
Parallelizing Sequential Applications on Commodity Hardware
using a Low-cost Software Transactional Memory

Mojtaba Mehrara Jeff Hao Po-Chun Hsu Scott Mahlke
Advanced Computer Architecture Laboratory
University of Michigan Ann Arbor, MI 48109
{mehrara,jeffhao,pchsu,mahlke}@umich.edu

Abstract
Multicore designs have emerged as the mainstream design paradigm
for the microprocessor industry. Unfortunately, providing multiple
cores does not directly translate into performance for mostappli-
cations. The industry has already fallen short of the decades-old
performance trend of doubling performance every 18 months.An
attractive approach for exploiting multiple cores is to rely on tools,
both compilers and runtime optimizers, to automatically extract
threads from sequential applications. However, despite decades of
research on automatic parallelization, most techniques are only ef-
fective in the scientific and data parallel domains where array dom-
inated codes can be precisely analyzed by the compiler. Thread-
level speculation offers the opportunity to expand parallelization
to general-purpose programs, but at the cost of expensive hard-
ware support. In this paper, we focus on providing low-overhead
software support for exploiting speculative parallelism.We pro-
pose STMlite, a light-weight software transactional memory model
that is customized to facilitate profile-guided automatic loop paral-
lelization. STMlite eliminates a considerable amount of checking
and locking overhead in conventional software transactional mem-
ory models by decoupling the commit phase from main transac-
tion execution. Further, strong atomicity requirements for generic
transactional memories are unnecessary within a stylized automatic
parallelization framework. STMlite enables sequential applications
to extract meaningful performance gains on commodity multicore
hardware.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features–Concurrent program-
ming structures; D.3.4 [Programming Languages]: Processors–
Code generation, Compilers

General Terms Languages, Algorithms, Design, Performance

Keywords Software transactional memory, Automatic paralleliza-
tion, Thread-level speculation, Loop level parallelism, Profile-
guided optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’09, June 15–20, 2009, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

1. Introduction
As the scaling of clock frequency and complexity of uniproces-
sors has reached physical limitations, the industry has turned to
multicore designs. Example systems include special purpose pro-
cessors like the Sony/Toshiba/IBM Cell processor that consists of
9 cores [20], the NVIDIA GeForce 8800 GTX that contains 16
streaming multiprocessors each with eight processing units [30],
and the Cisco CRS-1 Metro router that utilizes 192 Tensilicapro-
cessors [12] and more general purpose processors includingthe Sun
UltraSparc T1 that has 8 cores [22]. Furthermore, Intel and AMD
are producing quad-core x86 systems today and larger systems are
on their near term roadmaps. One of the most difficult challenges
going forward is software: if the number of devices per chip contin-
ues to grow with Moore’s law, can the available hardware resources
be converted into meaningful application performance gains? Mul-
tiple cores readily help where threads are plentiful, such as web
servers. However, they provide little or no gains for sequential ap-
plications. In fact, performance of sequential applications may suf-
fer due to the use of simpler cores and smaller caches per core.

Many new languages have been proposed to ease the burden
of writing parallel programs, including Atomos [5], Cilk [14], and
StreamIt [41]. Despite these and other languages, the effort in-
volved in creating correct and efficient parallel programs is still far
more substantial than writing the equivalent single-threaded ver-
sion. Developers must be trained to program and debug their ap-
plications with the additional concerns of deadlock, livelock, and
race conditions. Converting an existing single-threaded application
is often more challenging, as it may not have been developed to
be easily parallelized in the first place. The lack of necessary com-
piler technology is increasingly apparent as the push to rungeneral-
purpose software on multicore platforms is required.

Techniques for parallelizing Fortran programs [3, 8, 15] usu-
ally target counted loops that manipulate array accesses with affine
indices, where memory dependence analysis can be preciselyper-
formed. Unfortunately, these techniques do not often translate well
to C and C++ applications. These applications, including those in
the scientific and media processing domains, are much more diffi-
cult for compilers to analyze due to the extensive use of pointers,
recursive data structures, and dynamic memory allocation.More
sophisticated memory dependence analysis, such as points-to anal-
ysis [31], can help, but parallelization often fails due to unresolv-
able memory accesses.

Thread-level speculation (TLS) offers an opportunity for paral-
lelizing C and C++ applications. With TLS, the architectureallows
optimistic execution of code regions before all values are known
[16, 21, 40, 45]. Hardware and/or software structures trackreg-
ister and memory accesses to determine if any dependence vio-
lations occur. In such cases, register and memory state are rolled

back to a previous correct state and sequential re-execution is ini-
tiated. With TLS, the programmer or compiler can delineate re-
gions of code believed (but not provably) to be independent and
amenable to parallelization [7, 11, 25, 27]. Profile data is often
utilized during this process. The POSH compiler is an excellent
example where TLS yielded approximately 1.3x speedup for a 4-
way CMP on SPECint2000 benchmarks [25]. More recent work
has shown that additional loop-level parallelism is covered up by
a small number of register and control dependences, but can be
unlocked with several dependence breaking transformations [44].
Outer-loop pipeline parallelism has also been identified asa key
parallelization opportunity. Bridgeset al. report a geometric mean
of 5.5x gain on SPECint2000 (with variable number of threadsup
to 32) using decoupled software pipelining [4].

Proponents of TLS advocate hardware support for speculation
generally in the form of transactional memory or similar tech-
niques [16, 40]. Bulk tracking of memory dependences using signa-
tures along with dedicated structures for managing speculative state
provide an efficient environment for TLS [6]. However, the cost and
complexity of implementing hardware or hybrid hardware/software
TMs are high. With the notable exception of the Sun Rock pro-
cessor, hardware support for TLS has not made it into mainstream
multicore systems yet.

Alternatively, software TMs, or STMs, offer the opportunity for
TLS support without any dedicated hardware. The first STM by
Shavit et al. maintained read and write access locations in order
to roll back in case of a transaction abort [35]. Many other works
[19, 17, 26, 32, 10] proposed different forms of STM to tackle
various performance and correctness issues involved in theSTM
paradigm. However, these STM implementations are far too expen-
sive in terms of run-time overhead. For parallel applications, STMs
typically result in visible slowdowns of 2x or more. The problem is
even worse for compiler parallelized sequential applications where
all the gains and more are typically wiped out by the STM.

STMs generally focus on flexibility to support a wide variety
of transactions and scalability to enable many concurrent threads.
STM control is fully distributed to the running threads. In this pa-
per, we take the opposite approach by introducingSTMlite, a lean
and efficient STM specifically customized for compiler paralleliza-
tion. With our focus on compiler parallelization, the goal is man-
aging a modest number of speculative threads (2-8) that a compiler
can realistically expect to find in C and C++ applications. Further,
we focus on tightly integrating the STM with the compiler paral-
lelization framework to ensure low overhead. Some requirements
of more generic STMs such as strong atomicity [36] and special
handling of local variables are not needed in this setting. Locks are
removed by centralizing the TM bookkeeping on a single, perhaps
idle, core. In this manner, bookkeeping tasks occur in parallel with
transaction execution and the overhead on each work thread is min-
imized. Most importantly, centralized control obviates the need for
locks and their associated overhead. The obvious downside of cen-
tralized control is the lack of scalability, but for a modestnumber
of threads, large increases in efficiency are possible for both paral-
lelized and multithreaded applications.

This paper is organized as follows. In Section 2, we discuss
challenges in STM systems and customization opportunitiesbased
on our main goal – exploiting loop-level parallelism. Section 3 de-
scribes STMlite, our proposed STM model. We discuss our par-
allelization framework and the interaction between the compiler-
generated code and STMlite in Section 4. In Section 5, we present
our experimental results. Finally, Section 6 discusses related work
and Section 7 concludes the paper.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

vacation low vacation high kmeans low kmeans high

Application TxStore TxLoad TxCommit

Figure 1. Single-threaded runtime breakdown of a state-of-art
STM system on two STAMP transactional benchmarks.

