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Abstract
There is an increasing interest in extensible languages, (domain-
specific) language extensions, and mechanisms for their specifica-
tion and implementation. One challenge is to develop tools that al-
low non-expert programmers to add an eclectic set of language ex-
tensions to a host language. We describe mechanisms for compos-
ing and analyzing concrete syntax specifications of a host language
and extensions to it. These specifications consist of context-free
grammars with each terminal symbol mapped to a regular expres-
sion, from which a slightly-modified LR parser and context-aware
scanner are generated. Traditionally, conflicts are detected when a
parser is generated from the composed grammar, but this comes too
late since it is the non-expert programmer directing the composition
of independently developed extensions with the host language.

The primary contribution of this paper is a modular analysis that
is performed independently by each extension designer on her ex-
tension (composed alone with the host language). If each extension
passes this modular analysis, then the language composed later by
the programmer will compile with no conflicts or lexical ambigu-
ities. Thus, extension writers can verify that their extension will
safely compose with others and, if not, fix the specification so that
it will. This is possible due to the context-aware scanner’s lexi-
cal disambiguation and a set of reasonable restrictions limiting the
constructs that can be introduced by an extension. The restrictions
ensure that the parse table states can be partitioned so that each
state can be attributed to the host language or a single extension.

Categories and Subject DescriptorsD3.4 [Processors]: Pars-
ing, Compiler generators; F4.2 [Grammars and Other Rewrit-
ing Systems]: Parsing; F4.3 [Formal Languages]: Classes defined
by grammars; D3.2 [Language Classifications]: Extensible Lan-
guages

General Terms Languages, Algorithms, Verification

Keywords LR Parsing, context-aware scanning, language compo-
sition, grammar composition, extensible languages

1. Introduction.
1.1 Motivation.

There is a rising amount of interest in the related areas of domain-
specific languages, extensible languages, and in the tools and tech-
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niques used to specify and implement them. Of particular interest
are systems that allow new syntax or semantic analysis to be added
modularly to an extensible language framework. Ideally, it is done
in a way that allows a non-expert programmer to extend his or her
language with several eclectic extensions addressing the different
aspects of the programming problem at hand.

Consider the simple program in Figure 1. It is written in a ver-
sion of Java to which two extensions have been added (25). The
first adds theusing ... query ... andconnection ... con-
structs to extend Java with the database query language SQL. Such
an extension statically detects syntax and type errors in the query
and also adds aforeach construct, which iterates over results from
the query and extracts values from each query result. The import-
like connection construct sets up the connection to the database
and retrieves database type schemas to type-check the query. The
second extension adds a construct for representing boolean condi-
tions in a tabular form, inspired by similar constructs in modeling
languages such as SCR (13). It consists of a keywordtable fol-
lowed by a list of rows, each consisting of a Java expression fol-
lowed by a colon and several truth-indicators (T, F, *) indicating if
the expression is expected to be true, or false, or if it does not mat-
ter. In this case, the table evaluates to true ifa > 18 is true andz
== 10001 is false, or ifa > 18 is false (the value ofz == 10001
does not matter). This extension checks that the expression in each
row is of typeboolean and that each row has the same number
of truth-indicators. To support these types of extensions, language
extension frameworks and tools must allownew concrete syntaxto
be added to the language as well asnew semantic analysisto type-
check the extension constructs.

Ideally, these extensions can be developed by separate parties,
unaware of each other’s extensions, and the non-expert programmer
is provided with some mechanism to compose the host language
(Java in this case) automatically with the language extensions. Al-
though the development of such language extensions may require
some knowledge of programming language implementation tools
and techniques, their use and composition should not.

connection db_c with table person ;
class Demo {
boolean m ( ) {
rs = using db_c query { SELECT age, zip

FROM person
WHERE state = "NY" } ;

foreach (int a, int z) in rs {
res = res && table ( a > 18 : T F

z == 10001 : F * ) }
return res ;

}
}

Figure 1. Code written in an extended version of Java.



A number of language processing tools and extensible language
frameworks have been proposed. Polyglot (18) is a collection of
Java classes that implement the core front-end functions of a Java
1.4 compiler; one can add new classes and extend the existing ones
to add new language constructs and analyses. Others have investi-
gated the use of attribute grammars for building extensible specifi-
cations of languages. The JastAdd extensible Java compiler (9) is
implemented in the JastAdd attribute grammar system (10). To ex-
tend this compiler, one writes new attribute grammar fragments that
the system combines to create a attribute grammar specification for
the extended language. From this specification a compiler for the
extended language is automatically generated. We have developed
ableJ (25) a similar system based on our Silver (24) attribute gram-
mar system. Xoc (8) is an extensible language framework for C,
also inspired by attribute grammars.

These systems use standard LALR(1) parser and scanner gen-
erator technology such as Yacc and Lex (though they can be easily
adapted to use other types of parser and scanner generators). These
are notoriously brittle under composition and extension; merely
adding or modifying a production can remove the grammar from
the desired LALR(1) class.

In the MetaBorg (5) system, where semantic processing is done
by term rewriting in Stratego (29), the concrete syntax is instead
implemented using a scannerless GLR parser generator (28). Since
GLR parsers can parse any context free grammar the composition
of the host language grammar and language extension grammars
can always be parsed. But the composed grammar may contain am-
biguities; the programmer has no assurance that the parser created
for their composed language will be deterministic and not, on oc-
casion, return more than one parse tree. We seek an approach that
guarantees the determinism of the composed grammar.

Parsing Expression Grammars (11) are closed under composi-
tion and thus satisfy this requirement and an extensible specifica-
tion of C based on PEGs has been constructed (12). The determin-
ism comes at a cost, however; order matters in the composition
of PEGs. The concrete syntax tree returned by the parser may be
different if the language extension grammars are composed in dif-
ferent orders. Productions that have the same nonterminal on the
left hand side are disambiguated by the order in which they ap-
pear in the specification. Determining the proper order of applying
language extensions is the sort of implementation-level knowledge
that we do not want to require of the programmer. Furthermore,
the problem of determining if altering production order alters the
recognized language is undecidable (11).

1.2 Summary of results.

In this paper, we consider the case of extending an existing host
languageH with some (unordered) set of language extensions
{E1, E2, ..., En}. We have previously studied the issues of seman-
tics (25) and believe that they are critical, but our concern here is
only with their concrete syntax. Our goal is to generate a parser
and scanner for the languageH ∪ {E1, E2, ..., En}. These speci-
fications consist of a context free grammar that specifies the parser
and an association that maps each terminal in the grammar to a
regular expression, to specify the scanner. The specification of a
languageL and an extensionE are denoted, respectively, asΓL

andΓE . Grammars and the grammar composition operator (∪∗

G)
are defined formally in Section 2 but∪∗

G is just the component-
wise unions of the sets of terminals, nonterminals, productions, and
terminal/regular-expression mappings defined in the grammars.

We would like the resulting parser to be deterministic; our
parsing approach uses slightly modified LALR(1) parsing and
parse-table generation techniques, ensuring no conflicts (shift-
reduce or reduce-reduce) in the generated LR parse table. We write
conflictFree(ΓL) to indicate that the parse table generated from

grammarΓL contains no conflicts and thus can be parsed with
a deterministic LALR(1) parser. Also, we would like the scan-
ner generated fromΓL to be ambiguity free,i.e., on any input
the scanner will return exactly one token or, in the case of a lexi-
cal error, zero tokens. We indicate this aslexAmbigFree(ΓL). A
language specification is deterministic, indicated bydet(ΓL), iff
conflictFree(ΓL) ∧ lexAmbigFree(ΓL).

Traditionally these analyses are performed on the complete lan-
guage specification,i.e., after the extensions have been added to
the host language. In the approach to extensible languages outlined
above, programmers can plug extensions from independent sources
into their host language. Thus, an error message reporting a shift-
reduce conflict in the generated parser or a lexical ambiguity in the
generated scanner comes too late, as the programmer may not be
able to fix it; this is properly the job of the extension designer.

Verifiable composition of grammars. In this paper we introduce
an analysis that can verify that the grammar for the composed
languageΓC = ΓH ∪∗

G {ΓE1 , ΓE2 , ..., ΓEn} will be deterministic
(det(ΓH)) if each extension grammarΓEi individually passes a
modular analysis. This modular analysis, denoteddetm(ΓH , ΓEi),
can be described by the implication

(∀i ∈ [1, n], detm(ΓH , ΓEi)) =⇒ det(ΓH ∪∗

G {ΓE1 , ..., ΓEn}).

This states that if each extension grammarΓEi passes the modu-
lar determinism test (with respect to the host grammarΓH ) then
the composition ofΓH and all of the extensions is deterministic.
The implication of this is that extension writers can “certify” their
extensions as composable without needing to test against other lan-
guage extensions. (This is not that much unlike library writers “cer-
tifying” libraries by compiling them to ensure that they contain no
type errors.)

