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Abstract

Precise, flow-sensitive analyses of pointer relationsbffen rep-
resent each object using the set of local variables that fwin(the
alias se}, possibly augmented with additional predicates. Many
such analyses are difficult to scale due to the size of theaaibisn
and due to flow sensitivity. The focus of this paper is on effiti
representation and manipulation of the alias set. Takingratdge

of certain properties of static single assignment (SSAjnfowe
propose an efficient data structure that allows much of thecsre
sentations of sets at different points in the program to lzeegh
The transfer function for each statement, instead of argatn up-
dated set, makes only local changes to the existing datetsteu
representing the set. The key enabling properties of SSA e
that every point at which a variable is live is dominated Isydef-
inition, and that the definitions of any set of simultanegusle
variables are totally ordered according to the dominantzioe.
We represent the variables pointing to an object using ardsred
consistently with the dominance relation. Thus, when aatdei is
newly defined to point to the object, it need only be added ¢o th
head of the list. A back edge at which some variables cease to b
live requires only dropping variables from the head of tsé NVe
prove that the analysis using the proposed data structunputes
the same result as a set-based analysis. We empirically gtadw
the proposed data structure is more efficient in both timenaih-
ory requirements than set implementations using hashsatid
balanced trees.
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ties inferred by these analyses are useful in applicatiooh ss
call graph construction, escape analysis, bug finding, aodny
domain-specific correctness properties of the progranfeiint
applications require different tradeoffs between precisind ef-
ficiency. This design space has been mapped and survey&2]12,
A somewhat fuzzy distinction has been made between “shape”
analyses (which are generally more precise) and “pointadl-a
yses (which are generally more efficient). A shape analysis e
phasizes individual concrete objects and the relatiosshéiween
them, whereas a pointer analysis emphasizes the pointersften
models multiple concrete objects using the same abstractsen-
tative (e.g. an allocation site).

This paper focuses on an increasingly used abstractiorghwhi
we call alias sets, that combines certain aspects of botimtgr®
and “shape” abstractions. An alias set is the set of all Ipoaiter
variables that point to a given object. The alias set coatalhof
the pointers that point to the object at run time, and no sthiér
the analysis is uncertain about whether a given pointgoints to
the concrete object, instead of creating a may- or musttjioiset,
it creates two alias sets, only one of which contaings a result,
like in a shape abstraction, every alias set (except theyeor)
corresponds to at most one concrete object at any given point
time during program execution. This makes the abstractienige
and enables strong updates. Thus alias sets are usefuldigsas
that track individual objects. Like a pointer abstractian, alias
set emphasizes the local pointers pointing to the objettterahan
the precise relationships between objects, which are skEeto
model. The alias set abstraction is more precise than mastepo

guagef Language Constructs and Features—Dynamic Storage analyses in that it subsumes both may- and must-alias ifiiom

Management; D.3.4 Hrogramming Languagés Processors—
Compilers; F.3.2l[ogics and Meanings of Prografn$Semantics
of Programming Languages—Program Analysis
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1. Introduction

Many static analyses have been proposed to infer propeiiest
the pointers created and manipulated in a program. The prope
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We will give a more precise definition and detailed discusb
alias sets in Section 2.

Alias sets have been found to be useful in several classgs of a
plications. They are the basis of many shape abstracti@ugv 8t
al. have designed a shape analysis that uses alias sets als-the
straction of a heap object, which it augments with edges éeatw
alias sets to model inter-object relationships [23]. O#tepe anal-
yses [11,24] refine the object abstraction further (e.da Wwitap ac-
cess paths or domain-specific predicates), but generadinrthe
alias set at its core. Alias sets are a special case of acadssgis:
they are sets of access paths with zero dereferences. VEhanea
access path begins at a local variable and specifies a ligtld§fi
to be followed to reach the object, an alias set contains thdy
local variables pointing directly to the object. Alias skts/e also
been successful in analyses that are lighter than shapgsendlut
need more precise consideration of individual objects tmast
pointer analyses can provide. For example, the alias saaatien
has been used to detect memory leaks and automatically liree o
jects [3,19]. Alias sets have also been extended for pretisek-
ing of typestate properties [8, 9, 17]. For these applicetipointer
analyses that determine only that a pointer points to sonexbb
allocated at a given allocation site are insufficient, beeathese



analyses need to keep track of individual objects as exattitws
from one instruction to the next. We discuss these apptinatof
alias sets in more detail in the related work section.

Alias set analysis subsumes both may- and must-alias asalys
Pointer analyses generally use one of two abstractions fildte

are points-to pairgp, o), indicating that the pointep may point
to one of the concrete objects represented by the abstrttob

The second are may- or must-alias péjrs, p2 ), indicating that the
pointersp; andp. may or must point to the same object. In compar-

ison, the alias set abstraction associates with each progoint a
set of alias sets, each of the fofm, . . .
set{p1,...
by all of the pointerg, . ..

if every alias set at a given program point contains eithéh po

andp» or neither of them, thep; andp> must be aliased at that

point. If information about allocation sites is needed, Aasaset
could be augmented with an allocation site, and thus represgy
those objects pointed to by the pointers in the set and aédcat
the given allocation site.

