Verifiable Composition of Deterministic Grammars

August C. Schwerdfeger

Eric R. Van Wyk

Department of Computer Science and Engineering, University of Niotae
Minneapolis, Minnesota

schwerdf@cs.umn.edu,

Abstract

There is an increasing interest in extensible languages, (domain-

specific) language extensions, and mechanisms for their specifica
tion and implementation. One challenge is to develop tools that al-

low non-expert programmers to add an eclectic set of language ex-
tensions to a host language. We describe mechanisms for compos
ing and analyzing concrete syntax specifications of a host language

and extensions to it. These specifications consist of context-free
grammars with each terminal symbol mapped to a regular expres-
sion, from which a slightly-modified LR parser and context-aware
scanner are generated. Traditionally, conflicts are detected when
parser is generated from the composed grammar, but this comes to
late since itis the non-expert programmer directing the composition
of independently developed extensions with the host language.
The primary contribution of this paper is a modular analysis that

is performed independently by each extension designer on her ex-

tension (composed alone with the host language). If each extensio
passes this modular analysis, then the language composed later b
the programmer will compile with no conflicts or lexical ambigu-
ities. Thus, extension writers can verify that their extension will
safely compose with others and, if not, fix the specification so that
it will. This is possible due to the context-aware scanner’s lexi-
cal disambiguation and a set of reasonable restrictions limiting the

constructs that can be introduced by an extension. The restrictions
ensure that the parse table states can be partitioned so that eac

state can be attributed to the host language or a single extension.

Categories and Subject DescriptordD3.4 [Processors Pars-

ing, Compiler generators; F4.Z5fammars and Other Rewrit-
ing SystenisParsing; F4.3formal Languagés Classes defined
by grammars; D3.2lJanguage ClassificatiofisExtensible Lan-

guages

General Terms Languages, Algorithms, Verification

Keywords LR Parsing, context-aware scanning, language compo-
sition, grammar composition, extensible languages

1. Introduction.
1.1 Motivation.

There is a rising amount of interest in the related areas of domain-
specific languages, extensible languages, and in the tools and tech

Permission to make digital or hard copies of all or part of this work for personal
classroom use is granted without fee provided that copies are not made outbstrib
for profit or commercial advantage and that copies bear this notice and the fubimitati
on the first page. To copy otherwise, to republish, to post on servers or ttritedes

to lists, requires prior specific permission and/or a fee.

PLDI'09, June 15-20, 2009, Dublin, Ireland.
Copyright(© 2009 ACM 978-1-60558-392-1/09/06. . . $5.00

n

evw@cs.umn.edu

nigues used to specify and implement them. Of particular interest
are systems that allow new syntax or semantic analysis to be added
modularly to an extensible language framework. Ideally, it is done
in a way that allows a non-expert programmer to extend his or her
language with several eclectic extensions addressing the different
aspects of the programming problem at hand.

Consider the simple program in Figure 1. It is written in a ver-
sion of Java to which two extensions have been added (25). The
first adds thessing ... query ... andconnection ... con-
structs to extend Java with the database query language SQL. Such

£0 extension statically detects syntax and type errors in the query
@nd also adds foreach construct, which iterates over results from

the query and extracts values from each query result. The import-

like connection construct sets up the connection to the database

and retrieves database type schemas to type-check the query. The

second extension adds a construct for representing boolean condi-

tions in a tabular form, inspired by similar constructs in modeling
nguages such as SCR (13). It consists of a keywaksl e fol-

owed by a list of rows, each consisting of a Java expression fol-

lowed by a colon and several truth-indicatorsK, *) indicating if

the expression is expected to be true, or false, or if it does not mat-

ter. In this case, the table evaluates to true ¥ 18 is true ancz

== 10001 is false, or ifa > 18 is false (the value ot 10001

does not matter). This extension checks that the expression in each

fpw is of typeboolean and that each row has the same number

of truth-indicators. To support these types of extensions, language

extension frameworks and tools must alloew concrete syntaeo

be added to the language as welhasv semantic analysts type-

check the extension constructs.