As will be seen, the modular testdetm(ΓH , ΓE) does put some
restrictions on the type of constructs that an extensionE can add to
H. For example, language extensions cannot specify syntax such
that new terminals, except for marking terminals (defined below),
are added to the follow-sets of host language nonterminals. In our
experience, these are reasonable for many language extensions. But
there are some that do not fit, such as the addition of new infix
binary operators to the host languageH, though these can be added
as part of an embedded language as is done in the SQL extension.
We will limit productions added by some extensionE with a host
language nonterminal on the left hand side to a single production
h → µE sE , whereµE is a marking terminaland sE is the
extension’s “start” nonterminal. The effect of such a production is
that it causes the parser, upon shiftingµE , to enter a parse state that
is the domain of the language extension. Extensions typically add
several productions whose left hand side is an extension-introduced
nonterminal and the few restrictions placed on them are much
less severe. Critically, the right hand sides off these extension
productionscan contain terminals and nonterminals defined in the
host language grammarΓH .

LALR(1)’s “brittleness” and context-aware scanners.It may
seem unlikely that this guarantee can be achieved, given that
LALR(1) parsers can be rather brittle under composition and ex-
tension. Adding or modifying a production can easily remove the
grammar from the desired LALR(1) class. A large part of this
brittleness can be mitigated by the use of a context-aware scan-
ner (21; 7; 27), which takes context into account when scanning.
In this paper we have extended our notion ofparse-state-based
context-aware scanningas implemented inCopper, our LALR(1)
parser and context-aware scanner generator (27). Each time the
scanner is called by the parser it is passed the set ofvalid looka-
head: terminals that can be accepted by the parser at that point in
the parse. These terminals are those whose action in the LR parse



table for the current state areshift, reduce, or accept, but noter-
ror. The scanner will then scan the input and only return a token
that is in this set of valid lookahead. This allows terminals to have
overlapping regular expressions as long as they appear in different
parse-state contexts: it is the parse state context that disambiguates
them. It does require the LR parsing algorithm to be slightly modi-
fied to pass parse-state information to the scanner when it is called
to return the next token (27).

Consider scanning the type expressionList<List<T>> in a
language that includes Java-like parameterized types and a right bit
shift operator>>. If the>> operator is not valid in parse states where
the closing bracket of a type expression is valid, then> will be in
the valid lookahead set but>> will not. Thus the scanner will not
return>> when parsing types and the grammar can be simplified.
This is useful when extending languages, as one extension may
introduce new terminals whose regular expressions overlap with
those in other extensions but occur in different contexts.

Note that the restrictions we place on extension grammars
would be unreasonable in a traditional scanning approach. With
context-aware scanning, they are much more reasonable because
extension writers can create their own terminal symbols that may
have overlapping regular expressions (with terminals introduced
by other extensions) but this often does not cause conflicts in the
composed language. For example, thetable terminal introduced
by the SQL extension will not be in the same context as Java key-
words or identifiers and thus the lexemetable can be used as an
identifier or a token for some other language extension, as it is in
the table expression extension.

An appealing aspect of this approach is that we do not need
to develop new parsing and scanning techniques from scratch to
be able to certify language extensions as composable. The LR
parsing technology used here is only slightly modified from the
established traditional approach. The scanner, by making it aware
of its context, can be more discriminating in the tokens that it
returns and thus language designers do not need to re-use the same
token in many different contexts. Different terminals with the same
regular expression can be used. This has a rather dramatic effect on
the parser — the additional tokens simplify the grammar and make
it much less brittle and make practical the modular, conflict-free
composability analysis that is proposed here.

Paper Outline: Section 2 provides the formal specifications of
grammars used in this analysis and background material on LR
parsing and context aware scanners. Section 3 describes the pri-
mary contribution of this paper: a modular analysis of language ex-
tension specifications that ensures that when a collection of exten-
sions are added to a host language, if each one individually passes
the modular analysis, then the composed language has no parse-
table shift-reduce or reduce-reduce conflicts. This analysis parti-
tions LR DFA of the extended language into sets of states that are
either the purview of the host language or of an individual language
extension. This section also provides a discussion of the algorithm’s
correctness. Section 4 describes the lexical ambiguity analysis and
how these techniques can be applied in the presence of “practical”
specifications such as operator and lexical precedence. Section 5
discusses related work and briefly explains how this partitioning of
the LR DFA can allow extension grammars to be separately com-
piled down to parse tables that are composed by the programmer;
thus allowing extensions to be distributed in a pre-compiled format.
This section also discusses limitations of this approach, and argues
that the benefits of safe language composition outweigh the moder-
ate loss of expressibility imposed by the restrictions of the modular
analysis. Finally we discuss Silver (24), an attribute grammar sys-
tem, and Copper (27), an LALR(1) parser and context-aware scan-
ner generator we have developed to support the specification and
implementation of extensible languages and language extensions.

2. Grammar composition and parser and scanner
generation.

The problem we address is how to ensure determinism while com-
bining ahostgrammar with severalextensiongrammars, assuming
no communication between the writers of the extensions. The host
grammar is a context-free grammar in its own right, while exten-
sion grammars may reference host language terminals and nonter-
minals. Extensions, thus, are not defined to extend multiple host
languages. While it may be appealing to see how languages such
as SQL can be embedded into multiple host languages (3), our in-
terests are in extensions that are more closely tied to the host lan-
guage, both syntactically (in that extension constructs may include
host language constructs, such as in the SQL foreach and table ex-
tensions) and also semantically. Detecting a type error in the table
construct requires type-checking the Java expressions in it.

2.1 Context-free grammars and grammar composition.

For the purposes of compiling a parser and scanner, a context-free
grammar is embellished with a mapping (regex ) that associates a
regular expression (over some alphabet) with each terminal sym-
bol. Thus, a language grammar is a 5-tuple〈T, NT, P, s ∈ NT,
regex : T → Regex〉. Let CFGL denote the set of such context-
free grammars. Below, we fixΓH = 〈TH , NTH , PH , sH , regexH〉
to be the host language grammar. The grammars that define lan-
guage extensions are similar to those for defining a complete
(host) language, with one exception. Instead of having a start non-
terminal, they have abridgeproduction that connects the extension-
defined language to the host language. We defineextensiongram-
mars to be of the following form:

ΓE = 〈TE , NTE , PE , ntH → µEsE , regexE〉

wheresE ∈ NTE , ntH ∈ NTH , dom(regexE) = TE ∪ {µE}.
The productionntH → µEsE is the bridge production. Its left
hand side is a host language nonterminal; its right hand side is
the extension’smarking terminal(µE), a terminal introduced by
E but not inTE . It is followed by a nonterminal inNTE , the start-
symbol of the embedded language. We can be less restrictive (but
choose not to in order to simplify the presentation and discussion)
and allow more than one bridge production — each with a distinct
marking terminal — and any non-empty sequence of host and
extension terminals and nonterminals following marking terminals.
If pE ∈ PE , then symbols on the right hand side ofpE are in
TH ∪ NTH ∪ TE ∪ NTE , but symbols on the left-hand side must
be inNTE .

We say thatΓE extendsΓH if ΓE satisfies these conditions with
respect toΓH . Grammar composition is only defined whenΓE

extendsΓH . Let CFGE denote the set of context-free grammars
defining language extensions. We will often use the unqualified
term “grammar” but it will be clear from the context if the grammar
is a language or extension grammar.

Examples: Figure 2 shows a small portion of the grammars for
Java 1.4 and its SQL and tables extensions. Each grammar declares
the specified nonterminals, terminals, and productions. The mark-
ing terminal for the SQL query extension is the terminalUsing ,
which has the regular expression/using/; the extension’s start
symbol isSql. The marking terminal of the tables extension isTbl .
Note that while the SQL productions do not use host language con-
structs (except for a few terminals) the tables extension allows Java
expressions to be in table rows (TRow). Thus, it is syntactically
correct (but not semantically so) to allow an SQL query or other
phrase derived fromExpr to appear at the beginning of a row.

The SQL extension is split into two grammars here to conform
to the grammar structure used in the proof of the modular analysis
in Section 3, but in practice these are combined into one grammar.



Java 1.4:

Nonterminals:Expr , PrimaryExpr , Dcl
Terminals:Question /?/, Colon /:/, Comma /,/ Semi /;/,

LParen /(/, RParen /)/, LBrk /{/, RBrk /}/,
Id /[A-Za-z][A-Za-z0-9]*]/

Expr → Expr Question Expr Colon Expr
Expr → PrimaryExpr
PrimaryExpr → Id
Dcl → ...

