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Abstract
In this paper, we investigate the effects of using three different nurs-
ery sizing policies on overall and garbage collection performances.
As part of our investigation, we modify the parallel generational
collector in HotSpot to support a fixed ratio policy and heap avail-
ability policy (similar to that used in Appel collectors), in addition
to its GC Ergonomics policy. We then compare the performances of
15 large and small multithreaded Java benchmarks; each is given a
reasonably sized heap and utilizes all three policies. The result of
our investigation indicates that many benchmarks are sensitive to
heap sizing policies, resulting in overall performance differences
that can range from 1 percent to 36 percents. We also find that in
our server application benchmarks, more than one policy maybe
needed. As a preliminary study, we introduce ahybrid policy that
uses one policy when the heap space is plentiful to yield optimal
performance and then switches to a different policy to improve sur-
vivability and yield more graceful performance degradation under
heavy memory pressure.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage]: Processors—Memory management (garbage collection)

General Terms Experimentation, Languages, Performance

1. Introduction
Garbage collection (GC) is a process to automatically reclaim dy-
namically allocated memory. It has been adopted as a language fea-
ture in many modern object-oriented languages including Java, C#,
and Visual Basic .NET. With garbage collection, programmers are
relieved from the burden of explicitly managing memory, a tedious
and error prone task. As of now, one commonly adopted GC strat-
egy is generational garbage collection.

Generational collectors concentrate their collection efforts in
thenursery, a memory area used for object creations [23]. Because
the nursery is usually configured to be smaller than the mature
space (an area to host surviving objects from the nursery), these col-
lectors often yield shorter GC pauses than most other GC strategies.
The three common ways to set the size of the nursery are: (i) touse
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fixed nursery/mature ratio throughout execution (e.g., serial gener-
ational collector used inHotSpot, the flagship Java Virtual Machine
from Sun Microsystems [7]); (ii) to adjust the nursery size based on
the amount of time spent in minor and full collection (e.g., parallel
generational collector in HotSpot); and (iii) to adjust thenursery
size based on the amount available memory after each collection
(e.g., Appel collectors such as the one in Jikes RVM [1, 8]).

As modern Java applications become more complex, they also
demand more heap memory during execution. A recent release of
jvm2008benchmark suite from SPEC clearly shows this trend [19].
This Java benchmark suite is a collection of desktop and scien-
tific applications, which replaces the aging and well-studied jvm98
[20]. There are two notable runtime differences between jvm2008
and jvm98: (i) a much higher degree of execution concurrencyin
jvm2008 than that of jvm98; and (ii) a much higher level of heap
usage in jvm2008 than that of jvm98. In jvm98, there is only one
multithreaded application,mtrt, which employs two threads. On the
other hand, all applications in jvm2008 are multithreaded (most ap-
plications employ eight threads except forsunflow, which employs
over three hundred threads). All applications in jvm98 can run with
as little as 16MB of heap [6]. However, several benchmarks in
jvm2008 need the heap to be at least several hundred megabytes
to run.

Furthermore, Java is now widely used in the development of
application servers. An application server is a software system that
delivers applications to clients. It also handles businesslogic and
data accesses for these applications. The leading technology used
to develop application servers is Java Platform EnterpriseEdition
or JEE (formerly known as J2EE) from Sun Microsystems. Many
commercial and open-source implementations of the JEE platform
include IBM WebSphere [9], JOnAS [13], and JBoss [10]. Previous
investigations have shown that it is very common for application
servers to be utilizing hundreds to thousands of concurrentthreads
[29, 30]. These threads allocate objects from heaps that canbe
several gigabytes in sizes.

This Work. It is unclearif and howusing different nursery sizing
policies can affect the performance of these concurrent andheap-
intensive desktop, scientific, and server applications. Because nurs-
eries are used for initial object allocations, they must be carefully
sized to provide ample time for short-lived objects to die prior to
minor collection. Therefore, we hypothesize that improperly sized
nurseries can lead to sub-optimal performances due to excessive
minor and full collection overheads.

In this work, we investigate the effects of using the three dif-
ferent heap sizing policies on performances of 15 multithreaded



benchmarks from jvm2008 and DaCapo benchmark suites1 [4]. We
also investigate the effects of nursery sizing policies onjbb2005
and jAppServer2004, two application server benchmarks from
SPEC [17, 18].

There are two performance metrics that we use in our investiga-
tion: execution time and throughput. Execution time is usedto eval-
uate multithreaded applications from DaCapo. Throughput is used
to evaluate the remaining benchmarks. We observe garbage collec-
tion behaviors (minor and full collection invocations and time spent
in each of them) andMinimum Mutator Utilization(MMU) to fur-
ther analyze the impacts of using different nursery sizing policies
on performance. Our investigation reveals that some benchmarks
respond well to the fixed-nursery policy while others respond well
to the variable-nursery policies. Furthermore, server applications
that exhibit dynamic and fluctuating workload may require more
than one policies to perform well throughout execution. We intro-
duce ahybrid scheme that dynamically switches policies as work-
load profiles change.

The remainder of this paper is organized as follows. Section
2 provides the background information about HotSpot. Section
3 describes the three sizing policies used in this work. Section
4 describes the experimental methodologies used to conductthis
work. Section 5 reports the results of our investigation. Section 6
describes our hybrid policy. Section 7 briefly discusses some of the
existing related research efforts, and the last section concludes this
paper.

2. Parallel Collector in HotSpot
Parallel collector in HotSpot uses copying to collect the nursery
(minor collection) and mark-compact to collect the entire heap (full
collection). Both types of collection can be set to utilize multiple
collector threads. The nursery is further partitioned intothree areas:
eden and two survivor spaces,from and to, which collectively
account for 20% of the nursery in the default configuration of
HotSpot. Object allocations initially take place in theedenspace. If
theedenspace is full, and there is available space in thefrom-space,
the from-spaceis used to service subsequent allocation requests.
In this technique, minor collection is invoked when both theeden
andfrom spaces are full. The collection process consists mainly of
copying any surviving objects into theto-spaceand then swapping
the names of the two survivor spaces (i.e.from-spacebecomesto-
space, and vice versa). Thus, theto-spaceis always empty prior to
a minor collection invocation [21], and it is used as an agingarea
for longer living objects to die within the nursery. It is worth noting
that the aging area is only effective when the number of copied
objects from the eden and thefromspaces are small. If the number
of surviving objects become too large, most of these objectsare
promoted directly to the mature generation.