Ideally, these extensions can be developed by separate parties,
unaware of each other’s extensions, and the non-expert proggamm
is provided with some mechanism to compose the host language
(Java in this case) automatically with the language extensions. Al-
though the development of such language extensions may require
some knowledge of programming language implementation tools
and techniques, their use and composition should not.

connection db_c with table person ;
class Demo {
boolean m () {
rs = using db_c query { SELECT age, zip
FROM person
WHERE state = "NY" } ;

foreach (int a, int z) in rs {
res = res && table (a > 18 : TF
z == 10001 : F *) }
return res ;
}
}

Figure 1. Code written in an extended version of Java.

A number of language processing tools and extensible languagegrammarI'” contains no conflicts and thus can be parsed with
frameworks have been proposed. Polyglot (18) is a collection of a deterministic LALR(1) parser. Also, we would like the scan-
Java classes that implement the core front-end functions of a Javaner generated froni'’ to be ambiguity freej.e, on any input
1.4 compiler; one can add new classes and extend the existing oneshe scanner will return exactly one token or, in the case of a lexi-
to add new language constructs and analyses. Others have investieal error, zero tokens. We indicate this lasAmbigFree(T'"). A
gated the use of attribute grammars for building extensible specifi- language specification is deterministic, indicatedd@y(I‘L), iff
cations of languages. The JastAdd extensible Java compiler (9) isconflictFree(I'") A lexAmbigFree(T'").
implemented in the JastAdd attribute grammar system (10). To ex- Traditionally these analyses are performed on the complete lan-
tend this compiler, one writes new attribute grammar fragments that guage specificatiori,e., after the extensions have been added to
the system combines to create a attribute grammar specification forthe host language. In the approach to extensible languages outlined
the extended language. From this specification a compiler for the ahove, programmers can plug extensions from independent source
extended language is automatically generated. We have developeghto their host language. Thus, an error message reporting a shift-
ableJ (25) a similar system based on our Silver (24) attribute gram- reduce conflict in the generated parser or a lexical ambiguity in the
mar system. Xoc (8) is an extensible language framework for C, generated scanner comes too late, as the programmer may not be

also inspired by attribute grammars. able to fix it; this is properly the job of the extension designer.
These systems use standard LALR(1) parser and scanner gen-

erator technology such as Yacc and Lex (though they can be easi|yVer|f|abIe composition of grammars. In this paper we introduce
adapted to use other types of parser and scanner generators). The$ analysg thatHcail vegfy tf)ﬂat the grammar for the composed
are notoriously brittle under composition and extension; merely languagd™ = I'" Ug {T"™, I'", I } will be deterministic
adding or modifying a production can remove the grammar from (det(I'™")) if each extension grammat”: individually passes a
the desired LALR(1) class. modular analysis. This modular analysis, denatet), (', T'7#),
In the MetaBorg (5) system, where semantic processing is done can be described by the implication
by term rewriting in Stratego (29), the concrete syntax is instead . H 1E; H * (+E; E,
implemented using a scannerless GLR parser generator (28). Since(VZ € [1n], detm (I, I)) = det(I' Ug {T™, ., T }).
GLR parsers can parse any context free grammar the compositionThis states that if each extension grammé&r passes the modu-
of the host language grammar and language extension grammardar determinism test (with respect to the host gramim&) then
can always be parsed. But the composed grammar may contain amthe composition of’# and all of the extensions is deterministic.
biguities; the programmer has no assurance that the parser create@he implication of this is that extension writers caretftify’ their
for their composed language will be deterministic and not, on oc- extensions as composable without needing to test against other lan-
casion, return more than one parse tree. We seek an approach thajuage extensions. (This is not that much unlike library writers “cer-
guarantees the determinism of the composed grammar. tifying” libraries by compiling them to ensure that they contain no
Parsing Expression Grammars (11) are closed under composi-type errors.)
tion and thus satisfy this requirement and an extensible specifica- ~ As will be seen, the modular tegtt,, (', ') does put some
tion of C based on PEGs has been constructed (12). The determinrestrictions on the type of constructs that an extengiaran add to
ism comes at a cost, however; order matters in the composition H. For example, language extensions cannot specify syntax such
of PEGs. The concrete syntax tree returned by the parser may bethat new terminals, except for marking terminals (defined below),
different if the language extension grammars are composed in dif- are added to the follow-sets of host language nonterminals. In our
ferent orders. Productions that have the same nonterminal on theexperience, these are reasonable for many language extensions. Bu
left hand side are disambiguated by the order in which they ap- there are some that do not fit, such as the addition of new infix
pear in the specification. Determining the proper order of applying binary operators to the host languaethough these can be added
language extensions is the sort of implementation-level knowledge as part of an embedded language as is done in the SQL extension.
that we do not want to require of the programmer. Furthermore, We will limit productions added by some extensishwith a host
the problem of determining if altering production order alters the language nonterminal on the left hand side to a single production