In recent years Static Single Assignment (SSA) form [4] has

gained popularity as an intermediate representation (Bptimiz-
ing compilers. The key feature of this IR is that every vagab the
program is a target of only one assignment statement. Torereddy
construction, any use of a variable always has one reacleifigi-d

tion. This simplifies program analysis. SSA form has beeriegp

in many compiler optimizations including value numberiogn-
stant propagation and partial-redundancy eliminatioraddition,
SSA form has other less obvious properties that simplifygmam
analysis. Specifically, the entire live range of any vaeabldomi-
nated by the (unique) definition of that variable, and thenitédins
of any set of simultaneously live variables are totally oedeac-
cording to the dominance relation. Thus, the definition &f ofthe
variables is dominated by all the others, and at this dedimitthe
variables are all live and have the values that they will havd the

end of the live range. These properties have been used t@@afin
efficient register allocation algorithm [10]. We exploiege same

properties to efficiently represent the set of variablestig to an
object.

Analyses using alias sets are difficult to make efficient fao t

reasons. First, the size of the abstraction is potentiaihoeential
in the number of local variables that are ever simultangolig.

Second, the analyses are flow-sensitive, so many diffeliastsets
must be maintained for different program points. The firstigs in
the rare cases that the number of sets grows uncontroliedotybe
effectively solved by one of several widenings suggeste8dyyiv

et al. [23]. Our work addresses the second issue. When trebler

sets are represented using linked lists ordered by doméname

show that due to the dominance properties of SSA form, update

needed to implement the analysis occur only at the head tistee
As a result, tails of the lists can be shared for differentgpam
points.

This paper makes the following contributions:

e We formalize an alias set abstraction for programs in SSA
form. The abstraction can be implemented using any set data

structure, including ordered lists. The abstraction carded

to provide may and must-alias information to a client analys
or used in a shape analysis with or without further inforoati

about incoming pointers from other objects.

,pn +. The presence of the
, pn } indicates that there may exist an object pointed to
, prn @and no others. The presence of an
alias set containing both; andp. at a given program point im-
plies thatp; andp» may be aliased at that point. On the other hand,

local updates at the head of each list. Thus, the tails ofiste |
can be shared at different program points.

e We implement an interprocedural context-sensitive amalys
ing the abstraction as an instance of the IFDS algorithm, [20]
and evaluate the benefits of the list-based data structume co
pared to sets implemented using balanced trees and hash.tabl

The remainder of the paper is organized as follows: Section 2
formalizes the alias set abstraction and defines transfetiins
that can be used in any standard dataflow analysis algorithm t
compute the abstraction. In Section 3 we give a brief intctidn
to SSA form and define terms used in the remainder of the paper.
Section 4 presents a new data structure and correspondimgfer
functions for representing alias sets. Empirical reswisgaring
the running times and memory consumption of the analysisgusi
different data structures are presented in Section 5. Weusts
related work in Section 6 and give concluding remarks iniSedt.

2. Alias Set Analysis

This section defines how objects are represented using seias
and presents a transfer function to determine the aliasasetsch
program point.

The overall abstractiop® is a set of abstract objects (i.e. alias
sets). This abstract set is an overapproximation of rume-tbe-
haviour. For every concrete object that could exist at roretat
a given program point, the abstraction always contains ias aét
that abstracts that concrete object; however, the abistnantay
conservatively contain additional alias sets that do natespond
to any concrete object. Each alias skiis a set of local variables
of pointer type. The alias set contains exactly those visathat
point to the corresponding concrete object at run time. Tias aet
is neither a may-point-to nor a must-point-to approximaid the
concrete object; it contains all pointers that point to tbaarete
object and no others. If the analysis is uncertain whethaveng
pointerx points to the concrete object, it must represent the con-
crete object with two alias sets, one containingnd the other not
containingz.

For example, consider a concrete environment in which vari-
ablesz andy point to distinct objects and may be either null or
point to the same object as The abstraction of this environment
would be the set of alias sef$x}, {z, 2z}, {y}}.

Each alias set except the empty set represents at most one
concrete object at any given instant at run time. For example
consider the alias sefx}. At run time, the pointerz can only
point to one concrete objeetat a time; thus at that instant, the
alias set{x} represents only and no other concrete objects. This
property enables very precise transfer functions for iidial alias
sets, with strong updates. Continuing the example, theranog
statemeny : = x transforms the alias sét:} to {z, v}, with no
uncertainty. We know that the unique concrete object rertes!
by {z} before the statement is represented {byy} after the
statement. Of course, since the analysis is conservatiges thay
be other spurious alias sets in the abstraction. The imptoptzint
is that any given abstract object is tracked precisely byatiaysis.

This basic abstraction can be extended or refined as appropri
ate for specific analyses. For example, Sagiv et al. [23] dedin
shape analysis that uses this same abstraction to reprigeats,
and adds edges between abstract objects to representrpeiate
tionships between concrete objects. Other analyses réfinak-
straction by adding conditions to the alias sets that futihét the
concrete objects that they represent. For example, ansatagp-

¢ We prove that if the program being analyzed is in SSA form and resenting concrete objects pointed to by a given set of paran

if the lists are ordered according to the dominance reladion

the definition sites of variables, then the analysis reguirgy

be refined to represent only those concrete objects that alsoe
allocated at a given allocation site.