Similar to most copying collectors, HotSpot uses acopy-reserve
space to ensure that the amount of available memory in the mature
generation is large enough to accommodate surviving objects from
a minor collection. It is possible that all objects in the nursery sur-
vive a minor collection and thus, the size of the copy-reserve space
is usually set to be the same as the size of the nursery. When the
amount of the copy-reserve space is less than the nursery, full col-
lection is invoked. The full collector in HotSpot performs garbage
collection in four phases: marking, precompaction, adjusting point-
ers, and compaction. The marking phase goes through the rootsets
and marks all reachable objects. The precompaction phase calcu-
lates a new target address for each object after compaction and en-
codes the address into the object. The next phase updates anyrefer-
ences to an object to the new target address. This is done by simply
reading the value encoded in the object as part of the precompaction

1 The version of DaCapo benchmarks that we used is dacapo-2006-10.

phase [11]. The last phase slides objects toward the lowest address
of the mature space.

To be able to adjust the size of the nursery space, the parallel
collector initializes the starting address of the mature space at
the lowest address of the heap. In this layout, the compaction
process slides objects toward the lowest address, leaving unused
memory at the top (higher-address) of the mature space. Right
above the mature space is the nursery. After each minor collection,
the eden space is empty, allowing a straight-forward adjustment of
the nursery size.

3. Nursery Sizing Policies
In this section, we described three common sizing policies that we
will study in this paper. The first policy is GC Ergonomics, used
by parallel collector in HotSpot. (We refer to GC Ergonomicsas
default.) This policy dynamically adjusts the ratio based on minor
and mature collection overheads. The second policy is maintaining
the same ratio between nursery and mature space throughout exe-
cution. This is the policy used by the serial collector in HotSpot.
(We refer to this policy asfixed ratio.) The third approach is adjust-
ing the nursery size based on the object occupancy in the mature
space [1, 8]. (We refer to this policy asheap availability.)

3.1 GC Ergonomics Policy (Default)

HotSpot’s parallel collector uses this policy to strike a balance be-
tween maintaining small heap size and incurring small garbage col-
lection overhead. In this policy, the collector monitors the over-
heads of minor and full collection invocations. Such information
is then used to determine the size of to/from spaces, the value of
the tenuring threshold, the size of the nursery, and the sizeof the
entire heap. By adjusting these parameters, the policy attempts to:
(i) keep GC pauses below a specified goal, (ii) achieve a specified
throughput goal, and (iii) achieve small heap footprint [22].

To achieve these three goals, the implementation of GC er-
gonomics policy makes sizing decisions in the following order:

1. If a GC pause time is greater than the desired goal, the policy
adjusts the corresponding generation size in hope of achieving
the desired goal in the next collection invocation. It can also
adjust tenuring threshold to reduce minor collection overhead
by promoting more objects into the mature space [24, 25].

2. If the pause time goal is met, the policy considers the through-
put performance. If the throughput is below the desired goal, it
adjusts the heap in hope of meeting the throughput goal.

3. If the pause time and throughput goals are met, the policy
decreases the generation sizes to reduce footprint.

Specifically, to determine if the nursery size should be enlarged
or reduced to meet a pause time requirement, a pause estimator
is used to make decisions. The estimator monitors the relationship
between nursery and mature space sizes,X, and pause time,Y , to
find the slope of the function Y=f(X). If the slope is bigger than 0,
it decreases the generation size to reduce collection pausetime for
this generation. To meet a throughput requirement, the estimator
first determines if the actual throughput (recorded asmutator cost)
meets the requirement, if it does not, the size of the generation
with larger GC time is adjusted. There is also an estimator toadjust
the tenuring threshold [24, 25]. If both of these goals are met, the
policy tries to reduce the heap size to conserve memory usage,
while ensuring that the two goals continue to be met.



3.2 Fixed Ratio Policy (FR)

We implement this policy so that users can set the size of the
nursery using a command-line argument that specifies the ratio
between the nursery and the mature space (e.g. the ratio of 1/3
nursery and 2/3 mature or 1:2 is used as the default ratio for systems
using X86-64 processors). Our command-line interface is similar
to HotSpot’s serial collector, which uses this policy. Onceset, the
ratio stays fixed throughout an execution. For example, if the initial
heap size is 99MB, using the fixed ratio approach with 1:2 ratio,
the nursery size is set to 33MB, and the mature space size is set to
66MB. If later on, the heap is enlarged to 198MB, the ratio between
the nursery and mature space remains the same at 1:2; that is,the
nursery size is now 66MB and the mature space size is 132MB.

3.3 Heap Availability Policy (HA)

In this policy, the nursery size is variable depending on theob-
ject occupancy in the mature space. If copying is used to collect
the nursery, a copy-reserve space is also used to ensure a success-
ful completion of minor collection. The availability basedpolicy
adjusts the nursery size after each minor collection. Initially, the
nursery,n, occupies half of the heap and copy-reserve space,cr, oc-
cupies the other half (n = cr = heap

2
). When the nursery is full, the

surviving objects,m, are copied to the copy-reserve space. Once
done, the nursery occupies half of the available space in theheap,
and the copy-reserve occupies the other half (n = cr = heap−m

2
).

This nursery resizing process repeats until a certain size threshold
is reached or back-to-back allocation failures in the nursery occur
(we use the latter criterion in our implementation). At thatpoint, the
system makes a full collection invocation. Appel generational col-
lectors and Jikes RVM generational collector have utilizedthe HA
policy [1, 8]. Note that our implementation of this policy utilizes
no survival spaces(i.e., noto andfromspaces).