2. Motivation
2.1 Challenges in Software Transactional Memory Systems

STMs have the advantage of requiring no additional hardwareto
run. However, since it is implemented entirely in software,it entails
a large runtime overhead in maintaining transactional state. The
high overheads of an STM are due to several reasons. The largest
bottleneck in STMs is the maintenance and validation of readsets
in read-write transactions. These sets keep track of every address
read by a transaction, and are used to maintain coherence between
transactions. For each load, the STM has to execute at least one
transactional load and revalidate its timestamp when the transaction
commits. As transactions read larger amounts of data, this overhead
becomes substantial.

Secondly, global locks are necessary for transactions to write
back their final “correct” data. During a transactional store, the
address and value are stored into a write set, deferring any change in
memory until commit. This allows transactions to remain coherent
with each other, but adds a considerable overhead during commit
time for obtaining the locks on these addresses and writing them
back to their final location. The use of locks in the data writeback
is expensive as it involves atomic instructions.

In order to get a better understanding of what the major sources
of overhead are in an advanced STM system, we performed an ex-
periment on two STAMP benchmarks [28] using a state-of-art STM
system - Sun’s Transactional Locking 2 (TL2) [10]. We measured
the time spent in each TM component of a single threaded trans-
actional execution of these benchmarks using the TL2 library. A
similar analysis has also been done in [29]. Figure 1 shows the re-
sult of this experiment. The vertical axis in these charts shows the
execution time normalized to the sequential runtime. The vertical
bars show the fractions of runtime spent in the main application,
transactional commits (TxCommit), transactional stores (TxStore),
and transactional loads (TxLoad).

The chart clearly shows the large overhead of read set mainte-
nance in the Vacation benchmark, which has large transactions with
many transactional reads. Keeping track of the read set causes con-
siderable overhead, as depicted by the TxLoad portion of each bar.
Additionally, the checks required during commit to maintain read
set coherence are extremely costly [38], representing overhalf the
runtime in Vacation with high contention. For the Kmeans bench-
mark, the overheads are not as severe because its read sets are
smaller, but it still exhibits similar behavior.

2.2 Speculation Requirements for Loop Parallelization

There are several aspects of STM models that are crucial for cor-
rectness in general. However, we can loosen some of these limita-

tions and requirements in the loop parallelization domain to make
the software-based speculation more efficient.

1. One of the shortcomings in STM models is the lack of strong
atomicity guarantees, which raises correctness issues in paral-
lel programs. Previous works [1, 36, 33] have addressed the is-
sue of strong atomicity in STMs. While being effective, these
approaches incur a non-trivial amount of complexity or perfor-
mance overhead on the system. However, using STM for specu-
lation in loop parallelization obviates the need for strongatom-
icity, because the execution consists of at most a single in-flight
parallel loop at each point. Since all the code in the loop is run-
ning inside transactions, there can be no non-transactional code
running at the same time as transactional code.

2. Special handling of local variables in a STM is not required
for loop parallelization, because the loop iterations are not sup-
posed to share any local variables on stack. Otherwise, they
cause unresolvable cross iteration dependences, which prevent
loop parallelization to begin with. Therefore, there is no need
to have specialized transactional loads and stores for local vari-
ables.

3. Zombie transactions are transactions that have read a stale value
or pointer from memory and have taken an incorrect code path
which might lead to an infinite loop. One of the main sources
of zombie transactions are loops with complicated linked-list
operations. These loops are generally not parallelizable and
therefore, we do not need to provide efficient and complicated
ways for handling zombies in a STM for loop parallelization.
However, to ensure correctness in other cases, we provide a
mechanism for handling zombies in later sections that does not
affect normal execution of transactions.

With these challenges in mind, we aim to tackle the two main
sources of STM overhead: read-set maintenance and lock-based
writeback mechanism. In addition, based on the specific specula-
tion requirements in loop-level parallelism, we make simplifica-
tions to STMlite that makes it even more efficient.

3. STMlite
In this section, we describe our proposed STM model, STMlite. As
was mentioned in Section 2, in traditional STM models, a consider-
able part of the execution time is spent in maintaining auxiliary data
structures needed for providing correctness guarantees. In particu-
lar, one of the major bottlenecks is construction, maintenance, and
frequent checking of read logs. The read log structure keepstrack
of the addresses (or objects in object-based implementations) read
by each transaction. At transaction commit, these logs are walked
over, and each address is checked for consistency. In addition, al-
though the programmer does not have to deal with the subtleties of
lock-based programming, thanks to the usage of atomic blocks and
TM primitives, the performance of the underlying runtime system
still suffers from the downsides of using locks in many implementa-
tions. In order to address these problems, and as a step towards styl-
ized customization for speculation used in loop-level paralleliza-
tion, we developed a new software-based model that eliminates the
need for read log maintenance during transaction executionand ex-
plicit locking during memory writebacks.

We assign a dedicated software thread for managing the exe-
cution of the transactions involved in the main computation. This
thread, which runs on an individual core, is referred to as the Trans-
action Commit Manager (TCM). Having a central commit manager
provides an environment in which the manager is responsiblefor
ensuring that, at any given time, at most one transaction is writ-
ing to a particular memory location. With higher numbers of trans-
actions, there can be several coordinating TCMs with each TCM

Ready for commit No conflicts

Execute

transac�on

Compute

WrSig & RdSig

Commit

transac�on

Copy RdSig &

WrSig to pre-

commit log

Walk over

pre-commit log

Check RdSigs

against

commi!ed

WrSigs

Write

back

WrSet to

Memory

Abort

Transac"on

Commit

Manager

Execu"on

Transac"on

Start

transac�on

Finish

transac�on

Conflict

Figure 2. STMlite execution model. Solid lines denote execution
flow. Dashed lines denote passing messages by signals or memory
polling. The dash-dot line shows an indirect write/read relation
(each transaction writes to a precommit log entry which is later
read by the TCM).

Inside TCM

PreCommit Log entry

Transac�on

Header Pointer

Commit

Version
Write Signature

Transac�on

Header Pointer

Commit

Version
Write Signature

Transac�on

Header Pointer

Commit

Version
Write Signature

Transac�on

Header Pointer

Commit

Version
Write Signature

Commit Log
Head*

Tail *

Valid

Valid

Valid

Valid

Write Set

Commit

Version
Write Signature

Transac!on Header

Start

Version
Read Signature

Tx

ID

Abort?

Commit?

IsWri�ng?

Transac�on

Header Pointer

Commit

Version

Write

Signature
Ready

In
sid

e
 T

X

Read

Signature

minSV Log ... Writeback

Ac!on-list
...

Figure 3. STMlite data structures. Each transaction has an indi-
vidual header. The TCM has a single commit log and there is a
precommit log for each execution core inside the TCM.

managing a group of execution transactions (TCM virtualization).
In this way, we can avoid having a single point of serialization in
highly parallel applications.

The STMlite model essentially consists of several execution
cores for running individual transactions and a TCM core formain-
taining transactional consistency in the system. In the following
subsections, we explain in more detail how each step works.

3.1 Overview

Figure 2 summarizes the operation of STMlite. The top rectangle
shows the execution flow inside each transaction. The bottompart
is a summary of what happens inside the TCM.