SQL Connection:

Nonterminals:ConnDcl
Terminals:Connection /connection/, SqlId /[A-Za-z]+/ ,

With /with/, Table /table/
Dcl → Connection ConnDcl
ConnDcl → SqlId With Table SqlId Semi

SQL Query:

Nonterminals:Sql, SqlQ, SqlIds, SqlExpr
Terminals:Using /using/, Query /query/, Select /SELECT/,

From /FROM/, Where /WHERE/, SqlId /[A-Za-z]+/
Expr → Using Sql
Sql → SqlId Query LBrk SqlQ RBrk
SqlQ → Select SqlIds From SqlId Where SqlExpr
SqlIds → SqlId
SqlIds → SqlId Comma SqlIds
SqlExpr → ...

Tables:

Nonterminals:BTable, TRows, TRow
Terminals:Tbl /table/
PrimaryExpr → Tbl BTable
BTable → LParen TRowsRParen
TRows → TRow
TRows → TRow TRows
TRow → Expr Colon TFStarList

Figure 2. Sample grammar productions from host and extensions.

Also, in practice we do not need to use a start nonterminal in the ex-
tensions; in the case of the Tables extension we use the production
PrimaryExpr →Tbl LParen TRowsRParen instead. The proof
generalizes to capture both of these modifications, but the simpler
proof is presented below and thus the grammars in the figure match
that format.

Composition of grammars. Let∪G : CFGL×CFGE 7→ CFGL

be a non-commutative, non-associative operation on context-
free grammars. IfΓE extendsΓH , then ΓC = ΓH ∪G ΓE =
〈TC , NTH ∪ NTE , PC , sH , regexC〉 where:

• TC = TH∪TE∪{µE}. µE is the extension’s marking terminal.

• PC = PH ∪ PE ∪ {h → µEsE}, whereh → µEsE is the
bridge production inΓE .

• regexC (t) =



regexH (t) if t ∈ TH

regexE (t) if t ∈ TE or t = µE

The operation for composing an unordered set of extensions,
∪∗

G : CFGL × P(CFGE) → CFGL, which is writtenΓH ∪∗

G

{ΓE
1 , . . . , ΓE

n }, is the straightforward generalization of∪G. There
is no notion of ordering when composing multiple extensions
with the host language; they can be seen as being applied all at
once. Thus, the following equivalences hold:ΓH ∪∗

G {ΓE
1 , ΓE

2 } ≡
(ΓH ∪G ΓE

1 ) ∪G ΓE
2 ≡ (ΓH ∪G ΓE

2 ) ∪G ΓE
1 .

The names of nonterminal and terminal symbols in host and
extension grammars can be assumed to be distinct. One way to
achieve this is to name grammars in the same way that Java pack-
ages are uniquely named (based on Internet domain names) and
append symbol names to their defining grammar name.

2.2 Background on parser generation.

This subsection provides some background on LR parsing, LALR(1)
parsers, parse tables, and monolithic analysis of grammars. Readers
familiar with these topics may wish to skim this section.

Traditionally, we would compose the host language and exten-
sion grammars to create the composed language grammarΓC =
ΓH ∪∗

G {ΓE
1 , ...ΓE

n } and then create a parser for that grammar. If
LR parsing is used, we would create an LR DFAMC from the
composed grammar (16; 17; 1). This LR DFA can be used to gen-
erate an LR parse table which is then checked for shift-reduce and
reduce-reduce conflicts. From a context free grammarΓ, an LR
parser generator creates an LR DFA from which an LR parse ta-
ble is directly constructed. We do not review how LR DFAs are
constructed from a context free grammar, but only the structure of
these DFAs and how they are used. The above references discuss
the construction of LR DFAs.

LALR(1) DFA. An LALR(1) DFA for a grammarΓL is a 4-tuple
ML = 〈ΓL, StatesL, sL ∈ StatesL, δL〉, whereStatesL is
the set of states,sL is the DFA’s start state, andδL : States ×
(TL ∪ NTL) → States is the DFA’s transition function. An LR
DFA state is a pairS = (Items, la : Items → P(TL)), where
Items is the set of items in that state andla maps each item to its
lookahead set. An item is a production inΓL with a marker placed
on its right hand side, to indicate the state of parsing. An item of
the formx → α • tβ, {t1, t2} in a state indicates that the parser
has consumed input, a suffix of which can be derived fromα. If the
next terminal symbol consumed ist and it is shifted onto the parse
stack the DFA moves to a state with the itemx → αt • β, {t1, t2}.

In the discussion of the modular analysis and argument for its
correctness we will have need to compare different LR DFA states;
we introduce these comparisons here.

Given two LR DFA statess andt: • s is anI-subsetof t, written
s ⊆I t, if Itemss ⊆ Itemst. • They areLR(0)-equivalent, written
s ≡0 t, if s ⊆I t and t ⊆I s — i.e., they have the same item
set. We use the termLR(0)-equivalentbecause in an LR(0) DFA,
where there are no lookahead sets, two LR(0)-equivalent states
would be equal.• s is anIL-subsetof t, writtens ⊆IL t, if s ⊆I t
and∀i ∈ Itemss. (las(i) ⊆ lat(i)). • They areLR(1)-equivalent,
written s ≡1 t, if s ⊆IL t and t ⊆IL s — i.e., the states’ item
sets and all lookahead sets are equal. Note that ifs ⊆IL t, andt
produces a conflict-free parse state, so doess.

LR DFAs are converted to parse tables, a more convenient
representation, for use in parsing. See (1) for details on how this
is done.

Parse tables. Let States denote the set of all rows of all parse ta-
bles. A parse table is defined as a 4-tuplePT = (ΓPT , StatesPT ,
πPT , γPT , nS

PT ∈ StatesPT ), where:

• ΓPT is a grammar that this parse table parses correctly.

• πPT : StatesPT × T → P(Actions), whereActions =
{accept} ∪ {reduce(p) : p ∈ P} ∪ {shift(x) : ∈ States}.

• γPT : StatesPT × NTPT → P(Goto), whereGoto =
{goto(x) :∈ States}.

If for some parse tablept, somen ∈ States and t ∈ T ,
πpt(n, t) = ∅, that cell contains an error action. A cell(n, t) in
a parse tablePT has a conflict if|πPT (n, t)| ≥ 2. A staten is
conflict-free if for allt ∈ TPT , cell (n, t) does not have a conflict:



∀t ∈ TPT . (|πPT (n, t)| ≤ 1). A parse tablePT is conflict-free if
all n ∈ StatesPT are conflict-free.

The programmer can run this monolithic analysis on the com-
posed grammar to ensure that there are no parse-table conflicts or
lexical ambiguities. This comes too late, however, as the program-
mer will not necessarily have the skills to modify the grammars to
fix the problems. What is needed is a modular analysis that the ex-
tension writer can use on his or her extension to ensure that when
it is composed, by the programmer, with other extensions that also
pass the modular analysis, the resulting composed grammar will
pass the monolithic test.

2.3 Context-aware scanners.

The context-aware scanners used here are an extension of those
described in (27). The scanner can be constructed as described there
or alternatively one can generate a scanner for each parse state that
only matches those in the valid lookahead set. How this scanner
is constructed is not of concern; it is sufficient that it return only
tokens in the valid lookahead set for the current parse state.

Given a parse tablePT (with terminals T ), valid looka-
head sets are represented collectively by the functionvalidLA :
StatesPT → P(T ), wherevalidLA(n) = {t : πPT (n, t) 6= ∅}
(the terminals with non-error actions). For this parse table and
the functionscan : P(T ) × Σ⋆ → P(T ) × Σ⋆, it holds that
scan(X, w) = (X ′, w′) whereX ′ is the set of terminals matched
by the scanner andw′ the lexeme they match.X is the valid looka-
head set andw is the input. Thusw′ is a prefix ofw andX ′ ⊆ X.
If scan(X, w) = ∅, it means that not ∈ X matches a prefix ofw.

A lexical ambiguity occurs when∃n ∈ StatesPT , w ∈
Σ⋆. (|scan(validLA(n), w)| ≥ 2). An ambiguity-free scanneris
one for which this is untrue of every(n, w) ∈ States × Σ⋆. This
can be verified for allw by analyses on scanner DFAs (27).

Lexical disambiguation. Context is the primary way in which
terminals with overlapping regular expressions are disambiguated.
Notions of lexical precedence (e.g., indicating that a keyword takes
precedence over an identifier terminal) can also be used. Using
marking terminals from different extensions may lead to lexical
ambiguities because they may appear in the same context (e.g., at
the beginning of an expression) and no lexical precedence settings
can be specified to disambiguate them, since they are in different
extensions. A notion of “transparent prefixes” (see Section 4) al-
lows programmers to disambiguate them by prefixing them with
the grammar name, the same way that a Java class name is prefixed
with its package name when two imported packages define a class
with the same name. Other precedence setting techniques are also
described in Section 4. These are used to ensure that a composed
languageΓC will have no lexical ambiguities that prevent the use
of a deterministic scanner. Thus, in the following discussion of the
modular analysis, we can focus our attention on the parser and as-
sume that there are no lexical ambiguities.