4. Experiment

Computing Platform. We conduct our experiment on an Intel
Xeon system with four 2 GHz dual-core processors (total of 8 pro-
cessors). The system has 16 GB of physical memory. We used the
parallel collector in HotSpot with necessary modificationsto sup-
port three nursery resizing policies. When we run jAppServer2004,
the described system is used to host JBoss, a widely used open-
source Java application server.

Benchmarks.The focus of our work is to investigate the effects of
sizing policies on performance of heap-intensive, multithreaded ap-
plications. We choose to focus on this type of benchmarks because
they are more representative of modern applications, whichrely
more on thread-level parallelism and create heavy allocation pres-
sure on heap allocators. Based on this selection criteria, we need to
subset DaCapo benchmark suite to only include four multithreaded
applications. We include every application in the jvm2008 suite.
However, we do not include the start-up versions of these applica-
tions, which are mainly used to evaluate performances of code opti-
mizers. For server-side benchmarks, we use two benchmarks from
SPEC:jbb2005[18] and jAppServer2004[17]. The basic charac-
teristics of these benchmarks are provided in Table 1. Note that we
determine the minimum heap requirement for each application by
using the parallel collector that utilizes the GC Ergonomics policy.

Metrics. We investigate the garbage collection performance by ob-
serving the number of minor and full GC invocations and the time
spent in each GC invocation. We also reportMinimum Mutator Uti-
lization as a metric that describe disruptions of application exe-
cution due to garbage collection [2, 5]. Mutator utilization is ex-
pressed as a fraction of time that an application or a mutatorexe-
cutes within a given time window. For example, given an execution

window of 100 ms and within this time, the mutator runs for 70
ms and the garbage collection runs for 30 ms. Therefore, the muta-
tor utilization is 70%. MMU is the minimum utilization across all
execution windows of the same size.

In terms of performance, benchmarks from the DaCapo suite re-
port their results using time (seconds). On the other hand, all SPEC
benchmarks report their scores using either operations perminute
(jvm2008), Business Operation Per Second or BOPS (jbb2005), or
jAppServer Operations Per Second or JOPS (jAppServer2004). We
also report our results using these performance metrics.

Because large servers must be able to handle varying work-
load while yielding graceful performance degradation, we also con-
duct experiments to investigate the effects of using different sizing
policies on the performance degradation behaviors of jbb2005 and
jAppServer2004.

HotSpot Configuration. We follow Sun’s suggestion by setting
the initial ratio between the nursery and mature space to 1 to2 (i.e.,
the mature space is twice as big as the nursery). Our investigation
shows that the ratio has very little effect on performance ofmost ap-
plications. However, in the two server benchmarks, the suggested
ratio yields the best throughput performance leading up to the tar-
geted workload level. The difference can be as much as 20% in
jbb2005. We also use the default configuration of GC Ergonomics;
that is, the pause target is left as undefined, and the throughput tar-
get is left as 99% (mutator utilization is 99%). Based on thiscon-
figuration, the default collector makes generation sizing decisions
to maximize throughput performanceandnot to control GC pause.
We choose this configuration to force the GC ergonomics policy
to keep trying to maximize throughput but without having to be
concerned with maintaining low GC pause time.

For each application in jvm2008 and DaCapo, we initialize the
minimumand maximumheap sizes to be twice as large as the
minimum requirement shown in Table 1. We set up the size this
way to ensure that all three policies have the same amount of heap
throughout execution. Otherwise, the GC Ergonomics policymay
reduce the heap size (i.e., when the throughput goal is met);an
action that can negatively impact performance. We find that such
initial heap sizes allow many applications to execute with good
efficiencies while invoking reasonable numbers of GC invocations.

For our server applications, we configure the heap size to yield
the optimal throughput for a specific workload level. We set the
heap size of jbb2005 to 1GB. This heap size is large enough for
jbb2005 to achieve the highest throughput performance whenthe
workload is 7-warehouse. For jAppServer2004, the workloadis
controlled by increasing or decreasing the injection rate (Tx), trans-
actions per second injected into the application server by the driver.
In our experiment, we set the heap size to 256MB. With this
setting, jAppServer2004 exhibits a linear throughput performance
improvement when the injection rate is between 1 and 40. To
achieve good CPU utilization during garbage collection, wecon-
figure HotSpot to utilize 8 minor collection threads and 8 full col-
lection threads.

Methodology. We execute each benchmarkfive times and report
the best, the worst, and the average scores. The average scores
are also used to provide graphical illustrations in the nextsection.
For MMU illustrations, we randomly pick one of the five runs to
calculate mutator utilization. That same run is also used toreport
garbage collection performance for each application.

5. Evaluation
We report the performance of each benchmark in Table 2. Notice
that each benchmark suite uses a different performance metric. For
example, DaCapo suite reports the result of each benchmark in sec-
onds. On the other hand, jvm2008 reports the results in operations



Benchmark Description Total allocations Minimum Number of
objects (million) bytes (GB) heap requirement (MB) threads