1 N v if s =v«
[slgen = { {{(7)}} Iotherwise new
{ouu{vl}} if s=v1 < vo Avs € 0
{o*\ {v1}} if s =01 «— va Auvg & OF
[s]i:(0®) 2 {o* \u{v}} if s € {v— null,v — new}
o fs=e+«—w
{oﬁ\{v},oﬁu{v}} ifs=v«—e
[[5]],1311 (Pn) = [[Sﬂéenu U [[5]](1)11 (Oﬁ)

otept

Figure 1. Transfer functions on individual alias sets. The supepséron the function identifies the version of the transfer fumtive will
present modified versions of the transfer functions laténénpaper.

The abstraction subsumes both may-alias and must-alias rel
tionships. If variables: andy point to distinct objectsp® will not —
contain any set containing bothandy. If variablesz andy point for each statement s, initialize out[s] 1o
to the same object, every sethwill contain either both: andy, ad(.j all statements to worklist
or neither of them. while worklist not emptydo

The analysis is performed on a simplified intermediate repre remove some from worklist

Algorithm 1 : Dataflow Analysis

sentation containing the following intraprocedural instions: n= I—lpepredis) put[p]
out[s] =[s] :(in)
su=uv— vy |v—e|le—v|v—nul|v—new if out[s] has changethen
. . foreach s’ € succs(spo
The symbole represents any heap location, such as a field of an adds’ to worklist
object or an array element andcan be any variable from the end
set of local variables of the current method. The instruntiare end

self-explanatory: they copy object references betweerabias
and the heap, assign tmill reference to a variable, and create
a new object. In addition, the IR contains method call andrret

instructions. statement. Therefore, by construction, any use of a varialblays
In Figure 1 we define transfer functions that specify theatté has one reaching definition.
an instruction on a single alias set at a times Ii$ any statement in Converting a program into SSA form requires a new kind of

the IR except a heap load, andffis the set of variables pointing  instruction to be added to the intermediate representatibaach
to a given concrete objeot then it is possible to compute the exact  control flow merge point with different reaching definitionéa

set of variables which will point to after the execution of. This variable on the incoming edges,¢ainstruction is introduced to
enables the analysis to flow-sensitively track individubjeots select the reaching definition corresponding to the corftoo
along control flow paths. When a new object is created angragi edge taken to reach the merge. The selected value is ass@aed
to a variable § = v < new), the transfer functiorfs]ge, creates a freshly-created variable, thereby preserving the sing&gament
new alias set containing only, since at runtime, after executes, property. If multiple variables requiré nodes at a given merge
v is the only variable that points to the new object. The copy point, the¢ nodes for all the variables are to be executed simul-
statement; « wv. either adds or removes the variahle from taneously. To emphasize this point, we will groupglhodes at a
an alias set depending on whether the source variabpmints to given merge point into one multi-variabjenode:

the object. Strong updates are also performed in the casédlaind

newsince, after these assignments execute, the assigneblgarta
longer points to any object that it was previously pointingThe : =¢
store statement has no effect on an alias set, since it doeffect )

Y1 11 s Tin

the values of any local variables. A load splits an aliasrgettwo, Yn o Fmn

one containing the target of the load and the other not coinit. Each rowy, on the right side representseaching definitions of

The overall transfer functiofs]; applies the per-alias-set transfer  variablez;. When control reaches thginstruction through some

function [s]’, to each alias sets in the abstract environment. predecessop (with 1 < p < n) of the ¢ instruction then the'*
The alias sets at each point in the program can be computed us-c0lumn of the right side defines the values to be assignedeto th

ing these transfer functions in a standard worklist-basztdftbw y; variables on the left side in a simultaneous parallel asségr.

analysis framework like the one shown in Algorithm 1. Thelgna ~ Given aphi function ¢ and a prgdecessqmr, we write o (¢, p) to
sis is a forward dataflow analysis where the elements of ttieda ~ denote this parallel assignment:
are thg ab§tract enyironmenpé,(i.e., sets of alias sets). The merge Y1 — T1p
operation is set union.
o(¢,p) =

Ym < Tmp
3. Static Single Assignment (SSA) Form We now present some standard definitions. An instruction

The key feature of Static Single Assignment (SSA) form [4hist dominatesinstruction b if every path from the entry point té
every variable in the program is a target of only one assignme passes througla. We denote the set of instructions that domi-



nate instructiors by dom(s). By definition every instruction dom-
inates itself. We write sdom) to denote the set of instructions
that strictly dominates i.e. dom(s) \ {s}. Theimmediatedom-
inator of an instructions, idom(s), is an instruction in sdomj
dominated by every instruction in sdosi(It is well known that
every instruction except the entry point has a unique imatedi
dominator. We use the notation defsfo denote the set of vari-
ables defined (i.e written to) by the instructierand varsg) to
denote the set of variables defined by the instructions int &'se
(i.e.vargs) £ |, defqs)).