3. The modular determinism analysis.
The modular parser analysisisComposable(ΓH , ΓE

i ) analyzes
the context-free grammar of an extension with respect to the host
language being extended. If the extension passes this analysis it can
be considered “certified” and safely composed with other certified
extensions by the programmer. Formally, this is expressed as

(∀i ∈ [1, n].isComposable(ΓH , ΓE
i ) ∧

conflictFree(ΓH ∪G ΓE
i ))

=⇒ conflictFree(ΓH ∪⋆
G

˘

ΓE
1 , . . . , ΓE

n

¯

)

3.1 The modular analysisisComposable.

The restrictions we place on what kind of constructs can be added in
an extension to a host language are not restrictions on the extension

grammar but on the LR DFA generated when compilingΓH ∪G ΓE
i

as compared to the LR DFA generated when compilingΓH alone,
i.e., what states, items, and lookahead can be added to the LR DFA
of ΓH to yield the LR DFA forΓH ∪G ΓE

i . The key factor is that
items and lookahead added by one extension cause conflicts neither
with the host language nor with any other extensions that are
added later (and have also passed this modular analysis). In brief,
the testisComposable(ΓH , ΓE) must ensure that the grammar
ΓH ∪G ΓE , and the LR DFA generated for it, have the following
properties:

1. For allntH ∈ NTH , no new terminals appear in itsfollow set
follow(ntH), except the marking terminalµE

i .

2. In states also appearing in the DFA forΓH , no new terminals
appear in the lookahead sets, except the marking terminalµE

i .

3. For states that do not appear in the DFA forΓH , but contain
only host syntax items and thus could potentially be generated
by several extensions, their item set and lookahead sets are
subsets of those of some state also appearing in the DFA for
ΓH that contains no conflicts, ensuring that these types of states
(even when combined with similar types of states generated by
other extensions) will contain no conflicts.

In describing the analysis and argument for its correctness we
will need to consider various LR DFAs and different states thereof:

1. The LR DFA for the original host language, denotedMorig ;

2. The LR DFA generated forΓH ∪G ΓE
i by the designer of

extensionEi, denotedMEi ; and

3. The LR DFA generated forΓH ∪∗

G {ΓE
1 , ..., ΓE

n } by the pro-
grammer, denotedMC .

The superscriptsorig , Ei, andC indicate when the LR DFA is
constructed: when the host language is defined, when an extension
designer specifies an extension and performs the modular analysis,
and when a programmer combines multiple extensions.

The extension designer will perform the modular analysis,
which takesΓH andΓE

i as inputs:isComposable(ΓH , ΓE
i ). The

analysis generatesΓH ∪G ΓE
i and builds the two LR DFAsMorig

andMEi (in the usual way) and then proceeds in two phases. First,
it checks that no follow sets of host nonterminals have changed
except to add the marking terminal. Formally, it checks if

∀nt ∈ NTH .
“

follow
ΓH∪GΓ

Ei (nt) \ follow
ΓH (nt) ⊆

n

µE
i

o”

.

If additional (non-marking) terminals exist in the follow sets in
ΓH∪GΓEi , then the analysis fails. Consider the productionTRow
→ Expr Colon TFStarList from the tables extension and the
conditional-expression productionExpr → Expr Question Expr
Colon Expr from the host language Java grammar, both shown in
Figure 2. The extension does not add to the follow set ofExpr
since terminalColon is already there due the the conditional-
expression production. If new terminals are added to the follow
sets of host language nonterminals two different extensions may
compose individually with the host language to create conflict-free
parsers, but when combined together, the conflict can arise.

It is worth noting that this restriction is more easily satisfied in
syntactically rich fully-developed languages (such as Java), since
their nonterminals have larger follow sets, than in small toy lan-
guages with smaller follow sets.

In the second phase, which is used only if the follow sets have
not expanded, the analysis compares the two constructed LR DFAs
Morig andMEi to determine ifMEi can be constructed by adding
new LR DFA states toMorig in a specific way (defined below), and
adding new items and lookahead elements corresponding to this



addition to the states already existing inMorig . The constraints of
the modular analysis only allow such additions to the states of the
host LR DFAMorig as to allow a partitioning of the states inMEi .
Such a partitioning assigns “ownership” of the states ofMEi to
either the host language, the extension, or neither. The LR DFA
MEi consists of the states in the three DFA partitions:MEi

Ei
(states

owned by the extension),MEi
H (states owned by the host language),

andMEi
NH (states owned by neither). The notion of ownership is

indicated by the subscript. A diagram of this partitioned LR DFA
is shown in Figure 3(a).

It is possible that these three partitions have no transitions be-
tween them except for the single transition fromMEi

H into MEi
Ei

labeled withµE
i , the marking terminal. If one of the extension’s

productions contains a reference to a host language nonterminal in
its right hand side there may also be other transitions, labeled with
host terminals, between the partitions. These possible transitions
are indicated by the dotted lines in Figure 3.

The analysis inspects each staten in MEi . If each state can be
assigned to one of these partitions, then the extension passes the
modular analysisisComposable, and when several extensions are
combined to formMC the parse table generated therefrom will be
conflict-free.

Extension owned statesMEi
Ei

: A staten ∈ MEi is assigned to

the partitionMEi
Ei

if it has at least one item (i ∈ Itemsn) whose
left hand side symbolnt is anΓE

i nonterminal (i.e., nt ∈ NTEi ).
States assigned to this partition are those used for parsing the
embedded language ofΓE

i . For the SQL extension, these states
parse the embedded SQL language. These states are said to be
owned by ΓE

i . There are few restrictions on these states since
they contain parts of the embedded language introduced by the
extension, and hence, when extensions are merged, these states will
not be merged with the states owned by other extensions.

Formally, ∀n ∈ MEi .(∃ (nt → · · · • · · · ) ∈ Itemsn.(nt ∈
NTEi) ⇒ n ∈ MEi

Ei
).

LetnS
Ei

be the state inMEi that contains the itemh → µE
i •sE

i .
This is the extension start statenS

Ei
∈ MEi

Ei
.

In the LR DFA for the language composed by the programmer,
these states may have new items added to them. These items will
only be bridge production items of the formh → •µEj sEj for
some other extensionEj .

Host owned statesMEi
H : These states are said to be owned by

the host languageH. The analysis attempts to construct a bijection
m : MEi

H → Morig that satisfies the criteria discussed below.
The inverse function is denotedm−1. If such a bijection cannot be
constructed, the analysis fails. If one can, then each state inMEi

H

has a unique corresponding state inMorig . They are then further
classified by if and how their item sets and lookahead are (safely)
extended by the extension. If a state inMorigcannot be so classified
the analysis fails.

In constructingm, elements in its domain (i.e., MEi
H ) are further

partitioned into 3 sets. The first isnochange(MEi
H ). These are

states that have not changed. A staten ∈ MEi is a member of
MEi

H and assigned to the partitionnochange(MEi
H ) if ∃n0 ∈

Morig .n0 ≡1 n. In this case we specify thatm(n) = n0. This
checks ifn0 andn have the same set of items and each item has
the same lookahead. Ifn0 had no conflicts, then clearlyn has no
conflicts. This is one way in which wemaintainthe determinism of
Morig in MC .

The second ismarkingLA(MEi
H ). These are states that do not

have new items, but may have the extension’s marking terminalµE
i

in the lookahead set of existing items. A staten ∈ MEi is assigned

to be inmarkingLA(MEi
H ) if ∃n0 ∈ Morig .n0 ≡0 n ∧ (∀i ∈

Itemsn0
.(lan(i)\ lan0

(i) ⊆
˘

µE
i

¯

)). This checks that some state
n0 in the original host LR DFA has the same set of items asn
(n0 ≡0 n) and for each item, either its lookahead sets are the same
in both states or its lookahead inn has the single additional element
µE

i . This does not cause any conflicts; see lemma 3, below.
This may result in shift and reduce actions based on this mark-

ing terminal to appear in the parse table ofMEi , but any conflicts
will be detected by the extension writer when checking that this ta-
ble is conflict free. This check is part of the analysis as specified
at the beginning of Section 3. Note the similarity of this test to the
follow-set test. Both work along the same basic principle; however,
instead of entirely new symbols, this test aims to exclude from a
state symbols that were already in the follow set of some nontermi-
nal but did not show up as lookahead in this state.