Centralized management of individual transactions is madepos-
sible by using transactional read and write signatures, which are
essentially hash-based representations of all reads and writes per-
formed during execution. Using signatures in hardware was first
proposed in [6]. However, unlike hardware, hash-based computa-
tions can become quite expensive in software. Therefore, choosing

TxLoad(Addr){
if SignatureFind(Addr, Self->wrSig)

Load the correct value from the wrSet
else

Load from memory
SignatureInsert(Addr, Self->rdSig)

}
TxStore(Addr, Data){
Store Data to the WriteSet
SignatureInsert(Addr, Self->wrSig)
}

Figure 4. Pseudocode for transactional loads and stores.

the right set of hash functions and the proper size for signatures
is crucial in software systems to ensure minimal overhead and few
false positives at the same time. In [18], hashing schemes are used
to remove duplicates in the read-log and undo-logs of the “same”
transaction. However, in order to use signatures for conflict detec-
tion between different transactions, a central manager is needed
to check signatures against each other. In signature-basedHTMs
[6, 43], this is done in the coherence protocol. Here, it is done by
the TCM.

Each transaction maintains a transaction header which is shown
in Figure 3. The transaction header contains some information
gathered during transaction execution and is used during the com-
mit process. The main idea behind STMlite is that all transactions
compute read and write signatures during their execution. At com-
mit, they copy these signatures to a list called the precommit log
(Figure 3). This log is basically a single-reader/single-writer buffer
that is read by the TCM and written by transactions. Its operation is
inspired by the reservation station in traditional out-of-order pro-
cessors. Committed transactions reside in another data structure
called commit log (Figure 3). The commit log is only updated and
read by the TCM.

The TCM goes through precommit log entries and checks
whether their read signatures have conflicts with the write signa-
tures of overlapping already-committed transactions in the commit
log. If there is no hash collision, the transaction is notified to start
writing back its write set. Otherwise, the transaction aborts and
restarts its execution. During the write back process, the TCM is
responsible for preventing concurrent writes to the same addresses
in memory. TCM operation is detailed in Section 3.3.

In order to keep track of the relative start and commit times of
transactions, we use a global clock mechanism similar to [9]. The
TCM increments the global clock value whenever a writing trans-
action commits. We define the start version for each transaction as
the value of the global clock at transaction start. Likewise, the com-
mit version is the value of the global clock at commit time.

3.2 Transactional Loads and Stores

Figure 4 shows the pseudocode for STMlite’s transactional load
and store functions.TxLoad first checks the transaction’s write
signature (wrSig) to see if this transaction has previously written to
Addr. If so, it reads the data from the write set (wrSet) and returns.
In order to avoid walking through the entire write set when the
number of store-to-load forwarding instances is high, we added a
hash map to each transaction that caches the latest stored addresses
and values for quick retrieval. Therefore, ifAddr is found in the
write signature, this hash table is checked before walking through
the write set. This helps to lower transactional load overhead in
many cases. If the transaction hasn’t written toAddr, data is loaded
from memory andAddr is inserted into the read signature (rdSig).
TxStore storesData to the write set and insertsAddr to the write
signature.

As can be seen, the only major extra overhead in transactional
loads and stores is due to the signature insert and find operations,

TCM() {
for entry precommitTX in PrecommitLogs
if (precommitTX.Ready)

if (ConflictCheck(precommitTX))
Grant commit permission to precommitTX

else
Abort precommitTX

}

ConflictCheck(precommitTX) {
for entry committedTX in CommitLog {
if (precommitTX.startVersion

< committedTX.commitVersion)
if HashCollision(precommitTX.rdSig,

committedTX.wrSig)
return 0;

}
if !(precommitTX.readOnly){
Go through WBActionList
wait for concurrent conflicting WBs to finish

}
return 1;

}

Figure 5. Commit management in the TCM.

though they remain low-cost for moderately sized signatures. Fur-
thermore, the signature operations can be inserted in a decom-
posed fashion, separate form transactional loads and stores, en-
abling more aggressive compiler optimizations such as hoisting the
signature calculations out of the loops with the aid of pointer alias
analysis.

3.3 Transaction Commit Manager

As mentioned before, the TCM has two main data structures: the
precommit log and the commit log (Figure 3). The commit log
keeps track of committed transactions, and the precommit log con-
tains transactions waiting to be served by the TCM. In order to
reduce contention among transactions, a separate precommit log is
assigned to each core. Figure 5 provides a summary of what hap-
pens in the TCM during runtime.

The TCM constantly pollsReady flags of precommit log entries
(firstfor loop in the figure). When it detects aReady is set, it reads
the transaction’s start version and checks it against the commit
versions of commit log entries (in theConflictCheck function).
If the start version of the committing transaction is less than the
commit version of a commit log entry, we know that their execution
has overlapped at some point in time. Therefore, they shouldbe
checked for possible conflicts (in theHashCollision function).
In case of a hash collision between the signatures, the committing
transaction is instructed to abort by setting theAbort flag in its
header. If the committing transaction passes the check against all
overlapping commit log entries, it is safe to be committed. This
is all that needs to be done for read-only transactions. Therefore,
the TCM sets theCommit flag in the transaction header. It is not
necessary to copy any information about read-only transactions to
the commit log.

However, the mechanism is more subtle for writing transactions.
Since we want to avoid having individual locks for writing back
the write set to memory, the TCM needs to make sure no concur-
rent writes are happening to the same address during writeback.
The TCM uses a secondary structure called the writeback action-
list (WBActionList) for this purpose. The action-list has the same
number of entries as the active threads in the system. At any given
time, it contains the write signatures of the transactions that have
passed the commit check in the TCM and are writing back their
write set to the memory. When a transaction is ready to commit, the
commit manager checks its write signature against all writesigna-

tures in the writeback action-list. If there is no collision, the commit
manager sets theCommit flag in the transaction header and writes
the transaction’s write signature to the action-list. Otherwise, it
keeps checking the list until the colliding entry has finished writing
back. An extra bit is added to the list to make sure that TCM does
not repeatedly keep checking the signatures that have passed the
collision test with the current committing transaction before. These
checks could potentially become the TCM’s bottleneck, though we
did not notice any considerable busy waiting in our experiments.
Subsequently, the TCM writes the necessary information about the
committed transaction to the commit log, and moves on to checking
the next entry in the precommit log.

Since commit log entries are no longer needed after all overlap-
ping transactions have finished, a clean up mechanism is required to
remove unnecessary entries. For this purpose, we maintain amini-
mum start version (minSV) log which contains the start versions of
all in-flight transactions. Each transaction adds an entry to this log
at start time and removes it at commit or abort. After each transac-
tion commit or abort, the TCM starts from the commit log head
entry and checks it against the start versions in the minSV log.
If there are no overlapping in-flight transactions with the commit
log head entry, that entry is removed and the head pointer is incre-
mented. We keep doing this until the head entry in the commit log
has an overlapping in-flight transaction. The reason we decided to
use a circular buffer for the commit log (as opposed to a linked-list
buffer) is to avoid the extra overhead of maintaining a linked list.
Our commit log model only allows us to remove entries from the
head of the log and add entries to the tail.

3.4 Individual Transaction Commits

When a transaction reaches the commit point, it fills up an entry in
its precommit log with a pointer to its transaction header and sets
the entry’sReady flag. Subsequently, it keeps pollingCommit and
Abort fields, waiting for them to be filled by the TCM. In order to
avoid busy waiting at this point, we can relinquish the core1 which
is particularly useful when we have a larger number of threads than
cores.

After a transaction receives commit permission from the TCM,
it walks through its write set and writes back the actual values to
memory. Because the TCM has already made sure that there are
no concurrent transactions writing to the same locations, the com-
mitting transaction does not need to lock any memory locations.
We chose to use a lazy version management strategy, because an
eager version management system without locks introduces many
complications in rolling back updates to memory locations after a
conflict.