In adapting the alias set analysis to work on SSA form, we do
not want to reduce its precision. It is well known that as l@sg
the transfer function is distributive, the fixed point cortgmi by
Algorithm 1 is equal to the merge-over-all-paths (MOP) &ata
value [14]. The transfer functior{js}]})ﬁ for alias sets is indeed
distributive:

Algorithm 2 : Dataflow Analysis for SSA Form

for each statement s, initialize out[s] 1o
add all statements to worklist
while worklist not emptydo
remove some from worklist
if sis ag instructionthen
foreachp € predqs) do
out[s] = out[s] U [¢] + (out(p], p)
else
in=[1,cpreqs OUtlp]
out[s] =[] (in)
end
if out[s] has changetthen
foreach s’ € succs(syo
adds’ to worklist

end
end

[sT5e (0}) L [s] e (%)
= [slgenU |J [slas () U [ [slas (%)
;

#

ofepl ofep}

1 the previous section, the transfer function fop anstruction has
U [s]ox(0") two parameters: the incoming dataflow valpfeand the control
ofeptuph flow predecessap in which the dataflow value arrives. The trans-

_ 18 8 fer function first determines the parallel assignmef, p) that
= [sDpe (P L p2) corresponds to the given incoming control flow eggéhe alias
Thus we would like to compute the MOP value even when analyz- Set is then updated by adding all destination variables e/ivas
ing the code in SSA form. However, blindly applying Algorithl ues are being assigned from variables already in the altaars®
to SSA form will give a less precise value because of a unique removing all variables whose values are being assigned veoin
semantic property of instructions: the effect of & instruction ablesnotin the alias set. Notice that the transfer function for the
depends on which incoming control flow edge is used to reach it Simple assignment statement« v- is a special case of the trans-
Algorithm 1 ignores this property, in that it merges the inpalues fer function for¢ when the parallel assignmemtcontains only the
from all incoming control flow edges before applying the gran  single assignment; « vs.
fer function. Therefore, when applied togainstruction, the algo-
rithm appliesall of the parallel assignments associated vaihof " o ) 4
the incoming control flow edges to the incoming dataflow vaine [o]L: (0%, p) & { o Uy ; vi @i € o(p) N i € Ou} }
eachedge. That is, it conservatively applies parallel assigrsi® \yi 1 yi —a; € (¢, p) Nai & o'}
dataflow valyes on gdges to Whigh they ghpuld not .have been ap- [W]]iu (pﬁ7p) L U [[Qﬂ](l,u (Oﬁm)
plied, reducing precision. To eliminate this imprecisiore use a
modified version of the algorithm (Algorithm 2) that handies-
structions as a special case, respecting their unique $ienarhe
transfer function for & instruction, rather than depending only on
the incoming dataflow value, is modified to also take the @bntr
flow predecessor as a parameter. As a result, the transfetidon
applies the parallel assignment associated with only thetifc
predecessor, preserving the precision of the dataflow sisabn
the original intermediate representation. Thereforesesthe trans-
fer functions are distributive, when Algorithm 2 is appliedcode
in SSA form, it computes the MOP alias sets for the originaleco
We emphasize that none of the theoretical properties discus
in the remainder of this paper rely on the use of Algorithm 2 to
perform the dataflow analysis. All of the optimizations tlnest
Kzgjrmrﬁ nlttk:)ept(rea:fnos;frﬁrtfhuenc(:jtilict)gf'slovvx\/loglndaﬁytélilgz:)/\?Jgivéfr’wt?ggiu discugs further techniques to make the data structure esffion
Algorithm 1 analyze® instructions in an imprecise way, the result both time and memory.
W(.)Ulld not necessarily be as precise as the MOP result on the4_1 Live variables
original form of the code.

= [slgen

ofept

Figure 2. Transfer function for the instruction

For convenience, we transform the IR by inserting a trivial
instruction with zero variables at every merge point thagsdonot
already have & instruction. In the resulting control flow graph, all
statements other thahinstructions have only one predecessor.

In the remainder of this section we make use of SSA properties
to derive a new representation of alias sets in a programetn S
tion 4.1 we make use of the liveness property of programs v SS
form to simplify the transfer functions presented so fact®a 4.2
presents a data structure which makes it possible to impiethe
simplified transfer functions efficiently. Finally in Semti 4.3 we

In the alias set abstraction presented so far, the repeggamof an
. . . object was the set of all local variables pointing to it. Hoere
4. Efficient Alias Set Representation applications of the analysis only ever need to know wHigh
In this section, we first extend the alias set analysis to wor8SA variables are pointing to the object. If a variable is not Jithen its
form. We then take advantage of the properties of SSA form to current value will never be read, so its current value idex@nt.
propose an efficient representation of alias sets usingdliaked Thus, it is safe to remove any non-live variables from thasasiet.
lists that require only local updates at the head of the list. This reduces the size of each aliassgtand may even reduce the
To extend the transfer function from Figure 1 to SSA form, we number of such sets ip*, since sets that differ only in non-live
define it for¢ instructions as shown in Figure 2. As discussed in variables can be merged. One way to achieve this improveiment



to perform a liveness analysis before the alias set analifss
intersect each alias set computed by the transfer functitmthe
set of live variables, as shown in the revised transfer fandn
Figure 3.

filter(¢,p") 2 {o*Nt:0" € pf}
[SI2,5F) £ filter(live-out(s), [s]’ ()
[915: (0, p) = filter(live-out(¢), [¢]: (v*, )

Figure 3. Transfer function with liveness filtering

The irrelevance of non-live variables enables us to takemdv
tage of the following property of SSA form:

Property 1. If variable v is live-out at instructions, then the
definition ofv dominatess.

This property implies that the set of live variables is a stilo$
the variables whose definitions dominate the current prograint.
That is, for every instructios, live-out(s) C vargdom(s)). Thus
it is safe to intersect the result of each transfer functiagti the
larger set varglom(s)), as shown in the modified transfer function
in Figure 4.