The third isbridge(MEi
H ). These are states that have exactly

one new item, of the formh → •µE
i sE

i , [z], and also allow the
marking terminalµE

i in the lookahead of existing items. A state
n ∈ MEi is in MEi

H and is assigned to be inbridge(MEi
H ) if

∃n0 ∈ Morig .(Itemsn = Itemsn0
∪ {h → •µE

i sE
i } ∧ (∀i ∈

Itemsn0
.(lan(i)\ lan0

(i) ⊆
˘

µE
i

¯

)). This checks that some state
n0 in the original host LR DFA has the same set of items asn
(excluding the bridge itemh → •µE

i sE
i ) and that the lookahead on

the items thatn andn0 have in common are identical except that
the marking terminalµE

i may be in the lookahead of items inn.
These items cause the parser to shift on the marking terminal of

that extension to an extension language state inMEi
Ei

, as indicated
by the two edges labeledµE

i in Figure 3(a). Ifn is a bridge state
thenδ(n, µE) = nS

µ ; it shifts to the start state of the extension. Ex-
tensions only add items of the formh → •µE

i sE
i to host language

states. Thus, since the marking terminals for each extension are by
definition different we will not have any conflicts in the parse table
of the programmer composed language.

“New” host states MEi
NH : Extensions do interact with the host

language by including host language constructs in the extension-
introduced constructs. Thus, productions inPEi may include host
language nonterminals and terminals on the right hand side.

These productions may cause states to be generated that contain
items consisting of only host language terminals and nonterminals,
but do not correspond to states inMEi

H in one of the ways described
above. We need to ensure that these new states do not have conflicts
and are consistent with existing host language states, so that the
determinism of the host language is maintained in these states. This
is needed to ensure that in creating the composed language LR DFA
MCno conflicts are introduced based on how the extensions use
host language terminals and nonterminals.

A staten ∈ MEi is assigned to the partitionMEi
NH if:

1. It cannot be assigned to the partitionMEi
H in any of the three

ways described above;

2. Each itemi ∈ Itemsn consists only of host language terminals
and nonterminals, or is of the formh → µE

i sE
i ;

3. ∃n′ ∈ MEi
H .(n ⊆IL n′); and

4. ∀n′ ∈ MEi
H .(n ⊆I n′ ⇒ n ⊆IL n′).

Conditions 3 and 4 ensure that productions that generate new-
host states from different extension DFAs (MEi

NH andM
Ej

NH ), when
combined, generate compositions of these states in the new-host
partition of the composed LR DFAMC , as in Figure 3(b).

If a staten ∈ MEi cannot be classified as belonging to one of the
three partitionsMEi

Ei
, MEi

H , or MEi
NH , then the modular analysis



(a) (b)

Figure 3. Abstract diagram of merging the host language with one
extension (a) and with two extensions (b).

fails. Since the partitions are, by these definitions, disjoint, the order
in which the staten ∈ MEi is checked against them does not
matter.

If each extension passes the modular analysis and the host
language extended with the extension has a conflict free parser,
then the host language extended with all such extensions has a
conflict free parser as well. In Section 4 we define the modular
lexical ambiguity checkerisLexComp. In tandem, they ensure
that “certified” language extensions can be safely composed by
the programmer and recognized with a deterministic parser and
scanner. Next we provide some examples and then explain why this
claim is true.

3.2 Examples of passing and failing grammars.

Composable extension.Consider the host, extension, and bridge
productions below:

• PH = {E → T + E, E → T, T → x}

• PEi = {S → S1 E, S1 → #}, bridge productionE → µE S

This grammar passes the modular determinism analysis because
the only reference to a host nonterminal inside the extension syntax
occurs at the end of the first production inPEi . Therefore, the only
symbols added tofollowΓC (E) are those infollow

ΓC (S). Since
S itself appears only at the end of a production derived fromE, this
adds no new terminals tofollow

ΓC (E).

Extension adding to the follow set of a host nonterminal.Con-
sider an extension with the following productions, which fails the
analysis:

• PH = {E → T + E, E → T, T → x}

• PEi = {S → S1 E, S1 → T}, bridge productionE → µE S

In this extension, an expression derived fromE can occur imme-
diately after an expression derived fromT . This means that all ter-
minals infollow

ΓH (E) are added tofollow
ΓC (T ). This includes

x /∈ followΓH (T ); thus, the extension fails the analysis.

Extension producing a “non-IL-subset” condition. Consider
another failing extension, with these following productions:

• PH = {E → T + E, E → T, E → x !, T → x}

• PEi = {S → S1 z E, S1 → T}, bridgeE → µE S

In the host grammar, bothE andT can derive expressions begin-
ning withx. This results in there being a state insideMorig contain-
ing the itemsE → x•!, {$} andT → x•, {$, +}. The extension
contains a reference toT ; the placement addsz to follow

ΓC (T ),
per secausing the extension to fail. However, unlike in the host

grammar there are no other references tox there; if x occurs in
an extension expression it is derived fromT . This means that
there is inside the extension DFA a state containing only the item
T → x•, {z}. This state is a “new host” state. This is an I-subset
of the state named above, but is not an IL-subset of it, causing this
extension to fail the analysis on a second count.

3.3 Correctness of the modular analysisisComposable.

Composability Theorem: The modular conflict-free analysis
isComposable performed on the LR DFAs forΓH andΓE and
traditional conflict-free analysis performed onΓH ∪G ΓE ensure
that when the extension grammarE is composed withH and other
extensions passing these analyses, the resulting grammar will have
a conflict-free LR parse table. Formally, this is expressed as

(∀i ∈ [1, n].isComposable(ΓH , ΓE
i ) ∧

conflictFree(ΓH ∪G ΓE
i ))

=⇒ conflictFree(ΓH ∪⋆
G

˘

ΓE
1 , . . . , ΓE

n

¯

)

A sketch of the proof of this theorem follows. It is based on the
fact that the partitioning of states inMEi , as seen in Figure 3(a),
is extended to the partitioning of states in the composed language
DFA MC , as seen in Figure 3(b). A full version of the proof ap-
pears in an accompanying technical report (23). The following lem-
mas are used in the proof; for brevity, their proofs are summarized.

Lemma 1: No items from two extensions in any state.If a state
n has(nti → α • β) ∈ Itemsn, then if nti ∈ NTEi , {nt :
(nt → γ • δ) ∈ Itemsn} ⊆ NTH ∪NTEi , i.e., no state has items
with left-hand sides from more than one extension.

Proof summary: The only transition path from the start state
of the composed LR DFAM to any state with such an item in
it must, by construction, pass through a state seeded from item
h → µE

i • sE
i , that is, the extension start statenS

Ei
. This state

functions as a “bottleneck” that filters out syntax from all other
extensions.

Lemma 2: The follow sets of host nonterminals in the grammar
ΓC add only marking terminals to the follow sets inΓH .

Proof summary: Any non-marking terminals introduced to the
follow sets would have to have been put there by a single exten-
sion, which means that it would have been caught in the modular
analysis.

Lemma 3: The class of conflict-free states is closed under intro-
duction of bridge items and marking terminal lookahead.

Proof summary: Since marking terminals are only defined with
one productionh → µE

i sE
i , whereverµE

i can be shifted, so can the
other terminals offirst(h) (the setfirst(h) is the set of terminals
that begin any phrase derivable fromh). Similarly, if µE

i is in a
lookahead set, so is everything else infirst(h). It follows that if
there is a parse table conflict onµE

i , an identical conflict would
occur on all other terminals infirst(h). Therefore, if a state is
conflict-free, conflicts cannot be introduced to it by adding bridge
items or marking terminal lookahead.

Proof sketch of the composability theorem:The proof shows
that the states in LR DFAMC built from the composed grammar
ΓH
∪
∗

G
{ΓE

1 , ΓE
2 , ...ΓE

n } can be partitioned into the setsMC
H , MC

E1
,

MC
E2

, ...,MC
En

, andMC
NH . This partitioning is straightforward and

depends one the structure of the state. The proof then shows that
states in each of these sets are conflict-free. Each of these partitions
is described below and it is argued that the states in these partitions
are necessarily conflict-free.



Host state partitionMC
H : MC

H will contain statesn that

1. are not in anyMC
Ei

(see below), and

2. There exists a path through only non-extension states from the
start state ofMC to this state,i.e., there exists a sequence
{n0, (n1, σ1) , . . . , (nk, σk)} with n0 = sMC , δMC (ni−1, σi)

= ni, nk = n, and∀i, j.nj 6∈ MC
Ei

.

To reach this state from the start state ofMC , we followed
the path(σ1, . . . , σk). None of theseσis are extension symbols
or marking terminals, since eachδMC (ni−1, σi) points to a host
state. Therefore, in each of the LR DFAsMEi , i ∈ [1, n], in which
the host and a single extension are composed, we could follow the
pathσ1, . . . , σk and in each one end up in a state inMEi

H that, if
bridge items and marking terminal lookahead are not considered, is
identical ton.