DaCapo(only include multithreaded applications running with “-slarge” configuration)
eclipse Execute non-GUI JDT performance test of Eclipse IDE. 129 11.70 49 16
hsqldb Execute a number of transactions against a 10 0.60 323 407

model of a banking application.
lusearch Perform a text search of keywords over 17 2.59 9 70

a corpus of literature data.
xalan Transforms XML documents into HTML. 59 7.05 33 14

jvm2008 (exclude start-up versions)
compiler.compiler Java compiler from OpenJDK 7 compiling itself. 392 21.10 313 8
compiler.sunflow Java compiler from OpenJDK 7 compiling sunflow 449 25.33 194 8

a sub benchmark from jvm2008.
compress Compress data with a modified LZW method. 1 19.06 88 8
crypto.aes Encrypt and decrypt data using 2 96.44 39 8

the AES and DES protocols.
crypto.rsa Encrypt and decrypt data using 504 37.15 6 8

the RSA protocols.
crypto.svf Sign and verify using various protocols. 90 108.56 15 8
derby An open-source database written in pure Java. 597 28.01 463 8
mpegaudio An MP3 encoder using JLayer 10 42.66 5 8
scimark.fft (large) A subset of a floating point benchmark from NIST. <1 5.41 579 8
scimark.lu (large) A subset of a floating point benchmark from NIST. <1 737 612 8
scimark.sor (large) A subset of a floating point benchmark from NIST. <1 0.73 353 8
scimark.sparse (large) A subset of a floating point benchmark from NIST. <1 4.86 511 8
scimark.mc A subset of a floating point benchmark from NIST. < 1 0.71 9 8
serial Serializes and deserializes primitives and objects. 547 28.73 333 8

using data from the JBoss benchmark.
sunflow A multi-threaded global illumination rendering system. 316 0.55 19 316
xml.transform Test implementations of java.xml.transform. 532 32.86 39 8
xml.validation Test implementations of java.xml.validate. 543 61.08 109 8

jbb2005 A Java program emulating 3-tier sytem 323 19.86 373 8
focusing on the middle tier (Wh = 8).

jAppServer2004 A JEE benchmark emulating an automobile maker 2096 181.44 177 1116
and its network of dealers (Tx = 40).

Table 1. Benchmark Characteristics

per minutes. Thus, for the results of DaCapo benchmarks, a lower
reported value means higher performance. For the rest, a higher
reported value means higher performance. The best average perfor-
mance for a particular benchmark appears in bold face.

5.1 Performances of DaCapo and jvm2008

In eclipse, xalan, compiler.compiler, the entirescimarksuite,se-
rial , and xml.validate, the performance differences are less than
10%, meaning that sizing policies have small impacts on the per-
formance of these benchmark programs. For the remaining eight
benchmark programs, the performance differences within anappli-
cation, as illustrated in Figure 1, range from 10% to 36% when
normalized against the policy that yields the lowest performance.
The results also indicate that in three out of eight applications, the
HA policy outperformsdefaultand FR.

5.1.1 Discussion

We report the garbage collection behavior of each application in
Table 3. Note that applications that show performance differences
of 10% or more appear in bold face. Forlusearch, crypto.aes,
crypto.svf, derby, sunflow, andxml.transform, we can clearly see
significant differences in the number of minor or full collection
invocations among policies. However, inhsqldb, there is very little
different in the number of both minor and full GC calls. In the
remainder of this section, we analyze possible causes that result
in performance differences in these eight applications.

hsqldb. As stated earlier, the number of GC calls are very similar
across all policies (the HA policy invokes one more minor GC
calls). However, the fixed and default policies outperform the HA
policy by as much as 20%. Further analysis reveals that hsqldb
spends a significant portion of total execution time on garbage
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Figure 1. Performance improvements in applications that are sen-
sitive to sizing policies

collection (50% in the fixed ratio approach and 60% in the HA
approach). This is an indication that setting the heap size to be twice
the minimum heap requirement may not provide sufficient heap
space for this application. By analyzing garbage collection time, we
find that FR spends less time in full collection (3.76 secondsinstead
of 5.87 and 4.65 seconds as in HA and default, respectively).



Default HA FR
Benchmark (heap size) Min. Max. Avg. Min. Max. Avg. Min. Max. Avg.

DaCapo (Each benchmark report result in seconds; therefore, lower value is better.)
eclipse (98MB) 62.61 65.07 63.63 64.11 67.28 65.60 63.08 65.44 63.92
hsqldb (646MB) 8.39 9.50 8.79 9.11 11.01 9.99 8.02 8.68 8.33
lusearch (18MB) 6.69 7.45 7.10 8.90 9.61 9.33 7.38 7.99 7.65
xalan (66MB) 33.77 34.29 33.99 32.19 34.02 33.24 32.98 35.26 33.97

jvm2008 (Each benchmark reports result in operations per minute; therefore, higher value is better.)
compiler.compiler (626MB) 241.2 243.24 242.05 254.09 266.6 262.38 240.58 246.28 243.99
compiler.sunflow (388MB) 76.3 77.5 76.97 88.92 91.75 90.36 75.86 78.87 77.40
compress (176MB) 224.33 236.34 229.17 210.41 219.42 216.66 218.45 237.56 228.54
crypto.aes (78MB) 33.42 34.01 33.67 39.94 41.1 40.68 33.71 34.01 33.88
crypto.rsa (12MB) 184.74 190.02 187.08 183.45 187.16 185.40 185.22 189.31 187.76
crypto.signverify (30MB) 151.84 154.28 153.00 185.5 187.18 186.38 152.69 155.36 153.95
derby (926MB) 72.5 75.16 73.25 53.05 54.64 54.21 72.91 74.69 73.59
mpegaudio (10MB) 64.23 66.33 65.47 61.64 62.84 62.44 64.32 66.54 65.61
scimark.fft (1.16GB) 20.57 20.83 20.74 20.51 20.94 20.77 20.59 20.78 20.69
scimark.lu (1.22GB) 5.19 5.67 5.50 5.56 5.71 5.61 5.13 5.78 5.48
scimark.mc (18MB) 159.06 159.78 159.46 150.33 160.09 157.81 159.43 164.46 160.66
scimark.sor (706MB) 29.48 30.6 30.28 30.57 30.99 30.81 29.83 30.57 30.24
scimark.sparse (1.02GB) 11.27 12 11.75 12.37 12.88 12.68 11.28 12.06 11.60
serial (666MB) 51.4 54.33 52.78 48.52 50.14 49.36 52.24 53.75 53.17
sunflow (38MB) 28.55 33.13 32.18 28.37 32.82 29.52 31.64 33.1 32.58
xml.transform (78MB) 97.37 98.33 97.75 87.56 90.06 88.74 95.9 98.64 97.70
xml.validate (218MB) 198.08 203.87 201.23 200.78 205.55 203.28 196.91 200.85 198.76

Java Server Benchmarks (Each benchmark reports result in transactions per second; therefore, higher value is better.)
jbb2005 at 7WH (1GB) 102977 116372 112559.20 91916 98001 95081.20 109211 116124 113721.00
jAppServer2004 at 40Tx (256MB) 26.68 27.63 27.29 26.46 26.79 26.70 26.80 27.26 27.06

Table 2. Overall performance of each benchmark. We run each benchmark five times and report the worst, the best, and the average
performance scores. For each of the two server benchmarks, we report the peak performance when running a sequence of increasing workload.
We also report the workload setting that yields the peak throughput performance and the heap size that we use.