[sI2: (") 2
[812: (p*,p) =

filter(vars(dom(s)), [s] . (o°))
filter(varsdom(¢)), [¢] 1 (p*, p))

Figure 4. Transfer function with dominance filtering

In order to simplify the transfer functions further, we wikked
the following lemma, which states that the alias sets rewioy
the original transfer function from Figures 1 and 2 contaityo
variables defined in the statement being abstracted andblesi
contained in the incoming alias sets.

Lemma 1. Define vargp®) = (¢ o*. Then:
o vars([s]: (p*)) C vars(p*) U defgs), and
o vars([¢]: (o, p)) C vars(p?) U defd¢).

Proof. By case analysis of the definition p]* and[¢]". O

Recall that the IR has been transformed so that every¢non-
instructions has a unique predecesgorSincep is the only prede-
cessor ofs, dom(p) = sdon(s). Therefore, as long as the output
dataflow set fop is a subset of doiip), the input dataflow set for
is a subset of sdofm). By Lemma 1, the output dataflow set for
is therefore a subset of vdsslon(s)) U defy's) = vargdom(s)).
Thus, the filtering using vafdom(s)) is redundant. That is, the
transfer functions shown in Figure 5 have the same least figad
solution as the transfer functions from Figure 4. This isifalized
in Theorem 1.

[1>

[s15: (o)
[¢15: (" p) £

[s: ()
filter(vars(dom(¢)), [¢]: (o*, p))

>

Figure 5. Simplified transfer function with dominance filtering

Theorem 1. Algorithm 2 produces the same result when applied
to the transfer functions in Figure 5 as when applied to tlaagfer
functions in Figure 4.

Proof. It suffices to prove that when the algorithm is applied to
the transfer function in Figure 5, every set in aiitfs a subset

of vars(dom(s)). This is proved by induction énthe number of
iterations of the algorithm. Initially, the out sets are ehpty, so

the property holds in the base case= 0. Assume the property
holds at the beginning of an iteration. If the iteration msges a
non-p instruction, Lemma 1 ensures that the property is preserved
at the end of the iteration. If the iteration processesiastruction,

the definition of[[¢]];§n ensures that the property is preserved at the
end of the iteration. |

Corollary 1. When Algorithm 2 runs on the transfer functions from
Figure 4 or Figure 5, the transfer functiofs] ,; is evaluated only
on alias sets that are subsets of viadon{s)).

Due to Corollary 1, the set difference operations[sf)., are
now redundant. Thus, the simplified transfer functfefi’, shown
in Figure 6 computes the same resul{[aﬁo‘u.

The transfer function for instructions can be simplified in a
similar way. If we intersecf¢]!, (o, p) with vargdom(¢)), the
definition from Figure 2 can be rewritten as:

O \{yi yi —wi €0 Nwi &0}
U {y : yz<—:czea/\mleoﬁ}

N vargdom(¢))

ot \ def(¢) {
J

[[¢]]iﬁ (Oﬁ7p) £

= U {y : yz<—:czea/\mleoﬁ}

N (defg¢) U vargsdom(¢)))

of N vargsdom(¢))
U{yi i ys —x:i €0 Aw; €0}
We summarize the results of this section as follows:

Theorem 2. Algorithm 2 produces the same result when applied
to the transfer functions in Figure 6 as when applied to tlxasfer
functions in Figure 4.

Proof. By Theorem 1 and the reasoning in the two preceding para-
graphs. |

Corollary 1 also applies to the transfer functions in Figbire

4.2 Variable Ordering

In the preceding section, we simplified the transfer functim
that it performs only two operations on sets of alias sete. firist
operation is adding a variable defined in the current instyac
to an alias set. The second operation is intersecting eaah al
set with vargsdon(¢)), where ¢ is the current instruction. In
this section, we present a data structure that makes itlpedsi
implement each of these operations efficiently. The datacitre

is an ordered linked list with a carefully selected orderifig
construct the ordering, we take advantage of the followigerty

of the dominance tree.

Property 2. Suppose the instructions in a procedure are numbered
in ascending order in a preorder traversal of the dominarmee.t
Then whenever instructios; dominates instructiorns, the pre-
order number of; is smaller than the preorder number ©f.

If the program is in SSA form, we can extend the numbering
of instructions to a numbering of variables in the program by
numbering each variable when its unique definition is vikite
traversing the dominance tree. A singleinstruction may define
multiple variables; in this case, we number these variaiplean
arbitrary but fixed order. Parameters of the procedure, whie
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Figure 6. Transfer functions without set difference operations

{congv, empty)}
empty

{congv1, o)}
{oﬁ7 congw, oﬁ)}

{ {0}
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Figure 7. Transfer functions on sorted lists

all defined in the start node, are numbered in the same way. TheProperty 3. Suppose instructions and b both dominate instruc-

resulting numbering has the property that if the definitidrvp
dominates the definition af;, then prenurfw:) < prenurnfuvs).

To represent each alias set, we use a linked list of variables

sorted in decreasing prenumber order. We will show that\ilze t
operations needed to implement the transfer function nodettig
only the head of the list.

Recall from Corollary 1 that the transfer function for non-

tion c. Then either dominates or b dominates:.