To minimize the overhead of individual transactional loads, a
lazy conflict detection scheme is employed. This works particularly
well for speculation support in loop parallelism, because minimum
transactional load overhead is important for gaining performance
from parallelizing loops. Furthermore, conflicts are rare due to
the smart loop selection, and trying to detect conflicts eagerly at
each transactional load provides no extra benefit. In eager conflict
detection mechanism, since transactions are checked for conflicts at
each load and store, the possibility of having zombie transactions
is really low. However, eager conflict detection incurs substantial
overhead on individual transactional operations.

Lazy conflict detection makes STMlite vulnerable to zombie
transactions. These transactions may never reach the commit point
and the commit manager normally does not get the chance to force
them to abort. As a matter of fact, zombie transactions are partic-
ularly bad for our implementation because their corresponding en-
tries remain valid within the minSV log and prevent the othercom-

1 In Linux, this can be done usingsched yield function.

mit log entries from being cleaned up. However, we can exploit the
minSV log to resolve the zombie transaction issue. Each timewe
go through the commit log reading the minSV entries, if the dif-
ference between the start version of a particular transaction and the
global clock is more than a threshold, the TCM identifies the corre-
sponding transaction as a potential zombie. Subsequently,the TCM
checks the suspicious transaction’s read signature against write sig-
natures of the commit log entries (although it has not reached the
commit point yet). If there is a conflict, the TCM forcibly aborts
the zombie transaction by sending an abort signal. We have a signal
handler in each transaction that calls the abort function whenever
it receives the TCM’s abort signal. Otherwise, the TCM concludes
that the suspicious zombie was just a long running transaction and
avoids aborting it. In this work, since we do not parallelizeloops
with complicated linked list operations (which are the mainsources
of zombies transactions), the possibility of having zombies is quite
low in our framework.

4. Loop Parallelization Using STMlite
In this section, we introduce our loop parallelization framework
and customizations made to STMlite for parallelizing speculative
DOALL loops. Our framework successfully handles loops with
cross iteration control dependences (e.g., while loops) aswell as
normal counted loops.

The general structure of our parallelization framework follows
the code generation schema used in [44]. However, using that
framework without the extra hardware support imposes a large
overhead on the execution time. At the same time, STMlite gives
us the opportunity to simplify the parallelization framework by
exploiting some of its underlying features that are alreadyused for
providing transactional correctness.

4.1 Baseline Parallelization Framework

The purpose of the parallelization framework is to distribute loop
execution across multiple cores. In this framework, DOALL loops
are categorized into DOALL-counted and DOALL-uncounted
types. In DOALL-counted loops, the number of iterations is known
at runtime, whereas in DOALL-uncounted loops, this number
is dependent on the loop execution (e.g. while loops). In these
cases, starting every iteration is dependent on the outcomeof exit
branches in previous iterations (cross iteration control dependence).

Figure 6 shows the detailed implementation of the framework.
In this scheme, loop iterations are divided into chunks. Theoperat-
ing system passes the number of available cores to the application
and the framework is flexible enough to use any number of cores
for loop execution. An outer loop is inserted around the original
loop body to manage parallel execution between different chunks.
The main thread (THREAD 0), which runs the sequential parts of
the program, spawns the required number of threads at the start of
the application. When a parallel loop is reached, a functionpointer
containing the proper loop chunk along with necessary parameters
is sent to each spawned thread and they start the execution ofloop
chunks.

In order to capture the correct live-out registers after parallel
loop execution, we use a set of registers calledlast upd idx,
one for each conditional live-out (i.e., updated in an if-statement).
When a conditional live-out register is updated, the corresponding
last upd idx is set to the current iteration number to keep track of
the latest modifications to the live-out values. If the live-out register
is unconditional (i.e., updated in every iteration), the final live-
out value can be retrieved from the last iteration and no tracking
by last upd idx is needed. It should be noted that loop chunks
in the framework do not share any local memory variables on
stack. Otherwise, the loop would have unresolvable cross iteration
dependences and would be unparallelizable. This leads to one of

TxBegin
if (global_brk_flag)
break;

IE = min(IS+CS*SS,n);

for (i=IS;i<IE;i+=SS)
// original loop code
live_outk =… //kth liveout assignment
last_upd_idxk= i;
if (brk_cond)
local_brk_flag = 1;
break;

In all threads
for (all live_outs)

store live_outj and last_upd_idxj to memory
In THREAD_0
Get live_outs and last_upd_idx values
Set live_outj to the last updated value

TxCommit
if (local_brk_flag)

global_brk_flag = 1;
kill_other_threads;

IS+=CS * TC * SS;
P

a
ra

ll
e

l L
o

o
p

C
o

n
so

li
d

a
!

o
n

Spawn

Loop Barrier

Figure 6. Overview of the parallelization framework (CS: chunk
size, IS: iteration start, IE: iteration end, SS: step size,TC: thread
count).

the simplifications we made in STMlite which is the elimination
of the handling mechanism needed for speculative local memory
variables. Following is a description of the functionalityof each
segment in Figure 6.

Spawn: THREAD 0, the main thread, sends the function pointer
pointing to the start of loop chunks to the in-flight threads through
memory. It also sends along the necessary parameters (chunksize,
thread count, etc.) and live-in values.

Parallel Loop: The program stays in the parallel loop segment
as long as there are some iterations to run and no break has hap-
pened. In this segment, each thread executes a set of chunks.Each
chunk consists of several iterations starting from IS (iteration start)
and ending at IE (iteration end). The value of IS and IE are up-
dated after each chunk using the chunk size (CS), thread count
(TC), and step size (SS). Each chunk is enclosed in a transaction
using TxBegin and TxCommit function calls. In order to ensure
correctness, an abort signal is sent to transactions running higher
iterations if a conflict is detected.

One important requirement for parallelizing loop chunks isto
force in-order chunk commit. This is necessary for maintaining cor-
rect execution and enabling partial loop rollback and recovery. The
TCM in STMlite already provides the means to enforce ordering
among transactions in the commit log. The same infrastructure can
be used for in-order chunk execution as well. Therefore, there is
no need for send/receive instructions and a scalar operand network
as was used in [44]. However, some extra book-keeping data isre-
quired both for STMlite and the parallelization framework.Since
this is mostly done in STMlite and it is almost transparent tothe
generated code, we explain these necessary steps in the nextsub-
section detailing the interaction between STMlite and loopparal-
lelization.

For uncounted loops, if a break happens in any thread, higher
transactions are not aborted immediately because thread execu-

tion is speculative and the break could be false. Instead, the
local brk flag variable in each thread is used to keep track of
breaks in individual chunks. If a transaction commits successfully
with its local brk flag set, the break is no longer speculative,
and a transaction abort signal is sent to all threads. In addition, a
global brk flag is set, so that all threads break out of the outer
loop after restarting the transaction as a result of the abort sig-
nal. The reason for explicitly aborting higher iterations is that, if
an iteration is started by misspeculation after the loop breaks, it
could produce an illegal state. The execution of this iteration might
cause unwanted exceptions or might never finish if it contains inner
loops. This procedure of explicit handling of breaks has thebenefit
of avoiding zombie transactions, and although STMlite can handle
zombies, this explicit handling has much lower cost.

Consolidation: After all cores are done with the execution of
iteration chunks, they enter the consolidation phase. Eachcore
sends its live-outs andlast upd idx array toTHREAD 0 through
memory.THREAD 0 picks the last updated live-out values. All other
threads keep waiting for chunks from other parallel loops later in
the program.

Since the goal is to provide a low-cost software-based paral-
lelization mechanism, most of the extra code is kept outsidethe
main loop body, and is executed only once per chunk.