recognized language is undecidable (11). h — ur sg, whereug is a marking terminaland sg is the
extension’s “start” nonterminal. The effect of such a production is
1.2 Summary of results. that it causes the parser, upon shifting, to enter a parse state that

is the domain of the language extension. Extensions typically add
several productions whose left hand side is an extension-introduced
nonterminal and the few restrictions placed on them are much
less severe. Critically, the right hand sides off these extension

In this paper, we consider the case of extending an existing host
languageH with some (unordered) set of language extensions
{En, E>, ..., E,, }. We have previously studied the issues of seman-
tics (25) and believe that they are critical, but our concern here is ;) . h X)
only with their concrete syntax. Our goal is to generate a parser productionscan contain tgrmlnals and nonterminals defined in the
and scanner for the languaggU {Ei, Es, ..., E, }. These speci- 0stlanguage grammar™.
fications consist of a context free grammar that specifies the parsern. ALR(1)'s “brittleness” and context-aware scanners.lt may
and an association that maps each terminal in the grammar to aseem unlikely that this guarantee can be achieved, given that
regular expression, to specify the scanner. The specification of al ALR(1) parsers can be rather brittle under composition and ex-
languageL and an extensioi are denoted, respectively, &% tension. Adding or modifying a production can easily remove the
andT'®. Grammars and the grammar composition operatti) (grammar from the desired LALR(1) class. A large part of this
are defined formally in Section 2 buff; is just the component- brittleness can be mitigated by the use of a context-aware scan-
wise unions of the sets of terminals, nonterminals, productions, andner (21; 7; 27), which takes context into account when scanning.
terminal/regular-expression mappings defined in the grammars. In this paper we have extended our notionpafrse-state-based

We would like the resulting parser to be deterministic; our context-aware scannings implemented if€oppet our LALR(1)
parsing approach uses slightly modified LALR(1) parsing and parser and context-aware scanner generator (27). Each time the
parse-table generation techniques, ensuring no conflicts (shift- scanner is called by the parser it is passed the sealaf looka-
reduce or reduce-reduce) in the generated LR parse table. We writehead terminals that can be accepted by the parser at that point in
conflictFree(T'™) to indicate that the parse table generated from the parse. These terminals are those whose action in the LR parse

table for the current state ashift, reduce or accept but noter- 2. Grammar composition and parser and scanner

ror. '_I'h_e scanner will t_hen scan the inp_ut and only return a token generation.

that is in this set of valid lookahead. This allows terminals to have i " .
overlapping regular expressions as long as they appear in different! € problem we address is how to ensure determinism while com-
parse-state contexts: it is the parse state context that disambiguate8iNing ahostgrammar with severaxtensiorgrammars, assuming
them. It does require the LR parsing algorithm to be slightly modi- NO communication between the writers of the extensions. The host
fied to pass parse-state information to the scanner when it is callegdrammar is a context-free grammar in its own right, while exten-
to return the next token (27). sion grammars may reference host Ia_nguage terminals ar_ld nonter-

