations are full collection. The remivajy conduct a preliminary evaluation of our implementation biting
12861 invocations are minor collection. This is expectedriy consecFailure to 2.

generational collector as most of the collection efforteudti be

concentrated in the nursery area. However, the last 998 atians 6.2 Evaluation

prior to memory exhaustion are full collection. Each of #nhésll
collection invocations takes 600 to 800 milliseconds to plate.
Prior to each of these invocations, the heap is about 90%diouV-
ever, each full collection invocation only reclaims abo% 6f the
heap.

When Tx is equal to 50, jAppServer2004 also exhibits a simila
behavior when FR or default is used. Full collection is iretk 6
times and 12 times more often than minor collection in FR an
default, respectively. On the other hand, HA invokes 95 simere
minor collection than full collection. This is because HAaly
suffers from the problem of copy-reserve space being todlsm
Thus, minor collection is still invoked under heavy workdod his
is a major reason why the two benchmarks can handle higher
workload when the HA policy is used. In the case of jbb2005,
throughput performance also degrades more gracefully.

As can be seen in Figure 4(a) and (b), our hybrid policy wgiz
the default policy when the workload is light, then switcttes
the HA policy when it first detects back-to-back full collect
invocations. For jAppServer2004, the hybrid approach pced
stable performance and linear throughput improvement 681,
which is 8 Tx more than the highest workload that default can
d handle and 13 Tx more than the highest workload that FR can
handle. This result is achieved while using the same hea&pasiz
the other two policies. For jbb2005 (see Figure 4(b)), thbriay
a policy yields the highest performance up to 16-warehousktlaen
allows the throughput performance to degrade more grdgefitér
21-warehouse. Furthermore, it allows jbb2005 to handleowrt
warehouse while the default and FR approaches can onlyéapd|
to 23-warehouse when given the same heap size.
] o ) We also notice that it is possible to achieve higher perfoicaa
Remark. The result of our experiment indicates that technigues not job2005 if our policy was to switch after 18-warehousetdas

suffering fro_m conse(_:utive full collection invocationsrmg heavy 15-warehouse. We can achieve this by making the switching cr

demands will allow (i) the system to handle higher workloa teria greater than 2 consecutive full collection invocasioThis is

(i) the throughput to possibly degrade more gracefullythie: next because jbb2005 experiences a drop in throughput at 15oase

section, we introduce a hybrid technique that leveragesiéfeult but recovers shortly after. In that drop, there is a backaok full

or FR approach to achieve high throughput performance wien t  jjection. By changing theonsecFailure to be greater than 2,

workload is light, but avoid suffering from repetitive fudbllection the hybrid policy does not switch until 18-warehouse. Onather

invocations when the workload is heavy. hand, any value that is greater than 2 has no impacts on the per
formance of jAppServer2004. It is likely that the optimaiteria

6. A Hybrid Policy will be application dependent. For future work, we will istigate

more adaptive ways to identify optimal criteria to switcbrfr one
policy to the next.

We also experiment with using the hybrid approach in other
benchmarks. The results indicate that the proposed polaids/
very little if any benefit to desktop and scientific benchnsairk
the DaCapo and jvm2008 suites. Only scimark.fft shows a very
modest improvement over the result of the previously bebtyo
This is expected as these benchmarks rarely have backekofiba
collection invocations when the heap is set to be twice thgrmim
memory requirements.

In the current implementation of jbb2005, we can only inseea
the number of warehouses in each run, but not decrease the num
ber of warehouses. In real-world settings, workload caridte so
it is important for our proposed scheme to be able to switakba
from HA to default if the workload should become lighter. Te b

So far, we have observed that the FR and default policies ean p
form well when the workload ranges from light to moderatec®n
the workload becomes heavy, the HA policy allows garbage col
lection to be more efficient, enabling the system to handigéri
workload. This insight indicates that a hybrid policy thahple-
ments default or FR with HA can provide high performance unde
expected workload and greater survivability under heavskisad.

In the remainder of this section, we briefly discuss a prelany
investigation of a hybrid policy that can switch betweendbé&ult
policy and the HA policy. We implement the proposed hybrid
policy in HotSpot and conduct a preliminary evaluation gsine
two server benchmarks.

6.1 Implementation

In terms of programming, the proposed hybrid policy is siyrgoh able to test this feature, we create a modified version ofgbb2
integration of two nursery resizing algorithms. Howeverg om- (jbb2005mod), in which the workload can be decreased. For ex-
portant challenge is deciding when to switch from the defpal- ample, if we configure the application to run from 1-warefeous

icy to the HA policy. There are several criteria that can bedus to 23-warehouse with the warehouse increment of 1, our neatifi
for switching. One approach that we contemplated was totmoni  jbb2005 increases the workload in a similar way to the unfrestli
the throughput performance. However, this approach reguirat version. However, once a specified ending warehouse nuralgger (
a certain threshold be set to indicate that an applicatisirérched 23 in our experiment) is reached, instead of terminating atppli-
an actual performance degradation zone and not just a tampor cation continues to execute by incrementally reducing timaber

degradation due to other factors. Measuring performantferdi of warehouses back to 1 in an increment of 1 as initially cenfig

ences also incurs runtime overheads. ured. Currently, the switch-back threshold is the numbecanf-
Instead, we rely on a simple observation that consecutively secutive minor GC invocations that results in the nursezgssthat

voking full collection often occurs right before our senagpli- are greater than or equal to the initial nursery size. In opee

cations reach performance degradation zones. Thereforeun- iment, the threshold is set to 10. The throughput perforrasmd

rent implementation simply records the number of conseetitill the modified jbb2005 is shown in Figure 4(c).