4.2 Interaction of Parallel Loops with STMlite

As mentioned in the previous subsection, in-order commit ofindi-
vidual loop chunks is crucial for correct parallel execution. In order
to enforce that requirement, we add another log structured called
the loop chunk commit log (LCCL) to the TCM. This log contains
the loop ID of the last committing parallel loop and the chunkID
of the last committed chunk in that loop. The loop ID is assigned
to each loop statically at compile time. It should be noted that our
model allows only one in-flight parallel loop at a time by includ-
ing a lightweight barrier at end of each chunk. Thus, there will
be no problem if a parallel loop is invoked twice, because there is
guaranteed to be no previous instances of this loop running.This
is important, because if two in-flight loops have the same loop ID,
they can completely distort each other’s execution. The only prob-
lem is the case of loops in recursive functions. In this work,we do
not parallelize loops with recursion. However, even in thatcase, a
hash value based on the call site trace of the loop can be used to
uniquely identify individual loops [34].

We reuse the initial value of IS (iteration start) which is com-
puted at the beginning of each loop chunk as the chunk ID. When
a loop chunk reaches the commit instruction, it writes its loop ID,
chunk ID, chunk size, and the loop’s first chunk ID to the precom-
mit log. After the TCM reads in an entry from the precommit log,
it performs one of the following two operations:

1. If the loop ID in the precommit log does not match the LCCL’s
committing loop ID, it infers that a new loop has started com-
mitting. Subsequently, it writes the new loop ID and the loop’s
first chunk ID to the LCCL. If the committing chunk is the first
chunk in the loop, the TCM proceeds with the commit process.
Otherwise, it just moves on to checking the next precommit log
entry. This is because a chunk’s commit process should not be
started until all earlier chunks have been committed (i.e. have
got commit permission from the TCM and started the writeback
process).

2. If the loop ID of the committing chunk matches the entry in
the LCCL, the TCM checks to see if the current chunk is
right after the last committed chunk. If so, it proceeds withthe
chunk’s commit process. Otherwise, it starts checking the next
precommit log entry.

The above mechanism provides low-cost commit ordering by
adding minimal complexity to the STMlite library. This integration
of loop parallelization with STMlite leads to an efficient parallel
loop execution platform.

5. Results
We set up two sets of experiments. First, we evaluated how STMlite
performs in a typical transactional environment using the STAMP
transactional benchmarks [28]. In the second set of experiments,
we implemented the code generation part of the parallelization
framework in the LLVM compiler [24]. Using this framework, a
set of SPECfp benchmarks and several kernel benchmarks are par-
allelized. All benchmarks were written in C or converted from For-
tran to C2. While the original Fortran applications can be paral-
lelized using compilers such as SUIF [15], Fortran to C conver-
sion introduces a large number of pointer variables, thus compiler
analysis alone was insufficient to parallelize all applications. For
SPECint benchmarks, as previous works have shown [44, 25], the
level of loop-level parallelism is quite low, thus the overhead of
using an all-software parallelization approach is too large to yield
meaningful performance gains. More sophisticated parallelization
techniques for integer applications are possible, such as those pro-
posed by [4], and can lead to substantial gains. However, we have
not implemented these transformations within our compilersystem,
yet they are orthogonal to what we are doing here.

5.1 STMlite on STAMP

We measured the performance of the STAMP benchmarks on a
SunFire T2000 with an 8-core UltraSPARC T1 processor, running
Solaris 10. We compare our performance with an implementation
of a state-of-art STM - Transactional Locking 2 (TL2) [9]. Figure 7
shows the benchmark speedups on STMlite and TL2, both normal-
ized to sequential execution. The number of cores in the STMlite
results include the one extra core used for the TCM. For example,
the 8 core results in STMlite have 7 computation cores and one
TCM core. Thus, STMlite results start from two cores on the hori-
zontal axis.

As can be seen, STMlite noticeably outperforms TL2 in both
high and low contention executions of the Vacation benchmark.
This is mainly because this benchmark has long transactionswith
a large number of loads. Therefore, the traditional STM performs
poorly due to the high overhead of transactional loads and itcan
hardly achieve speedup over sequential even with 8 cores. However,
using STMlite is particularly beneficial in these types of bench-
marks. The overhead of transactional loads in our model is mini-
mal due to the complete elimination of the read set. Furthermore,
long length transactions and relatively low contention amortize the
slight serialization effect that happens at commit time. Therefore,
our model achieves about 2.5x and 3.1x speedup over TL2 with
8 cores, which is quite close to the speedup achieved by previous
hybrid schemes [29].

STMlite follows the performance of TL2 in Kmeans, Labyrinth
and Bayes. First, it should be noted that poor scalability from 4 to
8 cores in Kmeans and from 2 to 8 cores in Bayes is mainly due to
the fact that these benchmarks contain heavy floating point compu-
tations. Since the UltraSPARC processor only has a single floating
point unit that is shared by all processors, these floating point com-
putations become the sequential bottleneck of parallel execution,
especially with higher number of threads. We did not have any8-
core x86 processors available to investigate the scalability in a more
fair environment. However, the Bayes benchmark scales fine from
2 to 4 cores on a quad-core x86 machine.

2 Fortran to C conversion was done using thef2c tool with -a flag.

STMlite Tradi onal STM STMlite - lock instead of short TX

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

Vaca on - low conten on

0

1

2

3

4

1 2 3 4 5 6 7 8

Vaca on - high conten on

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

Labyrinth

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Bayes

0

0.5

1

1.5

1 2 3 4 5 6 7 8

Kmeans - low conten on

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

Kmeans - high conten on

Figure 7. STMlite performance on STAMP benchmarks. The ver-
tical axis shows the speedup compared to the sequential execution
and horizontal axis is the number of cores. The number of cores in
STMlite includes one core that is used for the TCM.

/* Original Kmeans Code*/ | /* Lock-based Kmeans Code */
TxBegin; | pthread_mutex_lock(&mutex1);
start = TxLoad(global_i); | start = global_i;
TxStore(global_i, | global_i = start + CHUNK;
(start + CHUNK)); |

TxCommit(); | pthread_mutex_unlock(&mutex1);

TxBegin(); | pthread_mutex_lock(&mutex2);
TxStore_f(global_delta, | global_delta =
TxLoad_f(global_delta) | global_delta + delta;

+ delta); |
TxCommit(); | pthread_mutex_unlock(&mutex2);

Figure 8. Small transactions in Kmeans working on global data
and their equivalent lock-based implementation.

The main reason STMlite performs similarly to TL2 in these
benchmarks is the short length of transactions in Kmeans and
relatively high rate of contention in Bayes and Labyrinth. So, the
savings STMlite gets in transactional loads, transactional stores,
and writebacks gets offset by the extra overhead of communications
between execution transactions and the TCM. However, STMlite is
still about 15% to 30% faster than TL2 in Kmeans for 4 and 8
threads. An interesting issue we found while looking through the
performance bottlenecks of STMlite in Kmeans, is that thereis a
small transaction in the source code towards the end of the program
that increments a global variable in all transactions (Figure 8). This
part of the code causes a large number of transaction aborts in
STMlite, which incurs a high cost considering the short transaction
lengths. Whereas in TL2, since the library is acquiring locks for
each address during writeback and uses a back-off mechanismif
the lock is not free, there are fewer transaction aborts. In order
to validate this observation, we placed a global lock aroundthe
transaction in Figure 8 and changed the transactional loadsand
stores to normal ones. The performance of the resulting execution

0

10

20

30

40

50

60

70

80

90

100

052.alvinn 056.ear 102.swim 107.mgrid 173.applu 183.equake

Profiled Coverage Provable Coverage Selected Coverage

Figure 9. Profiled DOALL, provable DOALL and selected paral-
lel loop coverage. The vertical axis shows fraction of sequential
execution.