Therefore, FR yields the shortest execution time. In terms of GC
pause time, the HA approach yields the shortest maximum pause
time at about 500ms but has lowest MMU throughout execution.
On the other hand, the FR approach yields the highest MMU
throughout execution.

lusearch.For this application, the default approach yields the best
performance. This is because the overall cost of garbage collection
is dominated by minor collection. Because HA makes many more
minor GC invocations, its performance is much lower than those of
default and FR. The additional minor collection time in HA implies
that constantly reducing the nursery size may have resultedin more
promotion of objects to the mature space, and thus, higher minor
collection cost and one more full collection invocation. Interms of
MMU, the default policy has slightly lower utilization thanthose of
the other two approaches. This is because the longest full collection
time of the default policy (51 ms) is higher than the longest full
collection times of HA and FR (33 ms and 37 ms, respectively).

compiler.sunflow. In this application, the costs of minor and full
collection in default and FR are about the same. On the other hand,
HA makes about 10% fewer minor collection invocations. By ob-
serving the heap sizing behavior when HA is used, we see that most
objects can be reclaimed in minor collection, and therefore, the ac-
cumulation of lived objects in the mature space occurs gradually. In
such a scenario, there is a long period of time that the HA approach
would be able to maintain larger nursery than the initial size of
the other two approaches (33% of the heap size). A larger nursery
means fewer minor collection invocations and more time for ob-
jects to die in the nursery. In terms of time, HA reduces the minor
collection time by 20%, and therefore, resulting in higher MMU
as the time window surpasses 25 seconds. However, it also yields
longer full collection time.

derby, sunflow, and xml.transform. In these three applications,
the HA policy invokes more minor collections and full collections.
Further investigation reveals that by constantly reducingthe size
of the nursery, the HA approach promotes significantly more ob-
jects from the nursery to the mature space, spending over 60%
more time in performing minor collection in the case of sunflow.
However, these objects die soon after promotion. As a result, the
HA approach spends up to 30% less time performing the full col-
lection. However, because the overall cost of garbage collection is
dominated by minor collection cost, larger minor collection times
in HA significantly degrade overall performance of these applica-
tions. In terms of MMU, we find that when the nursery space is
reduced to a very small size in HA, full collection can take much
longer to complete. For example, in derby, the longest full collec-
tion time is 1.2 seconds. In the other two policies, the longest full
collection times are less than 900 ms. Moreover, by making twice
as many minor collection invocations as the other two policies, HA
also yields significantly lower MMU throughout execution.

crypto.aes and crypto.svf.In these two applications, HA signifi-
cantly reduces the number of minor collection invocations but in-
creases the number of full collection invocations. To better un-
derstand such behavior, we observe the total allocation requests
made by each of these applications and the minimum heap space
needed to successfully execute each of these programs. We see that
these two applications are extremely dynamic memory intensive
(crypto.aes allocates 96 GB of objects while crypto.svf allocates
108 GB) but yet, most objects are short-lived as indicated bysmall
minimum heap requirements (39MB for crypto.aes and 15MB for
crypto.svf). Moreover, these applications also allocate many large
objects (the average object sizes of crypto.aes and crypto.svf are
48KB and 1.2KB, respectively).



Benchmark Default HA Fixed
Minor Full Minor Full Minor Full

eclipse 583 14 599 25 593 14
hsqldb 8 5 9 5 8 5
lusearch 916 6 1946 7 915 6
xalan 1467 139 1142 155 1433 125

compiler.compiler 2048 186 2405 154 2038 183
compiler.sunflow 3001 344 2693 301 3034 354
compress 269 108 671 25 282 113
crypto.aes 6308 1010 2785 1540 6300 1023
crypto.rsa 6134 99 9112 84 6135 103
crypto.svf 12974 1731 5293 2884 13067 1716
derby 2639 3 5422 3 2622 3
mpegaudio 9347 163 25785 116 9820 209
scimark.fft 22 18 19 11 22 13
scimark.lu 22 10 14 13 20 11
scimark.mc 154 3 253 8 152 4
scimark.sor 6 3 4 2 6 3
scimark.sparse 36 9 17 7 32 8
serial 1293 3 2356 5 1302 3
sunflow 17060 198 35412 125 16658 194
xml.transform 19685 407 26552 709 19698 406
xml.validate 1467 139 1142 155 1433 125

jbb2005 (8-warehouse) 28 2 5217 51 1675 11
jbb2005 (23-warehouse) 13877 1312 41533 989 14054 1288
jAppServer2004 (25 Tx) 2523 99 11196 70 2527 86
jAppServer2004 (50 Tx) 205 2599 22664 238 164 2706

Table 3. Comparing garbage collection behavior when different
sizing policies are used

In applications with such allocation and lifespan behaviors,
nursery sizing can play an important role in determining perfor-
mance. FR allocates about 33% of the heap for nursery, which is
too small for such extreme allocation requests. Thus, minorGC is
called very frequently. The default approach also initializes 33%
of the heap for nursery. Even when its adaptive mechanism peri-
odically enlarges the nursery size, such enlargements are not im-
mediate so the system still suffers from excessive minor collection
invocations. On the other hand, HA initially has a larger nursery
size. Since these objects die very young, not many objects are pro-
moted, and nursery sizes stay large. Having larger nurseries results
in fewer minor collection invocations.