Since any path tp can be extended to be a pathiaevery strict
dominator of¢ dominatesp. Thus, sdorfy) C dom(p). Leta be
any instruction in dorfp) \sdom(¢). The instructioru cannot dom-
inate any instructio € sdon{¢), since by transitivity of domi-
nance, it would then dominatg By Property 3, every instruction

¢ statements is only applied to alias sets that are a subset ofin Sdom(¢) dominates:. Thereforea has a higher preorder num-

vargsdon{s)), wheres is the statement for which the transfer
function is being computed. To process atatement, the transfer
function shown in Figure 6 first intersects each incomingsafet
with vargsdomn{¢)), then adds variables defineddrto it. In both
cases, variables defined in the current statememé being added
to a set that is a subset of vésdon{(s)). Thus the definition of
each variable being added is dominated by the definition efyev
variable in the existing set. Therefore, adding the newaléess to
the head of the list representing the set preserves the adicge
prenumber ordering of the list.

Now consider the intersectiast N vargsdon(¢)) that occurs
in the transfer function for & instruction. The incoming alias set
o* is in the out set of one of the predecesgocf ¢. Therefore, due
to Theorem 2p* C vargdom(p)). We use the following property
of dominance to relate vaidom(p)) to vargsdon(¢)).

ber than any instruction in sddi®), soa appears earlier in the list
representing® than any instruction in vafsdon{¢)). Therefore,
to computeo® N varg'sdon{)), we need only drop elements from
the head of the list until the head of the list is in \@don(¢)).
This is done using the prune function in Figure 7. The restigf F
ure 7 gives an implementation of the transfer functions ffeigy
ure 6 using ordered lists to represent alias sets. Addingabla to

a set has been replaced by cons, which adds the variabletiedkde
of the list, and intersection with vgisdom(¢)) has been replaced
by a call to prune.

4.3 Data Structure Implementation

To further reduce the memory requirements of the analys)se
hash consing to maximize sharing of cons cells between Hstsh
consing ensures that two lists with the same tail share #ilatr
our implementation, we define &CLi st , which can either be the
empty list or aConsCel | , which contains a variable and a tail of



typeHCLI st . We maintain a mapar x HCLi st — ConsCel | .
Whenever the analysis performs a cons operation, the maysts fi
checked for an existing cell with the same variable and Ifeslich

a cell exists, it is reused instead of a new one being created.

5. Empirical Evaluation

We have extended the analysis defined in the preceding sed¢tio
a context-sensitive interprocedural analysis by impleimgrit as
an instance of the interprocedural finite distributive giilff=DS)
algorithm of Reps et al. [20]. The IFDS algorithm requiresaaal-
ysis whose domain i® (D) for some finite seD, and whose trans-
fer functions are distributive. The analysis from the pcicg sec-
tions satisfies these conditions; in this caBds the set of all pos-
sible alias sets (i.e., sets of local variables). IFDS isfacient dy-
namic programming algorithm that evaluates the transfectfans
on each individual alias set at a time, rather than on thefsait o
alias sets at a program point. The algorithm successivehposes
transfer functions for individual statements into trangtenctions
summarizing the effects of longer paths within a procedOnece
the composed transfer function summarizes all paths frenbé
ginning to the end of a procedure, it can be substituted fpicafis
of the procedure.

Extending the IFDS algorithm to work on SSA form required
one straightforward modification. The original algorithabtlates
the incoming dataflow set for each statement (i.e., the jbithe
outgoing dataflow sets of its predecessors). However, oue mo
precise treatment af nodes requires processing the incoming flow
set from each predecessor separately and joining the sesully
after the transfer function has been applied. Thus, we naatifi
IFDS so that, forg instructions only, it keeps track of a separate
incoming dataflow set for each predecessor, instead of desing
joined incoming set.

We implemented the analysis within our framework for verify
ing temporal properties of multiple interacting object6,[lL7]. The
overall framework first performs an alias set analysis, tlss its
results in a second analysis that tracks the state of groupb-o
jects with respect to a given temporal safety property. Sithe
optimizations in this paper affect only the efficiency of tiias set
analysis but not its results, the output of the client ansalisthe
same regardless of which implementation of the alias sdysina
is used.

For empirical evaluation of the analysis we used the DaCapo
Benchmark suite, version 2006-10-MR2 [2]. To deal with i&fle
class loading we instrumented the benchmarks using ProBe [1
and *J [7] to record actual uses of reflection at run time and
provided the resulting reflection summary to the static ysisl
The jython benchmark generates code at run time which it then
executes; for this benchmark, we made the unsound assumptio
that the generated code does not call back into the origivdé c
and does not return any objects to it. We used the standagdyib
from JDK 1.3.112 for antlr, pmd and bloat, and JDK 1.414
for the rest of the benchmarks, since they use features reept
in JDK 1.3. We used the Soot framework [25] as a front-end
to construct the intermediate representation that is tipatito
our analysis. We excluded the eclipse benchmark from outystu
because we were unable to make Soot soundly model the magy use
of reflection in this benchmark. To give an indication of tiees of
the benchmarks, Figure 8 shows, for each benchmark, theerumb
of methods reachable in the static call graph and the totabeu
of nodes in the control flow graphs of the reachable methods.