0.00
0.20
0.40
0.60
0.80
1.00
1.20

1 2 3 4 5 6 7 8

Number of cores

STMlite HTM TL2 with so!ware chunk sync

0.0

1.0

2.0

3.0

4.0

5.0

1 2 3 4 5 6 7 8

BeamFormer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3 4 5 6 7 8

FmRadio

0.0

2.0

4.0

6.0

8.0

1 2 3 4 5 6 7 8

RLS

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8

DCT

Figure 10. STMlite performance on automatically parallelized
kernel benchmarks. The vertical axis shows the speedup compared
to the sequential execution and horizontal axis is the number of
cores. The number of cores in STMlite includes one core that is
used for the TCM.

is also shown in Figure 7. This change in the benchmark did not
affect the runtime for TL2 – since TL2 essentially does the same
thing in short transactions. As can be seen in the figure, although
STMlite still suffers from lack of enough floating point units, it
performs better after replacing the small transaction withlocks in
Kmeans and Bayes.

5.2 STMlite on Parallelized Sequential Programs

Figure 9 shows the fraction of dynamic sequential executionthat
can be parallelized in several SPECfp benchmarks.3 The first bar,
profiled coverage, shows the fraction of sequential execution in
loops identified as DOALL after profiling. The second bar, prov-
able coverage, is the fraction of sequential execution spent in loops
that could be statically identified as DOALL at compile time us-
ing LLVM’s memory dependence analysis. As can be seen, a non-
trivial percentage of DOALL coverage is obtained only afterprofil-
ing, Finally the third bar, selected coverage, shows fraction of loops
that were eventually parallelized.

It should be noted that not all the loops included in the coverage
numbers are suitable for parallelization. There are many DOALL
loops in these applications that do not contain any computation,

3 These applications are a subset of SPECfp92/95/2000 that had moderate
to high amount of loop level parallelism.

0.0

1.0

2.0

3.0

4.0

1 2 3 4 5 6 7 8

056.ear

0.00

0.50

1.00

1.50

2.00

1 2 3 4 5 6 7 8

Number of cores

STMlite HTM TL2 with so!ware chunk sync

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8

052.alvinn

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8

107.mgrid

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8

183.equake

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6 7 8

173.applu

0.0

1.0

2.0

3.0

4.0

1 2 3 4 5 6 7 8

102.swim

Figure 11. STMlite performance on automatically parallelized
SPECfp benchmarks. The vertical axis shows the speed up com-
pared to the sequential execution and horizontal axis is thenumber
of cores. The number of cores in STMlite includes one core that is
used for the TCM.

or the computation is not substantial. For instance, parallelizing a
loop which initializes an array’s elements to zero or increments
all elements in an array, can not provide much benefit, since the
overhead of parallelization would be more than the actual work
in these loops. Therefore, we added a loop selection heuristic in
our compiler which, according to the profile data, computes a
“parallelizability” metric based on the total number of dynamic
operations in the loop, number of iterations and total number of
loop invocations in the program. The last bars in Figure 9 shows
the total coverage of DOALLs that passed this metric.

We have parallelized all these loops using the framework intro-
duced in Section 4.1. During the code generation pass, according
to the static memory dependence analysis data, we performeda se-
lective replacement of the loops’ loads and stores withTxLoad and
TxStore function calls. We essentially avoid changing loads and
stores that can be proved to cause no cross iteration dependences.

As a step towards showing the effectiveness of our approach,we
first tried the parallelization framework and STMLite on four kernel
benchmarks: RLS, FMradio, DCT and beamformer. RLS is an im-
plementation of recursive least squares filter which is usedin sys-
tem identification problems and time series analysis. DCT performs
a discrete cosine transform and is used in image processing appli-
cations. FMradio and beamformer are two streaming applications
from the StreamIt benchmark suite [41]. All these benchmarks have
very high profiled DOALL coverage. Figure 10 shows the achieved
speedup using STMlite and TL2. The STMlite results include the
resource used for the TCM (1 extra core). Furthermore, sinceTL2
doesn’t have any primitives for supporting chunk commit serializa-
tion, we implemented a software-based send/recv mechanismsim-
ilar to [44]. Lastly, we estimated the results on a similar system
with HTM support by replacing all transactional loads and stores
with normal ones. This would represent a best-case HTM, and since
we’re only doing this for performance measurement, we ignore the
possibility of incorrect execution due to the lack of properspec-

ulation and we only take into account the performance numbers
for executions that complete successfully. As can be seen, STM-
lite outperforms TL2 with software based chunk synchronization
by as much as a factor of 3x in FMradio. In beamformer and DCT,
STMlite follows the HTM results quite closely. For RLS, STMlite
performs poorly compared to HTM results due to high number of
transactional operations, yet it still achieves 2x speedupover se-
quential for 8 threads.

Returning to SPECfp, Figure 11 shows the speedup for these
benchmarks. Runtime values are normalized to the sequential ex-
ecution of the program. The figure shows that we achieve 0.6x to
2.2x speedup compared to sequential by going from two to eight
cores.

One of the reasons for performance degradation in TL2 with
software synchronization is the lack of library support forenforc-
ing commit ordering in TL2. Adding this explicit software synchro-
nization has a noticeably negative impact on the performance. Per-
formance degradation would be even more in traditional TM sys-
tems with eager conflict detection, like [39]. As previous works
have also suggested [38], workloads with transactions thathave
large readsets and low contention (similar to our parallelized se-
quential workloads), perform poorly with eager conflict detection.
This is because eager conflict detection adds extra overheadto
transactional loads and stores, but since conflicts are rare, it does
not help improving the performance.

STMlite achieves decent speedup compared to HTM results
and outperforms TL2 with software chunk synchronization in
052.alvinn, 056.ear and 102.swim. This is due to the lower over-
head of transactional operations in STMlite which makes it quite
efficient with moderate number of these operations. However, the
relative STMlite achieved speedup, while being noticeablyhigher
than TL2 with software synchronization, is quite low compared
to HTM in other benchmarks. In SPECfp benchmarks, the paral-
lelized loops contain a large number of memory operations that
may cause cross iteration dependences based on the static analysis
and therefore need to be transactified. Changing these operations to
transactional versions causes the parallelized versions to become
slow in some cases. Software-based speculation mechanismsare
useful for parallelization in cases that the number of speculative
variables is low, otherwise, the speculation mechanism amortizes
the benefit caused by parallelization.

5.3 Effects of static memory analysis and signature sizes

To better understand the tradeoffs involved in compilationand exe-
cution parameters, we ran two other experiments. In the firstexper-
iment, we measured the achieved speedup with and without selec-
tive replacement of loads and stores with transactional versions. As
mentioned before, LLVM’s memory dependence analysis is used
to avoid transactifying memory instructions that provablydo not
cause cross iteration dependence. Figure 12 shows the result of this
experiment on the 052.alvinn benchmark. As can be seen, filtering
out unnecessary transactional operations, while keeping the neces-
sary ones, has a great impact on performance in both STMlite and
TL2. This result further proves that software speculation systems
are best suited for applications in which speculation is applied to a
limited number of memory variables.

Our second experiment involves changing the signature sizeand
studying the resulting performance impact. The effect of changing
signature sizes on STMlite’s performance is interesting. There is
a subtle tradeoff involved in determining the right signature size.
Larger sizes reduce the number of false positives and thereby re-
duce re-execution of correct transactions. However, at thesame
time, they lead to more time consuming signature operations. Since
STMlite is dependent on these operations in several parts ofthe
implementation, this can cause a noticeable performance degrada-

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1 2 3 4 5 6 7 8

Speedup

Number of cores

STMlite STMlite - no sta!c mem analysis

TL2 with SCS TL2 SCS - no sta!c mem analysis

Figure 12. Effect of using static pointer analysis on speedup for
052.alvinn.