As these programs continue to execute, they start to maintain
consistent heap residencies. While these residencies are small when
compared to the total size of allocation requests (e.g., crypto.aes
maintains an average residency of about 28MB or 36% of the
heap), when programs reach these residencies, the nursery sizes of
HA are often smaller than those of FR and default. Because these
applications also allocate large objects, such allocations can trigger
more frequent full collection invocations in HA, resultingin lower
MMU throughout execution and longer maximum GC pause times.

5.2 Performances of jbb2005 and jAppServer2004

In this section, we investigate the throughput performanceof our
server benchmarks. Unlike other benchmarks used in this study,
application servers are longer running, and their service demands
can vary over time. In most instances, the periods of higher de-
mands often “coincide with the times when the service has the
most value” [28]. Thus, it is crucial for these servers to withstand
heavy workload and have graceful performance degradation behav-
ior when they are faced with unexpected heavy demands.

We set up our experiment to observe the peak throughput per-
formance of each application and its degradation behavior once the
workload is heavier than the optimal workload that the system is
configured to handle. In these two benchmarks, we can increase
workload by increasing the number of warehouses in jbb2005 and
the number of transaction requests in a period of time (injection

rate) in jAppServer2004. Theoretically, as we increase these two
parameters (warehouse and injection rate), the throughputperfor-
mance also increases. However, computing resource limitations and
garbage collection disruptions can cause throughput performance
to degrade as we increase these parameters. In the system that we
use, increasing workload can cause the system to fail in unpre-
dictable ways. Failures sometimes appear as out-of-memoryerrors.
Other times, failures can appear as random errors that causethe sys-
tem to behave erratically.

As stated in the earlier section, we set the heap size to 1GB
and 256MB for jbb2005 and jAppServer2004, respectively. With
1GB heap size and using the default policy, jbb2005 can run to
completion when the number of warehouses (Wh) ranges from
1 to 23 warehouses. We set the ramp-up/ramp-down times to 2
minutes and measurement time to be 4 minutes in each run. For
jAppServer2004, the operational injection rate (Tx) ranges from
1 to 54 when the default policy is used, and the heap is set to
256MB. We set the ramp-up/ramp-down times to 5 minutes and
measurement time to 10 minutes in each run.

When the default approach is used, we observe a linear increase
in JOPS when the injection rate ranges from 20 to 40. In this range,
we get an increase of 2.5 to 3 JOPS for every increase in Tx by
5. When the injection rate is increased beyond 40, the throughput
performance continues to increase but at a lower rate. To ensure
that the observed behavior is not an expected throughput behavior,
we also conduct an experiment with 1GB heap. With a larger
heap, throughput improvement remains linear from 20Tx to 80Tx.
Thus, we conclude that the non-linear performance improvement
at 40Tx is due to a small heap size and increasing GC efforts.
The application becomes unstable at 55Tx and after. All of our
experimental runs give out-of-memory errors at 60Tx. When FR is
used, the application exhibits unstable behaviors once theinjection
rate surpasses 50. The system sometimes fails due to errors such as
“connection refused” or “divided by 0”.

We report the throughput performance of these two benchmarks
in Figure 3 and Table 2. As shown in Table 2, jbb2005 achieves
its peak throughput performance when the workload is equal to 7-
warehouse. For jAppServer2004, we report the throughput perfor-
mance at 40Tx. This is not the workload that achieves the peak
throughput performance, but it is the last workload before the
throughput improvement becomes non-linear (highlight by the dot-
ted box in Figure 3(a)). As shown in Figure 3(a) and (b), when em-
ploying HA, these two server benchmarks can handle higher work-
load than those of the default and FR policies before failing.
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Figure 3. Throughput performance of jAppServer2004 and
jbb2005
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Figure 2. Minimum mutator utilization (MMU)

5.2.1 Discussion

To better understand the impacts of sizing policies on throughput
performance, we investigate the MMUs of these two benchmarks
under different workload settings. Figure 2(h) and (i) illustrates
MMUs of jbb2005. With 8-warehouse, the MMUs of FR and de-
fault are higher than that of HA throughout execution. Moreover,
the MMUs of these two policies surpass 80% for most of the ex-
ecution windows. They both are also higher than that of HA. Be-
cause default also adjusts nursery size, it can reduce the longest GC
pause to be the same as HA. However, as the system is pushed to
its limit (i.e., when Wh is equal to 23), the MMU of HA degrades
much more gracefully than those of FR and default, which virtually
show no utilization for most of the window sizes.

Figure 2(j), (k), and (l) illustrate MMUs of jAppServer2004at
25Tx, 40Tx, and 50Tx, respectively. Again, at 25Tx, the MMUs
of FR and default are higher than that of HA. However, as the
workload increases to 40Tx, the MMUs of FR and default become
lower than that of HA. It is worth noticing that when the window
size is 5 seconds (5e+03ms), the MMUs of default is 90% at
25Tx, but drops to 40% at 40Tx. When the workload is 50Tx,

the MMU at the same window size is only 20%. On the other
hand, the MMUs of HA at the same window size are 60%, 57%,
and 40% at 25Tx, 40Tx, and 50Tx, respectively. From this result,
the MMU performance of HA appears to degrade more gracefully.
Furthermore, it also appears that as the workload becomes heavier,
the maximum GC pause remains the same for HA. On the contrary,
FR and default experience longer pauses as the workload increases.

As stated in Section 2, copying generational collectors often
utilize copy-reserve space, a space equaled to the size of the nursery
located in the mature generation, to ensure that minor collection can
complete successfully. If the amount of copy-reserve is smaller than
the nursery, there is a chance that minor collection will fail due to
a larger volume of surviving objects than the size of copy-reserve,
and therefore, full collection is invoked.