We experimented with three different setups. Setup 1 used th
defaultSet implementation of th&cal a programming language.
The sets are “immutable” in the sense that an update retures/a
set object rather than modifying the existing set objectudlly,
the implementations of the original and updated set share sif

Benchmark| Methods| CFG Nodes| SSA CFG Nodes|
antlr 4452 89442 96225
bloat 5955 95586 101179
chart 14912 241208 256367
fop 27408 410460 433249

hsqldb 11418 184201 198125
jython 14437 221215 234469
luindex 7358 113815 122447
lusearch 7821 114822 123674
pmd 9344 148101 155284
xalan 14961 227510 242788

Figure 8. Benchmark sizes: Column 2 gives the number of reach-
able methods for each benchmarks. Columns 3 and 4 give tie tot

number of nodes in the control flow graphs (CFGSs) of the reach-
able methods for each benchmark in non-SSA and SSA form re-
spectively.

their data. The standard library provides customized impleta-
tions for sets of size 0 to 4 elements. For larger sets, a haghim-
plementation is used. According to tBeal a documentation [18],
the hash table-based implementation is optimized for se@iac-
cesses where the last updated table is accessed most oftarssA
ing previous versions of the set is also made efficient by ikeea
change log that is regularly compacted. In setup 2,Tthee Set
data structure from th8cal a APl was used. This implementation
uses balanced trees to store the set. An updated set rebsesesu
from the representation of the original set. Both setup 12a00m-
pute the alias sets on a program in non-SSA form and use tie tra
fer functions from Figure 1. We also tried to apply setupsd ato
programs in SSA form, but found them to run slower and use more
memory than on the original, non-SSA IR. The third setup tked
sorted list data structure with hash consing proposed sghper.
The analysis is computed on a program in SSA form and uses the
transfer functions from Figure 7.

The following sections present the time and memory require-
ments of the three setups.

5.1 Running Time

Figure 9 compares the running times for the three setupsylite,
grey and black bars represent running times for the firsgraand
third setup, respectively.

In all cases butant | r, the Set -based representation runs
faster than theTr eeSet -based representation. The maximum
performance difference is in the case lofii ndex: the Set -
based representation runs in 58% less time. On average égeom
mean), theSet -based representation runs in 28% less time than
theTr eeSet -based representation.

We compare th&et -based representation to dd€Li st rep-
resentation. In all cases thCLi st abstraction is faster. On av-
erage, theHCLi st representation runs in 58% less time than the
Set -based representation. The largest speedup is achievégon t
bl oat benchmark, on which thEICLi st representation runs in
72% less time than th&et -based representation.

Although the conversion to SSA form increased the size of
control flow graphs by 6.6% on average (Figure 8), the arglysi
is faster even on the larger control flow graphs.

5.2 Memory Consumption

Figure 10 shows the memory consumed by the different setups
while computing the object abstraction. The reported mgruse
includes the memory required by the interprocedural oljeet-
ysis, but excludes memory needed to store the intermedipte+
sentation and the control flow graph.
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In all cases theSet -based representation uses less memory separate objects according to domain-specific user-defireu-
than theTr eeSet -based representation of alias sets; the average cates. Because our analysis computes the nodes of Sagage sh

reduction is 18% with the maximum of 40% ftisql db. The

graph, it is possible to extend our analysis to Sagiv's asislpy

HCLi st representation with hash consing uses even less memorykeeping track of edges between the nodes. The SSA proptrdies
than theSet -based representation. The average reduction is 44% we exploited and the ordered data structure that we emploglcsa

and the maximum reduction is 74% in the caseaf an.

Even though the alias sets in th€Li st -based representa-
tion may contain more variables than in tBet or Tr eeSet -
based representation, thCLi st -based representation requires
less memory thanks to sharing of common tails of the linksis li

6. Related Work
6.1 Alias Sets and Related Heap Abstractions

Jonkers [13] presented a storeless semantic model for dgakiyn
allocated data. He noticed that in the store-based heaplriade
maps pointer variables to abstract locations, the abdwaations
do not represent any meaningful information. Instead hedéfan
equivalence relation on the set of all heap paths. Deutgcprs
sented a storeless semantics of an imperative fragmenaoti&td
ML. He used a right-regular equivalence relation on accatssgo
express aliasing properties of data structures. Aliasaets spe-
cial case of access path sets: they are sets of access pttlzeroi
dereferences. Whereas an access path begins at a lochlearial
specifies a list of fields to be followed to reach the objectales
set contains only the local variables pointing directlytte bbject.
Our inspiration to use sets of variables to represent atisita
jects comes from the work of Sagiv et. al. [23]. This work ergs
a shape analysis that can be used to determine propertiespf h
allocated data structures. For example, if the input to @nam
is a list (respectively, tree), is the output still a listgjpectively,
tree)? The shape analysis creates a shape graph in whichedeh
is the set of variables pointing to an object. Pointer retathips
between objects are represented by edges between the fibees.
graph is annotated with additional information; a predidatasso-
ciated with each node which indicates whether the partiowdde
(abstract object) might be the target of multiple pointerapating
from different abstract objects. This is crucial for digtinshing
between cyclic and acyclic data structures. Later work gfiBat
al. [24] generalizes this idea by allowing the analysis glesi to

be used in the shape analysis algorithm.