This follows by construction, since host syntax is common to
all MEi (for eachi) and any states along the same sequence of
transitions on host-only symbols must have an identical set of host-
only items and host-only lookahead. The state inMC is a union
of the item set and lookahead sets of all of the states inMEi . It
only differs from any of these in that it contains additional bridge
production items and marking terminal lookahead from multiple
extensions. Since the marking terminals are distinct, the state in
MCwill not have any conflicts even though it may have several
bridge production items or lookahead sets with several marking
terminals. If there were conflicts in this state, that conflict would
have to exist in one of the DFAsMEi , for somei.

Extension state partitionsMC
Ei

: The LR DFAMC
Ei

, i ∈ [1, n],
will consist of states containing items with an extension nontermi-
nalnt ∈ NTEi on the left hand side. Note that by lemma 1, these
subsets are all disjoint.

Suppose that the bridge production forΓE
i is h → µE

i sE
i . By

construction, the only paths to any staten ∈ MC
Ei

from the start
state ofMC run through the extension start statenS

Ei
. Furthermore,

such a path must exist, since no state in the DFA is isolated.
If there is some statenI on a path betweennS

Ei
and n for

which nI 6∈ MC
Ei

, then there is no syntax in its items fromΓE
i

in it, so by constructionnS
Ei

must be on the path betweennI and
n. This constitutes a cycle. Since there is by definition an acyclic
path between those two states, every such acyclic path must consist
entirely of states inMC

Ei
.

The sequence of symbols labeling this path are all inTH ∪
NTH ∪ TEi ∪ NTEi . If one were not, then it is in someTEj ∪
NTEj . But this means that the symbol in question must be in the
state preceding the transition marked with that symbol, which is a
contradiction. This means thatMC

Ei
forms an unbroken “block” of

states connected by transition fromnS
Ei

along paths marked solely
with symbols inTH ∪ NTH ∪ TEi ∪ NTEi .

Consider the properties ofnS
Ei

. It is seeded from the single
item iE = h → µE

i • sE
i , and is the only state containing this

item. There is a corresponding staten0 ∈ MEi
Ei

seeded fromiE .
By constructionlan0

(iE) ⊆ lanS
Ei

(iE). Since by construction

there is a transition tonS
Ei

from any state in which there are items
h → • · · · , the lookahead oniE is exactly the whole follow
set ofh: lanS

Ei

(iE) = follow
ΓC (h). Analogously,lan0

(iE) =

follow
ΓH∪GΓ

Ei (h). Therefore, the difference between the two
lookahead sets is the same as the difference between the two follow
sets:lanS

Ei

(iE)\ lan0
(iE) = follow

ΓC (h)\ follow
ΓH∪GΓ

Ei (h).

By lemma 2, this difference consists entirely of marking terminals.
Using the above process of following transitions simultane-

ously, this time inMC andMEiand fromnS
Ei

andn0, it follows

by construction that for every state inn ∈ MC
Ei

there is a corre-
sponding state inn′ ∈ MEi

Ei
, accessible via the same path. Since

every acyclic path fromnS
Ei

to n goes entirely through states in
MC

Ei
, structural induction shows that new bridge items are the only

sort of new items that can appear, andnS
Ei

and these bridge items
being the sole source for any new lookahead, marking terminals are
the only new lookahead.

Therefore, by lemma 3, no state inMC
Ei

has a conflict.

“New” host partition MC
NH : MC

NH will contain all states not in
the above subsets, which by elimination:

1. are not in anyMC
Ei

, and

2. all paths fromMC ’s start state ton pass through some exten-
sion start statenS

Ei
.

Firstly, note that it is altogether possible that there are paths
from severalsuchnS

Ei
s to n, not counting paths through other

extension start statesnS
Ej

. Call the set of grammars with such a path
Contribn . |Contribn | ≥ 1. No such path contains any marking
terminals (that would put it through somenS

Ej
) or terminals not

from the particular extension from whose start state it originates (in
consequence of there being no marking terminals). Neither does it
go through any statenH ∈ MC

H : as all transitions out of such states,
except those labeled with marking terminals, have another state in
MC

H as a destination, it follows that every state betweennH andn
is in MC

H . But this would putn in MC
H , which it is not.

It is now established that for eachΓE
i ∈ Contribn , there is a

path with every transition inTH∪NTH∪TEi∪NTEi leading from
nS

Ei
to n. This means that there is an identical path inMEi leading

to a stateni that, ignoring bridge items, is LR(0)-equivalent ton.
This state is in neitherMEi

H norMEi
Ei

, hence must be inMEi
NH . For

the same reasons as above, in addition to the new marking terminal
lookahead,n contains exactly all the lookahead from all suchni.
This is the set of lookahead that could potentially cause conflicts in
this state.

By conditions 3 and 4 of the analysis that assigns states toMEi
NH ,

there is somen′

i ∈ MEi
NH with ni ⊆I n′

i, and furthermore for
all suchn′

i, ni ⊆IL n′

i. Furthermore, since the most the item sets
of the nis differ is one bridge item, and the addition of a bridge
item toni would imply that it was also added to any I-superset of
ni, it follows that the space of I-supersets of eachni maps to the
same set of states inMorig , which are these states shorn of their
bridge items and marking terminal lookahead. Furthermore, each
hypothetical state consisting ofni shorn of its one possible bridge
item and marking terminal lookahead is an IL-subset of each of
these states inMorig .

Now the subset relation is closed under union. This means that
if a state consists of the union of the items and lookahead of several
IL-subsets of the same state, the union state is itself an IL-subset
of that state. It follows immediately that the hypothetical state
consisting ofn shorn of all its bridge items and lookahead is an IL-
subset of each of theMorig states. This state, therefore, is conflict-
free, and the addition of marking terminal lookahead and bridge
items will not add conflicts; therefore,n is also conflict-free.

4. Lexical disambiguation and practical concerns.
4.1 Resolving lexical ambiguities.

Above, we have assumed that there are no lexical ambiguities, em-
phasizing that if each language extension chosen by the program-
mer passes the modular analysisisComposable, then the com-
posed language parse table will be deterministic. In practice, reg-
ular expressions for terminal symbols do overlap and the language



designer resolves them, typically by specifying some sort of lexical
precedence so that, for example, keyword terminals are preferred
over identifier terminals for lexemes that match both.

With context-aware scanners such as Copper (27), the parse-
state-based context used to disambiguate the lexical syntax allows
the composed language to have terminal symbols that have overlap-
ping regular expressions (those that share at least one common lex-
eme) as long as those terminals are not in the same valid lookahead
set for any parse state. Based on the partitioning ofMCdescribed in
Section 3 we know that non-marking terminals of different exten-
sions cannot cause lexical ambiguities in the composed language
since they never occur in the same valid lookahead set. (Lexical
ambiguities between terminals in a single extension and/or the host
language can be resolved by the extension designer.) For example,
theTable keyword terminal introduced by the SQL extension will
never be in the same context as the table extension’sTbl termi-
nal even though both have the same regular expression/table/;
therefore, that causes no lexical ambiguity.

But since bridge-production items can be (safely) added to parse
states owned by the host language or other extensions we have the
possibility for lexical ambiguities in two ways. The first is between
marking terminals from different extensions. For example, the SQL
marking terminalUsing and the “tables” marking terminalTbl can
both appear at the beginning of an expression and there are thus in
the same valid lookahead set for several parse states.

The second occurs more rarely, in parse states owned by an ex-
tensionE between its non-marking terminals and other extension
marking terminals. (Note that this does not occur in the SQL exten-
sion since itsTable terminal cannot appear in the same location as
a Java expression, which can begin with the table extension’sTbl
marking terminal.)

Most scanner generators, including context-aware ones such as
Copper, allow a “global” precedence relation to be specified be-
tween terminals, so ifs takes precedence overt, no string match-
ing s will match t, even in contexts wheres is invalid. This type
of static precedence does not respect boundaries of parse state: if
some terminalte ∈ T E

i is made to take precedence over a host
terminalth ∈ TH , no lexeme matchingte can matchth — even
in a state belonging to some other extensionΓE

j . For this reason,
extension writers should avoid defining static precedence relations
between host terminals and extension terminals, though it is reason-
able for static precedence to be specified on host language keyword
terminals. If an extension writer does this, no additional conflicts
or ambiguities will occur, but the presence ofΓE

i will alter the lan-
guage ofΓE

j . Also, extensions may not define any new precedence
relations between host terminals.