Because the optimal ratio for the default and FR approaches is
1:2, the nursery occupied a large portion of the heap. Therefore, it
becomes exceedingly difficult under heavy demands to maintain a
large enough copy-reserve space to allow successful minor collec-
tion invocations. When such condition occurs, the system invokes
full collection instead of minor collection. We discover that under



heavy workload, this condition occurs repeatedly, leadingto many
consecutive full collection invocations.

For example, in the FR policy, jbb2005 invokes garbage collec-
tion 14502 times before running out of memory at 24-warehouse
(not shown in the table). During the first 13506 GC invocations,
only 645 of these invocations are full collection. The remaining
12861 invocations are minor collection. This is expected inany
generational collector as most of the collection efforts should be
concentrated in the nursery area. However, the last 995 invocations
prior to memory exhaustion are full collection. Each of these full
collection invocations takes 600 to 800 milliseconds to complete.
Prior to each of these invocations, the heap is about 90% full; how-
ever, each full collection invocation only reclaims about 5% of the
heap.

When Tx is equal to 50, jAppServer2004 also exhibits a similar
behavior when FR or default is used. Full collection is invoked 16
times and 12 times more often than minor collection in FR and
default, respectively. On the other hand, HA invokes 95 times more
minor collection than full collection. This is because HA rarely
suffers from the problem of copy-reserve space being too small.
Thus, minor collection is still invoked under heavy workload. This
is a major reason why the two benchmarks can handle higher
workload when the HA policy is used. In the case of jbb2005,
throughput performance also degrades more gracefully.

Remark. The result of our experiment indicates that techniques not
suffering from consecutive full collection invocations during heavy
demands will allow (i) the system to handle higher workload;and
(ii) the throughput to possibly degrade more gracefully. Inthe next
section, we introduce a hybrid technique that leverages thedefault
or FR approach to achieve high throughput performance when the
workload is light, but avoid suffering from repetitive fullcollection
invocations when the workload is heavy.

6. A Hybrid Policy
So far, we have observed that the FR and default policies can per-
form well when the workload ranges from light to moderate. Once
the workload becomes heavy, the HA policy allows garbage col-
lection to be more efficient, enabling the system to handle higher
workload. This insight indicates that a hybrid policy that comple-
ments default or FR with HA can provide high performance under
expected workload and greater survivability under heavy workload.

In the remainder of this section, we briefly discuss a preliminary
investigation of a hybrid policy that can switch between thedefault
policy and the HA policy. We implement the proposed hybrid
policy in HotSpot and conduct a preliminary evaluation using the
two server benchmarks.

6.1 Implementation

In terms of programming, the proposed hybrid policy is simply an
integration of two nursery resizing algorithms. However, one im-
portant challenge is deciding when to switch from the default pol-
icy to the HA policy. There are several criteria that can be used
for switching. One approach that we contemplated was to monitor
the throughput performance. However, this approach requires that
a certain threshold be set to indicate that an application has reached
an actual performance degradation zone and not just a temporary
degradation due to other factors. Measuring performance differ-
ences also incurs runtime overheads.

Instead, we rely on a simple observation that consecutivelyin-
voking full collection often occurs right before our serverappli-
cations reach performance degradation zones. Therefore, our cur-
rent implementation simply records the number of consecutive full
collection invocations. Once the number reachesconsecFailure,
which is a predefined value, our hybrid policy simply switches from

the default policy to the HA policy. To identify a suitable value of
consecFailure, we conduct an experiment using different values
across several applications. Our experiment indicates that we can
detect these performance degradation zones by monitoring for two
consecutive full collection invocations. In the next subsection, we
conduct a preliminary evaluation of our implementation by setting
consecFailure to 2.

6.2 Evaluation

As can be seen in Figure 4(a) and (b), our hybrid policy utilizes
the default policy when the workload is light, then switchesto
the HA policy when it first detects back-to-back full collection
invocations. For jAppServer2004, the hybrid approach produces
stable performance and linear throughput improvement up to63Tx,
which is 8 Tx more than the highest workload that default can
handle and 13 Tx more than the highest workload that FR can
handle. This result is achieved while using the same heap size as
the other two policies. For jbb2005 (see Figure 4(b)), the hybrid
policy yields the highest performance up to 16-warehouse and then
allows the throughput performance to degrade more gracefully after
21-warehouse. Furthermore, it allows jbb2005 to handle up to 27-
warehouse while the default and FR approaches can only handle up
to 23-warehouse when given the same heap size.

We also notice that it is possible to achieve higher performance
in jbb2005 if our policy was to switch after 18-warehouse instead
15-warehouse. We can achieve this by making the switching cri-
teria greater than 2 consecutive full collection invocations. This is
because jbb2005 experiences a drop in throughput at 15-warehouse
but recovers shortly after. In that drop, there is a back-to-back full
collection. By changing theconsecFailure to be greater than 2,
the hybrid policy does not switch until 18-warehouse. On theother
hand, any value that is greater than 2 has no impacts on the per-
formance of jAppServer2004. It is likely that the optimal criteria
will be application dependent. For future work, we will investigate
more adaptive ways to identify optimal criteria to switch from one
policy to the next.

We also experiment with using the hybrid approach in other
benchmarks. The results indicate that the proposed policy yields
very little if any benefit to desktop and scientific benchmarks in
the DaCapo and jvm2008 suites. Only scimark.fft shows a very
modest improvement over the result of the previously best policy.
This is expected as these benchmarks rarely have back-to-back full
collection invocations when the heap is set to be twice the minimum
memory requirements.