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8

Speedup

Number of cores

Signature size

4 32 1024 4096

Figure 13. Effect of varying signature size on speedup for RLS.

tion. Figure 13 illustrates this effect on the RLS kernel benchmark.
Speedup values keep increasing up to signature sizes of 32, after
which they start going down.

6. Related Work
There is a significant amount of previous efforts in the area of
transactional memory. Larus and Rajwar go through a detailed
survey of different transactional memory techniques in [23].

In particular, Shavitet al. proposed the first implementation of
software transactional memory in [35]. Several other workssuch as
DSTM [19] and OSTM [17] proposed non-blocking STM imple-
mentations. A major part of non-blocking STMs is maintenance of
publicly shared transaction structures which contain the undo infor-
mation. In our implementation, the transaction structuresonly need
to be visible to the TCM and individual executing transactions,
keeping contention on those structures to a minimum. The authors
in [18, 2] proposed a lock-based approach where write locks are
acquired when an address is written. Also, they maintain a read set
which needs to be validated before commit. In our STMlite design,
no locks are required and correctness is guaranteed by the com-
mit manager. Furthermore, we eliminate the need for the readset,
which reduces the overhead of transactional loads and transaction
commits. [10] proposes the Transactional Locking implementation
which maintains a read set and a write set during transactionex-
ecution. Subsequently, at commit time, it acquires locks for each
individual write set entry and writes back the data after thelock
is secured. Also, the read set is checked during commit to ensure
consistency.

There is also a large body of work in parallelization of se-
quential applications. Hydra [16] and Stampede [40] were two of

the earlier efforts in the area of general purpose program paral-
lelization. The POSH compiler [25] uses loop-level parallelization
with TLS hardware support. The authors in [44] proposed compiler
transformation to extract more loop level parallelism fromsequen-
tial programs. The compiler transformation part of that work is or-
thogonal to what we are doing and can be applied simultaneously
here. Speculative decoupled software pipelining [42] is another ap-
proach that focuses on extracting parallelism from loops with cross
iteration dependencies. In that work, they distribute a single itera-
tion of the loop over several cores. The SUDS framework [13] per-
forms automatic speculative parallelization of applications for the
RAW processor. This system relies on the special architectural fea-
tures in RAW to accomplish efficient speculative state management
and synchronization, such as the scalar operand network. However
in all these works, hardware TLS or transactional memory support
and additional hardware mechanisms for synchronization are re-
quired. Whereas in this work, we are looking at a software-only
solution and although our achieved speed up in some cases is lower
than these works, we have the advantage of running our systemon
commodity hardware.

Cezeet al. [6] proposed the idea of using Bloom filters to rep-
resent read and write sets for transactions. They showed how, with
specialized hardware, transaction state can be maintainedthrough
signatures with less overhead. This technique was extendedin
LogTM-SE [43] and SigTM [29], which are hybrid TM systems
requiring no modifications to hardware caches. Our work usesthe
idea of storing Bloom filter-based read and write sets in software
data structures, alleviating the need for the extra hardware. Authors
in [18] use software hashing to remove duplicates in the read-log
and undo-log of the ”same” transaction, whereas in STMlite,it is
used for conflict detection between different transactions.

The most similar speculation management mechanism to ours
is RingSTM [39] that uses a global ring structure to organizecom-
mitting transactions. They use Bloom filters to represent read and
write sets for transactions. However, because the ring is global,
all threads face contention for ownership of the ring duringcom-
mit, and prioritization is required to prevent starvation.Meanwhile,
STMlite has thread local precommit logs and can relinquish the
cores while the corresponding transaction is waiting for the com-
mit manager to validate the transaction. Our commit log works in a
round-robin fashion, ensuring all threads waiting to commit are ser-
viced equally. Furthermore, in [39], the read signature is checked
against several write signatures at each transactional load (eager
conflict detection), which adds considerable overhead. However, in
STMlite, transactional load overhead is minimal because the only
extra operation added is insertion of the address in the readsig-
nature. This makes our model more prone to zombie transactions,
but as mentioned in Section 3.4, the possibility of having zombies
in parallelized loops is quite low, though STMlite can stillhandle
them successfully.

Furthermore, we have customized STMlite to work for loop
parallelization. This customization would be more complicated
in RingSTM. The reason is that transaction commit is done by
individual transactions after checking against the write signatures
of ring elements. Therefore, if a loop chunk does not get a chance to
commit in the first try (due to an unfinished previous chunk), there
would be no efficient way of checking again later in the execution.
The only way would be to use a back off mechanism and check
back from time to time, which is inefficient. Whereas in STMlite,
since the TCM is in charge of ordering loop chunks for commit,
even if a chunk misses its chance, the TCM makes sure that it would
be checked again in a timely manner.

An interesting, recently-proposed transactional memory model
called FlexTM [37] adds mechanisms in hardware to coordinate
read and write signature checking, speculative updates to caches

and eager notifications to transactions about coherence events.
They propose software mechanisms for deciding how to manage
conflicts and for choosing appropriate conflict management and
commit protocols.

7. Conclusion
As we move further into the multicore era, a major challenge in
both hardware and software communities is exploiting the abun-
dant computing resources made available by technology advance-
ments. Automatic parallelization of applications is an appealing
solution for utilizing these resources; however, parallelization ef-
forts are commonly dependent on complex hardware changes such
as adding speculation support. These changes are not yet popular
among hardware manufacturers. On the other hand, software-based
speculation support is still quite expensive in terms of performance
to be widely used in parallel and parallelized applications. In this
work, we try to tackle these issues from two closely related angles.
First, we try to minimize the overheads of software based transac-
tional memory models by decoupling and centralizing the commit
stage in STMlite. We also eliminate the need for maintaininga read
set during loads and checking them during commit. Secondly,we
are able to lower the overhead of loop parallelization by reusing
some of the underlying structures of STMlite. We have shown that
our work outperforms the state-of-art transactional memory im-
plementations on transactional benchmarks with large transactions
while achieving similar performance in smaller transactions. Fur-
thermore, we show that achieving real speculative speedup on se-
quential applications is possible without extra hardware support.
We believe the value of this work lies in the idea that we make par-
allelization of sequential applications feasible on commodity hard-
ware.

Acknowledgments
We would like to thank Dr. Tim Harris for his useful feedback on
earlier drafts of this paper. We extend our thanks to anonymous
reviewers for their excellent comments. We also thank Ganesh
Dasika, Shuguang Feng, Shantanu Gupta and Amir Hormati for
providing feedback on this work. This research was supported by
the National Science Foundation grant CCF-0811065, Semicon-
ductor Research Corporation (Task 1789.001), and the Gigascale
Systems Research Center, one of five research centers fundedun-
der the Focus Center Research Program, a Semiconductor Research
Corporation program. Equipment was kindly provided by Sun Mi-
crosystems and Intel Corporation.

References
[1] M. Abadi, T. Harris, and M. Mehrara. Transactional memory with

strong atomicity using off-the-shelf memory protection hardware. In
Proc. of the 14th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 185–196, 2009.

[2] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,B. Saha,
and T. Shpeisman. Compiler and runtime support for efficientsoftware
transactional memory. InProc. of the SIGPLAN ’06 Conference on
Programming Language Design and Implementation, pages 26–37,
2006.

[3] R. Allen and K. Kennedy.Optimizing compilers for modern architec-
tures: A dependence-based approach. Morgan Kaufmann Publishers
Inc., 2002.

[4] M. J. Bridges et al. Revisiting the sequential programming model for
multi-core. InProc. of the 40th Annual International Symposium on
Microarchitecture, pages 69–81, Dec. 2007.