Transparent prefixes(27) provide a solution for disambiguating
marking tokens. The technique is similar to how class names are
disambiguated in Java programs when two packages that define a
class with the same name are imported into a Java program; the
package name (based on the unique Internet domain name of the
package author) is prepended to the class name to indicate the
desired class. Grammar names, which can also be based on Internet
domain names, can be used to disambiguate marking tokens. This
approach is taken by Copper and Silver. The grammar names are
added to the valid lookahead tokens passed to the scanner. If the
input matches such a name, the scanner does not return it to the
parser, but instead uses this extension name to remove terminals
defined in other extensions from the valid lookahead set and scans
again from the point in the input after the grammar name. Now,
only terminals from the extension and the host language are in the
valid lookahead set so there will be no lexical ambiguities. (If there
were, they would have been resolved by the extension writer.) Thus,
if the scanner does report a lexical ambiguity to the programmer, it
can be easily resolved by the programmer by adding the extension

name before the marking token. This is the same burden that is
placed on Java programmers and thus we do not feel that it is
unreasonable. Our lexical ambiguity analysis reports these possible
ambiguities, but these do not prevent the extension from passing the
modular lexical ambiguity analysis. The analysis does, of course,
check for lexical ambiguities between extension and host language
terminals, which are then resolved by the extension writer.

In addition to providing transparent prefixes, the extension
writer must specify a “default” behavior that use of the prefix can
preempt. This is done by indicating that a marking terminalµE is
of one of the following sorts:

• “Reserve against other terminals.” This means that static prece-
dence relations will be formed withµE taking precedence over
any terminals with which it conflicts lexically, and no string
matchingµE ’s regular expression can match any of these ter-
minals in any context. The use of this option should be avoided
for the same reason as other static precedence relations between
host and extension terminals should be avoided.

• “Prefer over host terminals.” This means that whereverµE

causes an ambiguity with another terminal or terminals, the
ambiguity is resolved in favor ofµE .

• “Avoid in favor of host terminals.” This means that wherever
µE causes an ambiguity with another terminal, the ambiguity
is resolved in favor of the other terminal. If one has a set of
terminalsX disambiguated via this mechanism, and a new
marking terminalµE

i is introduced, a new ambiguity —X ∪
˘

µE
i

¯

— is resolved the same wayX was. N.B.: The use of this
option mandates the use ofµE ’s transparent prefix to match it.

Thus, there are a number of ways to design the host and ex-
tension languages to handle lexical disambiguation. The modular
lexical ambiguity checking analysisisLexComp verifies that no
lexical ambiguities are possible in the composed languageexcept
for those involving marking terminals that can be disambiguated
by the programmer. Thus, a deterministic scanner can still be used
and it can be designed to give helpful error messages when a lex-
ical ambiguity occurs. It can rescan the input with all terminals in
the valid lookahead set, see which match, determine which exten-
sions defined those terminals and suggest to the programmer that a
transparent prefix naming one of these extensions is needed. This
disambiguation process requires no implementation-level knowl-
edge of the composed language parser or scanner and is essentially
the same as disambiguation done for ambiguous Java class names.
Thus we do not consider it a significant burden on the programmer.

4.2 Operator precedence.

We prove above that the introduction of a marking terminalµE
i ,

whereh → µE
i sE

i , cannot cause parse-table conflicts because the
conflict in question would also occur on other members offirst(h)
and, therefore, be caught by the modular analysis. However, this
does not hold true if the conflicts on the non-marking terminal
cells have been resolved by setting operator precedence rules on
these other members offirst(h), which do not apply toµE

i . Given
that marking terminals are “prefixes” of a sort, this is unlikely to
occur in practice. We have not seen any instance where it occurs,
but for operator precedence to be used in this approach, one of the
following two solutions could be applied.

Specify a blanket precedence rule.The extension writer could
provide a blanket precedence rule specifying how to resolve such
conflicts should they occur. This would simply be an ordinary
operator precedence specified on a “placeholder” marking terminal,
µ⋆, standing in for anyµE

i that are introduced.



Tighten the test. Extensions that reference a host nonterminalh
could also be subjected to more stringent tests. While compiling
the LR DFA for ΓH ∪G ΓE

j , it is possible to keep track of what
nonterminals contribute lookahead to items in which states. Let
Interlopersj signify every host nonterminal contributing looka-
head to any state owned byΓE

j . Then ensure that each of these
nonterminals has a symbol in itsfirst set with no operator prece-
dence defined on it. Define a bijection

mark :
n

µ⋆
1, . . . , µ

⋆

|Interlopersj |

o

→ Interlopersj ,

mapping a fresh new marking terminal to every member of the set
Interlopersj . Then compile a grammar consisting ofΓH ∪G ΓE

j

combined with a set of productionsmark(µ⋆
i ) → µ⋆

i . If this
compiles without conflicts, the validity of the proof is restored.

5. Discussion.
In this section we discuss some opportunities for future work based
on the partitioning of the LR DFA described in Section 3 as well as
some of the related work. We then describe our experience in build-
ing various language extensions and the limitations imposed by the
modular isComposableanalysis. Finally we comment on the im-
portance of static analyses in the adoption of extensible languages
and tools we have developed to support extensible languages.

5.1 Future work.

Parse table composition. The strict separation of the parse states
described above suggests that it may be possible to compile an ex-
tension grammar into a parse tablefragmentthat could be com-
posed with the host language parse table (and other extension parse
table fragments) at the direction of the programmer when he or she
selects the set of extensions with which to extend the host language.
Because of this strict separation, the itemsh → •µE

i sE
i are the

only additions to states in host language partition of the LR DFA
MC

H for the composed language. Thus, in those states, any new ac-
tions introduced by adding an extension are only added in theµE

i

columns of the parse table. States associated with the extensions (in
MC

Ei
) are entirely separate. It follows that, ifΓH ∪G ΓE

i has passed
the modular test, one can take parse tables forMorig andMEi ,
concatenate their rows, and add a new columnµE

i with appropriate
actions, one will have a parse table forΓH ∪G ΓE

i , verified cor-
rect and free of conflicts. Furthermore, one can concatenate a parse
table forMorig with those ofseveralextensions, adding a new col-
umn foreachmarking terminal; the resulting parse table would then
parseMC and also be conflict-free.

Extension-specific lexical static precedence.Static lexical prece-
dence, as used to specify that keywords take precedence over iden-
tifiers, is a convenient mechanism for disambiguating lexical syn-
tax. However, as discussed in Section 4, its use is not recommended
for indicating that extension introduced terminals have precedence
over those defined in the host language, since such precedence
specifications have effect in all parse states. The strict separation
of parse states may also be useful here in that it would allow an
extension-specific static precedence that only has effect in the parse
states owned by the extension in which the keyword is defined.

5.2 Related work.

Context-aware scanning. In the TICS algebraic compiler frame-
work (20) the notion of context is used in the pattern-matching
parser and in the scanner. The scanner can take into account the
results of then previous scans in determining how to recognize the
current input (21); the value ofn is determined when the scanner
is generated. This is a lexical notion of context and is more limited

than parse-state-based context-aware scanning such as used in Cop-
per, which provides contextual information based on an unbounded
number of tokens to the left of the current point in the file. How-
ever, the context used in the TICS scanner is more general in two
ways: the scanner also considers the context of what canfollow the
current token and it introduces the notion ofnon-contextin which
terminals can specify contexts in which they arenot valid. These
can be used, for example, to distinguish an integer constant termi-
nal from a label. They may have the same regular expression, but
the label has a following context of a colon and the integer has a
colon in its following non-context specification (21).

The Tatoo parser and scanner generator (7) has two innovations
of relevance here. First, it uses alookahead activatorimplement-
ing an independently developed notion of parse-state-based con-
text aware scanning. However, the expressiveness of parse-state-
based context-aware scanning appears not to have been fleshed out
in Tatoo, as the lookahead activator is presented as a scanner opti-
mization.

Separate parse table-based approaches.The second innovation
of Tatoo is that it also supports rapid composition of extensions
without the need for regenerating parse tables. The system can
switch between different pre-compiled parse tables and thus sup-
port some notion of parse table composition. But Tatoo’s concept
of extensions is different from ours: while we conceive of a fully
independent host grammar supplemented by an unspecified set of
extensions, in Tatoo, certain “holes” are explicitly left in the host
grammar, and usersmust“fill” each of these with one of a possible
selection of extensions written to fill that particular “hole.” There-
fore, the extensions to a Tatoo grammar are not optional, are of a
fixed number, and are of a more restricted character.

Component LR-parsing (30) (CLR) is similar to Tatoo’s ap-
proach in that multiple separate parse tables are used, but CLR in-
troduces two new actions:switchand return. When a component
parser enters anerror state it inspects the current state and will ei-
ther switch to another component parser, return to the parser that
called it, or backtrack. This point at which the calling parser fails
is where, in our approach, a shift on a marking terminal would oc-
cur. The priorities of these new actions are fixed by the parsing
algorithm and the order in which component parsers are called is
determined by the textual-order in which they appear in the spec-
ification. Backtracking is used when a component parser fails and
the system backtracks to try another component parser. It would
be interesting to add backtracking to our approach, but limit it to
the states at which a marking terminal is shifted. This would allow
extensions with overlapping marking terminals, at the expense of
backtracking.