In the current implementation of jbb2005, we can only increase
the number of warehouses in each run, but not decrease the num-
ber of warehouses. In real-world settings, workload can fluctuate so
it is important for our proposed scheme to be able to switch back
from HA to default if the workload should become lighter. To be
able to test this feature, we create a modified version of jbb2005
(jbb2005mod), in which the workload can be decreased. For ex-
ample, if we configure the application to run from 1-warehouse
to 23-warehouse with the warehouse increment of 1, our modified
jbb2005 increases the workload in a similar way to the unmodified
version. However, once a specified ending warehouse number (e.g.,
23 in our experiment) is reached, instead of terminating, the appli-
cation continues to execute by incrementally reducing the number
of warehouses back to 1 in an increment of 1 as initially config-
ured. Currently, the switch-back threshold is the number ofcon-
secutive minor GC invocations that results in the nursery sizes that
are greater than or equal to the initial nursery size. In our exper-
iment, the threshold is set to 10. The throughput performances of
the modified jbb2005 is shown in Figure 4(c).

When the workload is getting heavier, the hybrid policy switches
from default to HA to avoid promotion failures. This switch can be
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Figure 4. Comparing throughput performances ofdefault, HA, and the proposed hybrid policy

done easily after a minor collection. On the other hand, switching
from HA back to default is not as simple. This is because we need
to invoke full collection to compact live objects, which in turn, in-
crease the nursery size. Since we do not use other criteria totrigger
this full collection, it often takes a long time to occur (e.g., after
many minor collection invocations). Once it occurs and the new
nursery size is larger than the initial nursery size of default, the
system keep tracks of nursery sizes over the next several minor
collection invocations before it can decide whether to switch. This
switching delay is illustrates in Figure 4(c). For future work, we
plan to create more benchmarks that have complex and fluctuating
workload and investigate other possible criteria or runtime behav-
iors that can reduce the delay time in triggering this mechanism.

7. Related Work
There have been numerous research efforts to reduce the copy-
reserve overhead and improve the performance of Appel collectors.
Work by Velascoet al. [27, 26] reports that the volume of surviv-
ing objects from the nursery during minor collection rarelyexceeds
20% of the nursery; however, a collector often reserves 100%of
the nursery to ensure successful minor collection. Their technique
leverages information from prior GC invocations to safely reduce
the size of the copy-reserve space. In doing so, the space is effi-
ciently utilized and the frequency of GC invocations is reduced.

Their experimental results show a 16% speed-up of garbage
collection time. The heap usage is also reduced by 19% to 40%.
One possible issue with this approach is that objects in server
applications can be much longer living than objects in desktop
applications. The assumption that only a small portion of objects
survives minor collection does not always hold and can causetheir
algorithm to fail.

Work by Sachindran and Moss [15] attempts to reduce the copy
reserve space in the mature generation by partitioning the heap into
small windows. Thus, the size of copy-reserve is limited by the size
of each window. The copying phase is done in several passes, and
each pass only “copying a subset of windows in the old generation”
[15]. Because the HotSpot collector uses mark-compact withno
copy-reserve space for full collection, this technique does not apply
to our work.

Work by McGachey and Hosking [12] also reduces the copy-
reserve space by exploiting the insight similar to Velascoet al.
that only a small portion of objects survives a garbage collection
invocation. However, their technique uses compaction as a back-
up in the case that their prediction is wrong. The back-up collector

recovers additional copy-reserve space to ensure that all surviving
data are “accommodated” [12].

In their technique, the copy-reserve space is set to be only a
fraction of, instead of equal to, the nursery. In an instancethat
the volume of surviving objects from the nursery is larger than
the copy-reserve space, an algorithm similar to mark-compact used
in HotSpot is activated. In a way, their approach is more advance
than HotSpot because it can recover from a failing minor collection
by switching to compaction on the fly. If this scenario occursin
HotSpot, the failed minor collection would be partially completed.
The objects that cannot be promoted stay in the nursery. The next
allocation failure will result in full collection invocation.

Another related area to this work is dynamic switching of algo-
rithms. Work by McGachey and Hosking switches from copying-
based minor collection to compaction-based full collection on the
fly [12]. The main criterion for switching is failing minor collec-
tion due to insufficient copy-reserve space. This criterionis the
same as ours except that our algorithms do not invoke full collec-
tion, but instead reactively reduce the nursery size to allow more
minor collection invocations. Work by Somanet al. [16] switches
to different garbage collection techniques in Jikes RVM [3]based
on changes in execution profiles. An annotation-based technique is
used to guide the selection process.

Work by Printezis uses hot-swapping to switch between mark-
sweep and mark-compact to perform full collection [14]. Thework
does not modify the copying algorithm used for minor collection.
The heuristic is that mark-compact can allocate objects much faster
due to pointer-bumping algorithm; thus it is used when thereis
plenty of space in the mature generation (e.g. during initial start-
up or after heap expansion). However, mark-sweep has lower exe-
cution cost due to non-compacting nature. Thus, when the heap is
tight and full collection needs to be called frequently, mark-sweep
should be used.

In effect, his approach tries to achieve the best of both worlds
with these two algorithms. The goal of our work is similar to Print-
ezis’s in that we also try to achieve the best of both worlds through
fixed ratio and variable-ratio collectors. However, our focus is on
the performance and efficiency of minor collection instead of full
collection. Combining their work and ours will create an oppor-
tunity for further improvement that will be investigated asfuture
work.



8. Conclusion
In this paper, we investigate the effects of using three different nurs-
ery sizing policies on garbage collection performance and overall
performance. We conduct our investigation using 15 benchmarks.
Our results indicate that most of these benchmarks are sensitive
to nursery sizing policies and a favorable policies can increase the
performance by as much as 36%.

Based on this insight, we develop a hybrid policy that can
switch between the default policy and the HA policy for optimal
throughput performance and graceful degradation behavior. Our
policy exploits an observation that when the copy-reserve space
becomes too small, it is a sign that the nursery should be reduced, as
the lifespan characteristic is no longer conform to the one initially
used to tune the nursery size.

Our study has shown that our hybrid policy has very modest
benefit in desktop-like applications. However, our experimental
result indicates that our proposed policy can make the throughput
degradation behavior of server applications more predictable and
graceful. In effect, it can improve survivability by makingserver
applications more capable of withstanding higher workload.
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