[5] B. D. Carlstrom et al. The Atomos transactional programming lan-
guage. InProc. of the SIGPLAN ’06 Conference on Programming
Language Design and Implementation, pages 1–13, June 2006.

[6] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation
of speculative threads in multiprocessors. InProc. of the 33rd Annual
International Symposium on Computer Architecture, pages 227–238,
Washington, DC, USA, 2006. IEEE Computer Society.

[7] M. K. Chen and K. Olukotun. Exploiting method-level parallelism
in single-threaded Java programs. InProc. of the 7th International
Conference on Parallel Architectures and Compilation Techniques,
page 176, Oct. 1998.

[8] K. Cooper et al. The ParaScope parallel programming environment.
Proceedings of the IEEE, 81(2):244–263, Feb. 1993.

[9] D. Dice, O. Shalev, and N. Shavit. Transactional LockingII. In Proc.
of the 2006 International Symposium on Distributed Computing, 2006.

[10] D. Dice and N. Shavit. Understanding tradeoffs in software transac-
tional memory. InProc. of the 2007 International Symposium on Code
Generation and Optimization, pages 21–33, 2007.

[11] Z.-H. Du et al. A cost-driven compilation framework forspeculative
parallelization of sequential programs. InProc. of the SIGPLAN ’04
Conference on Programming Language Design and Implementation,
pages 71–81, 2004.

[12] W. Eatherton. The push of network processing to the top of the
pyramid, 2005. Keynote address: Symposium on Architectures for
Networking and Communications Systems.

[13] M. Frank.SUDS: Automatic parallelization for Raw Processors. PhD
thesis, MIT, 2003.

[14] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation
of the Cilk-5 multithreaded language. InProc. of the SIGPLAN ’98
Conference on Programming Language Design and Implementation,
pages 212–223, June 1998.

[15] M. Hall et al. Maximizing multiprocessor performance with the SUIF
compiler. IEEE Computer, 29(12):84–89, Dec. 1996.

[16] L. Hammond, M. Willey, and K. Olukotun. Data speculation support
for a chip multiprocessor. InEighth International Conference on
Architectural Support for Programming Languages and Operating
Systems, pages 58–69, Oct. 1998.

[17] T. Harris and K. Fraser. Language support for lightweight transactions.
Proceedings of the OOPSLA’03, 38(11):388–402, 2003.

[18] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions.Proc. of the SIGPLAN ’06 Conference on Programming
Language Design and Implementation, 41(6):14–25, 2006.

[19] M. Herlihy, V. Luchangco, and M. Moir. The repeat offender problem:
A mechanism for supporting dynamic-sized, lock-free data structures.
In Proceedings of the 16th International Conference on Distributed
Computing, pages 339–353. Springer-Verlag, 2002.

[20] H. P. Hofstee. Power efficient processor design and the Cell processor.
In Proc. of the 11th International Symposium on High-Performance
Computer Architecture, pages 258–262, Feb. 2005.

[21] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-cut program
decomposition for thread-level speculation. InProc. of the SIGPLAN
’04 Conference on Programming Language Design and Implementa-
tion, pages 59–70, June 2004.

[22] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way
multithreaded SPARC processor.IEEE Micro, 25(2):21–29, Feb.
2005.

[23] J. Larus and R. Rajwar.Transactional Memroy. Morgan & Claypool
Publishers, 2007.

[24] C. Lattner and V. Adve. LLVM: A compilation framework for life-
long program analysis & transformation. InProc. of the 2004 Interna-
tional Symposium on Code Generation and Optimization, pages 75–
86, 2004.

[25] W. Liu et al. POSH: A TLS compiler that exploits program structure.
In Proc. of the 11th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 158–167, Apr. 2006.

[26] V. J. Marathe, W. N. Scherer, and M. L. Scott. Adaptive software
transactional memory. InProc. of the 2005 International Symposium
on Distributed Computing, pages 354–368, Sept. 2005.

[27] P. Marcuello and A. Gonzalez. Thread-spawning schemesfor specu-
lative multithreading. InProc. of the 8th International Symposium on
High-Performance Computer Architecture, page 55, Feb. 2002.

[28] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stan-
ford transactional applications for multi-processing. InProceedings of
IISWC08, 2008.

[29] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An effective hybrid trans-
actional memory system with strong isolation guarantees. In Proc. of
the 34th Annual International Symposium on Computer Architecture,
pages 69–80, New York, NY, USA, 2007. ACM.

[30] J. Nickolls and I. Buck. NVIDIA CUDA software and GPU parallel
computing architecture. InMicroprocessor Forum, May 2007.

[31] E. Nystrom, H.-S. Kim, and W. Hwu. Bottom-up and top-down
context-sensitive summary-based pointer analysis. InProc. of the 11th
Static Analysis Symposium, pages 165–180, Aug. 2004.

[32] B. Saha, A. Adl-Tabatabai, and Q. Jacobson. Architectural support
for software transactional memory. InProc. of the 39th Annual
International Symposium on Microarchitecture, pages 185–196, Nov.
2006.

[33] F. T. Schneider, V. Menon, T. Shpeisman, and A.-R. Adl-Tabatabai.
Dynamic optimization for efficient strong atomicity. InProceedings
of the OOPSLA’08, pages 181–194, 2008.

[34] M. L. Seidl and B. G. Zorn. Segregating heap objects by reference
behavior and lifetime. InEighth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 12–23, Oct. 1998.

[35] N. Shavit and D. Touitou. Software transactional memory. Journal of
Parallel and Distributed Computing, 10(2):99–116, Feb. 1997.

[36] T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer,
D. Grossman, R. L. Hudson, K. F. Moore, and B. Saha. Enforcing
isolation and ordering in STM. InProc. of the SIGPLAN ’07 Confer-
ence on Programming Language Design and Implementation, pages
78–88, 2007.

[37] A. Shriraman, S. Dwarkadas, and M. L. Scott. Flexible Decoupled
Transactional Memory Support. InProc. of the 35th Annual Interna-
tional Symposium on Computer Architecture, pages 139–150, 2008.

[38] M. F. Spear, V. J. Marathe, W. N. S. Iii, and M. L. Scott. Conflict de-
tection and validation strategies for software transactional memory. In
Proc. of the 2006 International Symposium on Distributed Computing,
2006.

[39] M. F. Spear, M. M. Michael, and C. von Praun. RingSTM: scalable
transactions with a single atomic instruction. pages 275–284, 2008.

[40] J. G. Steffan and T. C. Mowry. The potential for using thread-
level data speculation to facilitate automatic parallelization. InProc.
of the 4th International Symposium on High-Performance Computer
Architecture, pages 2–13, 1998.

[41] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A lan-
guage for streaming applications. InProc. of the 2002 International
Conference on Compiler Construction, pages 179–196, 2002.

[42] N. Vachharajani, R. Rangan, E. Raman, M. Bridges, G. Ottoni, and
D. August. Speculative Decoupled Software Pipelining. InProc.
of the 16th International Conference on Parallel Architectures and
Compilation Techniques, pages 49–59, Sept. 2007.

[43] L. Yen et al. LogTM-SE: Decoupling hardware transactional memory
from caches. InProc. of the 13th International Symposium on High-
Performance Computer Architecture, pages 261–272, Feb. 2007.

[44] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering
hidden loop level parallelism in sequential applications.In Proc. of
the 14th International Symposium on High-Performance Computer
Architecture, Feb. 2008.

[45] C. Zilles and G. Sohi. Master/slave speculative parallelization. In
Proc. of the 35th Annual International Symposium on Microarchitec-
ture, pages 85–96, Nov. 2002.