collection invocations. Once the number reachessecF ailure, When the workload is getting heavier, the hybrid policy shits

which is a predefined value, our hybrid policy simply switsfrem from default to HA to avoid promotion failures. This switcarcbe
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Figure 4. Comparing throughput performancesdaffault HA, and the proposed hybrid policy

done easily after a minor collection. On the other hand,chig
from HA back to default is not as simple. This is because welnee
to invoke full collection to compact live objects, which urn, in-
crease the nursery size. Since we do not use other criterigger
this full collection, it often takes a long time to occur (e.gfter
many minor collection invocations). Once it occurs and tea/ n
nursery size is larger than the initial nursery size of diegfahe
system keep tracks of nursery sizes over the next severalrmin
collection invocations before it can decide whether to slwil his
switching delay is illustrates in Figure 4(c). For future rkiowe
plan to create more benchmarks that have complex and flumguat
workload and investigate other possible criteria or rustinehav-
iors that can reduce the delay time in triggering this meisman

7. Related Work

recovers additional copy-reserve space to ensure thairaiveng
data are “accommodated” [12].

In their technique, the copy-reserve space is set to be only a
fraction of, instead of equal to, the nursery. In an instathze
the volume of surviving objects from the nursery is largearth
the copy-reserve space, an algorithm similar to mark-catysed
in HotSpot is activated. In a way, their approach is more adea
than HotSpot because it can recover from a failing minorextibn
by switching to compaction on the fly. If this scenario occurs
HotSpot, the failed minor collection would be partially coleted.
The objects that cannot be promoted stay in the nursery. &k n
allocation failure will result in full collection invocatin.

Another related area to this work is dynamic switching obalg
rithms. Work by McGachey and Hosking switches from copying-
based minor collection to compaction-based full colletm the
fly [12]. The main criterion for switching is failing minor dec-

There have been numerous research efforts to reduce the copYiion due to insufficient copy-reserve space. This criteiioithe

reserve overhead and improve the performance of Appelatolte
Work by Velasceet al. [27, 26] reports that the volume of surviv-
ing objects from the nursery during minor collection rarekgeeds
20% of the nursery; however, a collector often reserves 160%
the nursery to ensure successful minor collection. Thehrigue
leverages information from prior GC invocations to safaguce
the size of the copy-reserve space. In doing so, the spadé-is e
ciently utilized and the frequency of GC invocations is reehll

same as ours except that our algorithms do not invoke fulkécel
tion, but instead reactively reduce the nursery size tonattore
minor collection invocations. Work by Somat al. [16] switches

to different garbage collection techniques in Jikes RVMK{a8ked

on changes in execution profiles. An annotation-based igghris
used to guide the selection process.

Work by Printezis uses hot-swapping to switch between mark-

sweep and mark-compact to perform full collection [14]. Twark

Their experimental results show a 16% speed-up of garbage yoes not modify the copying algorithm used for minor coleet
collection time. The heap usage is also reduced by 19% to 40%. The heyristic is that mark-compact can allocate objectshfaster

One possible issue with this approach is that objects ineserv
applications can be much longer living than objects in dgskt
applications. The assumption that only a small portion gécts
survives minor collection does not always hold and can ctheie
algorithm to fail.

due to pointer-bumping algorithm; thus it is used when there
plenty of space in the mature generation (e.g. during irstiart-
up or after heap expansion). However, mark-sweep has loxeer e
cution cost due to non-compacting nature. Thus, when thp isea
tight and full collection needs to be called frequently, kasweep

Work by Sachindran and Moss [15] attempts to reduce the copy should be used.

reserve space in the mature generation by partitioningehp mto
small windows. Thus, the size of copy-reserve is limitedHzydize

of each window. The copying phase is done in several passds, a
each pass only “copying a subset of windows in the old geioerat
[15]. Because the HotSpot collector uses mark-compact mgth
copy-reserve space for full collection, this techniquestoat apply

to our work.

Work by McGachey and Hosking [12] also reduces the copy-
reserve space by exploiting the insight similar to Velastal.
that only a small portion of objects survives a garbage ctitie
invocation. However, their technique uses compaction aack-b
up in the case that their prediction is wrong. The back-ufectidr

In effect, his approach tries to achieve the best of both dgorl
with these two algorithms. The goal of our work is similar fan
ezis's in that we also try to achieve the best of both worldsugh
fixed ratio and variable-ratio collectors. However, ourusds on
the performance and efficiency of minor collection instefiflib
collection. Combining their work and ours will create an opp
tunity for further improvement that will be investigated fasure
work.



8. Conclusion

In this paper, we investigate the effects of using threedffit nurs-
ery sizing policies on garbage collection performance aretail
performance. We conduct our investigation using 15 bencksna
Our results indicate that most of these benchmarks aretsensi
to nursery sizing policies and a favorable policies cangase the
performance by as much as 36%.

Based on this insight, we develop a hybrid policy that can
switch between the default policy and the HA policy for olm
throughput performance and graceful degradation beha@or
policy exploits an observation that when the copy-resepacs
becomes too small, itis a sign that the nursery should beeetjas
the lifespan characteristic is no longer conform to the oritgaily
used to tune the nursery size.

Our study has shown that our hybrid policy has very modest
benefit in desktop-like applications. However, our experital
result indicates that our proposed policy can make the timput
degradation behavior of server applications more prehlietand
graceful. In effect, it can improve survivability by makirsgrver
applications more capable of withstanding higher workload
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