Hackett and Rugina [11] use a two layered heap abstraction to
perform shape analysis that is scalable to large C prograies.
first abstraction uses a flow-insensitive context-seresdivalysis to
break the heap into chunks of disjoint memory locationsechate-
gions. Many regions are single variables; other regionsessmt ar-
eas of the heap. The second abstraction builds on top of giwnre
based memory partition, breaking the heap into small indeget
configurations Each configuration represents a single heap loca-
tion and keeps track of reference counts from other regibas t
target this location. Also, each configuration (abstragecth con-
tains field access paths known to definitely reach (hit) omitefi
not reach (miss) the object. Since in typical cases eacbmeagia
local variable the abstraction provides the same inforonadis Sa-
giv's abstraction. Orlovich and Rugina [19] apply the as#yto
detect memory leaks in C programs. Cherem and Rugina [3}adap
the abstraction to Java to perform compile-time deallocatif ob-
jects i.e. freeing the memory consumed by an object as soa as
references to it are lost. They usenfigurationsto represent ab-
stract objects and implement an efficient abstraction infdine
of a Tracked Object Structur€TOS). A TOS maintains a compact
representation of equivalent expressions making modidicaitto
the heap abstraction efficient since each node in the daftetste
is an equivalence class. The efficiency of the abstractiaiddoe
further improved by maintaining the equivalence classas@nting
the set of local variables that point to a particular corendiject as
a sorted list using the total order imposed by a preordeetsal of
the dominance tree.

In their work on typestate verification, Fink et. al. [8, 9leus
staged verifier to prove safety properties of objects. Thetmre-
cise of these verifiers keeps track of which local variablestrand
must not point to the object along with similar informati@yard-
ing incoming pointers (access paths) from other objectsrthest
or must-not point to the object. Information about the albmn
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Figure 10. Memory consumed by different data structures used in campatias sets.

site of the object is also maintained. This information isdiso
perform strong updates in the case when it can be provedHhaat t
points-to set of a receiver contains a single abstract bhjet that
this single abstract object represents a single concrgéetob

In earlier work [16, 17], we extend static typestate verifma
techniques for single objects to verify temporal speciitcet of
multiple interacting objects. Whereas typestate verificatypi-
cally associates a state with each abstract object, thit jsassible
when dealing with a state associated with multiple objetts de-
fine two abstractions: a storeless heap abstraction basatiaen
sets and a second abstraction that associates a state otsgsf
related abstract objects.

of the interference graph is due to the SSA property thatifvéri-
ables in some sef are simultaneously live at some program point
p, then they are all totally ordered by dominance, they arkvalht
the definition of the variable € S dominated by all the others, and
on every control flow path ending at the variable fromsS defined
last isv. Thus any relationship that holds between the variables at
p already holds at the definition of The abstraction presented in
this paper is intuitively based on the same idea. Suppossgethef
variables pointing to some concrete objecit program poinp is

S. Then those variables are totally ordered by dominancettayd

all already pointed t@ when the variable im € S dominated by
the others was last defined. ThusSfis represented by a linked

A common technique used to precisely handle uncertainty due list ordered by dominance, the transfer function for thérirction

to heap loads is that ehaterializationor focus[3, 8,9, 11, 17, 23].
Focus is important to regain the precision lost when an ohgec
no longer referenced from any local variables, in which dhse
alias set analysis lumps it together with all other such abje
Focus splits the abstract object representation into tieas alets,
one representing the single concrete object that was lpadedhe
other representing all other objects previously represkby the
alias set. The transfer functions in Figure 1 use focus feagphoad
(v — €) by splitting o* into two alias sets* \ {v} ando® U {v}.
The focus operation in the transfer functions of Figures é @n
no longer requires removing the variahiérom the resulting alias
sets. As discussed in Section 4.1, the set difference operst
redundant in SSA form, since the original aliass¥eis guaranteed
to not contairw.

6.2 Static Single Assignment (SSA) Form

Static Single Assignment form [1,26] has been used as amiete
diate representation since the late 1980s. Rosen et. ato@d ad-
vantage of SSA form to define a global value numbering allgorit
Cytron et al. [5] developed the now-standard efficient atbor for
converting programs to SSA form using dominance and donsman
frontiers.

Hack et. al. [10] showed that the interference graph forsregi
ter allocation of a program in SSA form is always chordal.(i.e
its chromatic number equals the size of the largest cligBath
graphs can be optimally colored in quadratic time. The chlid

definingv needs only to add to the head of the list. The only place
where variables need to be removed fr8ris an edge leading to a
node no longer dominated by the definitions of those vargable

7. Conclusion

This paper focused on the core abstraction of an alias sdthyse
numerous static analyses to infer properties about thegrsicre-

ated and manipulated in a program. We presented a datausguct
implementing the alias set abstraction for programs in S@f

The data structure consists of linked lists ordered by tleenoler
numbering of the dominance tree of the procedure. We showed
that with this ordering, the transfer functions only appigdl up-
dates to the head of each list. Since the lists are orderanon

tails of different lists representing different alias seds be shared.

We implemented an interprocedural context-sensitiveyaismbs-

ing this representation of the abstraction. Our experialessults
show that the ordered list representation is faster andnesjless
memory than standard set data structures. Running timeatsl

by 58% on average and by as much as 72% on one of the bench-
marks. Memory requirements decreased by 44% on average, and
by as much as 74% on one of the benchmarks.
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