Arbitrary parse table composition. Bravenboer and Visser (6)
outline a strategy for composing the parse tables ofarbitrary ex-
tensions into a single GLR (specifically, GLR(0)) table. This ap-
proach is based upon a construct called an “ǫ-NFA” — a nondeter-
ministic LR(0) finite automaton that allowsǫ-transitions.ǫ-NFAs
being very easy to glom together in a composition, they are made
use of as an intermediate step in the process of producing compos-
able parse tables. Theǫ-NFA for the host or a particular extension
is determinized into an “ǫ-DFA,” which is an ordinary DFA with
the ǫ-transitions retained as metadata. This allows the addition of
new items to anǫ-DFA state (i.e., the introduction of new exten-
sions) without the need to recompute the entire closure of the state.
Most of the information from theǫ-DFA is then included with the
parse table. The generality of this method is at once a strength and a
weakness: although it is able to do on-the-fly composition of a host
grammar withanyextension, there is no way to guarantee that even
onesuch extension, let alone several unrelated ones, will compose
deterministically or without other issues. As most of this method



concentrates on the potentially inefficient process of recomputing
closures on-the-fly (entirely unneeded when using our approach of
marking tokens) and ignores scanner issues (being designed for a
scannerless GLR parser), its results, but not its methods, are similar
to ours.

Incremental generation of LR parse tables.Many have stud-
ied the problem of incrementally generating LR parse tables. Hor-
spool (15), for example, presents a similar method to Bravenboer’s
for addition and deletion of productionsin situ in deterministic
parse tables. However, Horspool’s method was designed for inter-
active development of grammars, where a whole grammar is being
modified and debugged all in one place and a monolithic determin-
ism analysis would be of much more use.

5.3 Experience with the modular analysis restrictions.

We have built parsers and scanners in Copper for Java 1.4 and
ANSI C and designed several language extensions to these host lan-
guages that pass the modular analysis. For example, to the Java 1.4
host language we have added the significant subset of SQL and the
boolean-expressions tables mentioned in Section 1 (25). We have
also implemented an extension that adds algebraic data types to
Java in a manner similar to that of Pizza (19), specifying concrete
syntax for defining different cases of a class and for pattern match-
ing over them. Further examples include dimension-types used to
check for errors in computations over physical measurements (e.g.,
to check that a length measurement is not added to a mass or accel-
eration measurement (26)). All of these extensions pass the mod-
ular analysisisComposable; in fact, many of them were designed
before the modular analysis was.

Thus, our experience shows that the restrictions imposed byis-
Composableare not too severe. That said, there are some limita-
tions. For example, adding a new infix binary operator (e.g.@) to
the host language is not allowed since a production of the form
Expr ::= Expr ′@′Expr does not have a marking terminal. (New
infix binary operators can, however, be specified in the languages
defined in extensions.) Many extensible language frameworks (10;
24) do support type-based overloading of existing host language
operators. Thus, adding a new numeric type (e.g., complex or ratio-
nal numbers) may require new syntax to define the type but no new
syntax for arithmetic operators over these values.

If in the extension in Figure 1 we replaced the extension key-
word foreach with the host language keywordfor, we would
not have a marking terminal in the bridge production of this ex-
tension and our analysis would thus reject this extension. This type
of extension would be possible with traditional LALR(1) parsers,
PEGs and GLR parsers. In our approach, one could also write the
production using the host languagefor terminal, but now we must
rely on the monolithic analysis to detect any conflicts. Thus, one
does not lose determinism completely, but the ability of the exten-
sion writer to ensure it is lost. In this case one could also design
the host language to support overloading of the enhanced for loop
(similar to operator overloading). Such an overloading would be
appropriate since the intention of iterating over each element re-
turned from the query is consistent with the intuitive understanding
of the construct. Thus the extension would not need to add new
concrete syntax specifications. Therefore, one area of future work
is to study how to best design host languages to support different
types of overloading to mitigate this limitation to some degree.

AspectJ. We have also extended our Java 1.4 specification to cre-
ate a specification for AspectJ, a language that provides aspect
constructs in Java. This language has historically proven difficult
to parse using traditional methods. The AspectJ Bench Compiler
(abc) (14) uses a traditional LALR(1) parser, but uses a moded
scanner that switches modes based on whether or not an aspect con-

struct is being parsed. This allows different keywords to be reserved
based on the scanner mode, but the hand-written mode-switching
specifications are not declarative. More recently, Visseret al. (4)
have devised a declarative parser for AspectJ in their nondetermin-
istic scannerless-GLR framework — although they had to add a
new feature,grammar mix-ins, to handle the problem of the differ-
ent sets of keywords.

We have adapted the LALR(1) grammar used inabc to ex-
tend the Java grammar in our ableJ framework. As it happens,
with a context-aware scanner, theabc version of AspectJ can
be parsed deterministically and declaratively (22). Essentially,
context-aware scanning provides a more fine-grained version of
the mode-switching that is done manually in theabc scanner.

However, AspectJ does not pass our modular determinism anal-
ysis, for two reasons. First, AspectJ introduces large numbers of
new keywords, placed in such a way that they are allowed to follow
host Java constructs (e.g., type constructs). This adds these termi-
nals to the follow sets of host nonterminals and causes the test to
fail. Second, AspectJ extends some Java host nonterminals that de-
rive phrases beginning with an access modifier such aspublic or
protected. For example, Java specifies the production

Dcl → Modifiers Type Id ...
for methods and AspectJ adds the production

Dcl → Modifiers Aspect Id ...
to define certain aspect constructs. The newAspect keyword is not
a marking terminal at the beginning of the productions right-hand
side. However, the host Java grammar could be refactored, and the
extension productions modified, so that they satisfy the require-
ments ofisComposable. Thus writers of a host grammar may be
able to increase the number of extensions that pass the analysis by
designing the grammar in a particular way. Our Java 1.4 grammar
was directly derived from the freely available JavaCup version (2)
with no such modifications, and our extensions (except AspectJ)
passed the analysis with that host grammar. Thus it seems that the
way one naturally writes grammars does lead to a high degree of
extensibility.

Alternate restrictions. The set of restrictions imposed by theis-
Composableanalysis are not the only ones that we have consid-
ered. For example, we experimented with tighter but simpler re-
strictions defined on the grammar (25), instead of on the LR DFA.
One required beginning and ending marking terminals. However,
these proved too restrictive to admit many of our previously imple-
mented extensions. We also considered relaxing, but complicating,
the restrictions as follows: the analysis would, given a subsetA of
host nonterminals, only guarantee that the extension would com-
pose if all the other extensions with which it was composed had a
bridge production with its left-hand side inA. This exploited the
fact that few host nonterminals would be used on left-hand sides of
bridge productions (e.g., ”expression” and ”statement”). However,
it is unclear if this is worth the added complexity.

5.4 Restrictions on expressiveness versus safe composition.

It may still be asked,Are the restrictions imposed by this analy-
sis too severe?We argue that the importance of a static analysis,
performed by the extension writer, outweighs the moderate loss of
expressibility imposed by the modular analysis restrictions. Other
parsing techniques that support language extension do allow some
constructs not allowed by our analysis and it is appropriate to com-
pare these approaches, as we have. It is also appropriate to compare
all of these approaches to the accepted mechanism that program-
mers currently use to “extend” their language with new abstrac-
tions: libraries. They provide no new syntactic constructs (or new
semantic analysis), but because the library writer can compile and
type-check the code before it is distributed,the programmer is as-
sured that he or she can pick any combination of libraries needed



to address the particular problem, and use them as needed in a pro-
gram. It is this level of assurance that we seek, and our approach
provides, allowing a wide range of new expressive syntactic con-
structs to be safely added to the host language.

The requirements for truly extensible languages are different
from those for traditional language design in which a language
expert is expected to understand the language and the parsing
and scanning technology. Here, one may reasonably choose to
use a GLR parser to simplify the grammar rules and accept the
responsibility of extensively testing and manually analyzing the
grammar to ensure that no ambiguities exist at the top-level of the
grammar. For PEGs, though it is unlikely that two extensions will
introduce the exact same syntax, it is possible, and then the order
in which the extensions are added will determine which construct
is recognized by the PEG parser and must be managed by someone
familiar with PEGs.

If extensible languages are to become widely used, we need
static analyses that let extension writerscertify their language ex-
tensions to provide aguaranteethat language extensions can be
safelycomposed by the non-expert programmer.

5.5 Tool support.

Copper is an integrated LALR(1) parser and context-aware scanner
generator that we developed to address the challenges in parsing
and scanning extensible languages (27). Copper also implements
the modular analysisisComposabledescribed in this paper. Copper
serves as the parser and scanner generator for our attribute grammar
system, Silver (24), which was used to implement ableJ (25).

Copper, Silver, and the host language and language extension
specifications mentioned in this paper are available on the web at
http://melt.cs.umn.edu.
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