Consider scanning the type expressiarst<List<T>> in a minals. Extenspns, thus, are not d_eflned to extend multiple host
language that includes Java-like parameterized types and a right bif@nguages. While it may be appealing to see how languages such
shift operatop>. If the >> operator is not valid in parse states where @S SQL can be embedded into multiple host languages (3), our in-
the closing bracket of a type expression is valid, thewill be in terests are in extensions that are more closely tied to the host lan-
the valid lookahead set bat will not. Thus the scanner will not guage, both syntactically (in that ex}ensmn constructs may include
return>> when parsing types and the grammar can be simplified. host language constructs, such as in the SQL foreach and table ex-
This is useful when extending languages, as one extension maytensmns) and glso semantlca!ly. Detecting a type .error.ln.the table
introduce new terminals whose regular expressions overlap with COnstruct requires type-checking the Java expressions in it.
those in other extensions but occur in different contexts.

Note that the restrictions we place on extension grammars
would be unreasonable in a traditional scanning approach. With For the purposes of compiling a parser and scanner, a context-free
context-aware scanning, they are much more reasonable becausgrammar is embellished with a mappingdez) that associates a
extension writers can create their own terminal symbols that may regular expression (over some alphabet) with each terminal sym-
have overlapping regular expressions (with terminals introduced bol. Thus, a language grammar is a 5-tufile NT, P, s € NT,
by other extensions) but this often does not cause conflicts in theregex: T — Regex). Let CFG}, denote the set of such context-
composed language. For example, th@le terminal introduced free grammars. Below, we fiR” = (T, NTx, P, s, regex ;)
by the SQL extension will not be in the same context as Java key- to be the host language grammar. The grammars that define lan-
words or identifiers and thus the lexerasble can be used as an guage extensions are similar to those for defining a complete
identifier or a token for some other language extension, as it is in (host) language, with one exception. Instead of having a start non-
the table expression extension. terminal, they have bridgeproduction that connects the extension-

An appealing aspect of this approach is that we do not need defined language to the host language. We defktensiorgram-
to develop new parsing and scanning techniques from scratch tomars to be of the following form:
be able to certify language extensions as composable. The LR
parsing technology used here is only slightly modified from the
established traditional approach. The scanner, by making it awarewheresg € NTg,ntg € NTu,dom(regexg) = Te U {ug}.
of its context, can be more discriminating in the tokens that it The productiomty — prsg is the bridge production. Its left
returns and thus language designers do not need to re-use the sameand side is a host language nonterminal; its right hand side is
token in many different contexts. Different terminals with the same the extension’smarking terminal(».z), a terminal introduced by
regular expression can be used. This has a rather dramatic effect on but not inT’z. It is followed by a nonterminal ilN Tz, the start-
the parser — the additional tokens simplify the grammar and make symbol of the embedded language. We can be less restrictive (but
it much less brittle and make practical the modular, conflict-free choose not to in order to simplify the presentation and discussion)
composability analysis that is proposed here. and allow more than one bridge production — each with a distinct
marking terminal — and any non-empty sequence of host and

Paper Outline:dSecﬂpn 2 per_/idesdthl;e f(?(rmal sgecifica?iolns OI]:R extension terminals and nonterminals following marking terminals.
grammars used in this analysis and background material on LR ¢ pe € Pg, then symbols on the right hand side jof are in

parsing and context aware scanners. Section 3 describes the Pl U NTy U Tk U NTg, but symbols on the left-hand side must
mary contribution of this paper: a modular analysis of language ex- |4 iNNTg. '

tension specifications that ensures that when a collection of exten- We say thal ¥ extendd™" if I'F satisfies these conditions with

sions are added to a host language, if each one individually passe"?espect tol' . Grammar composition is only defined wher¥
the modular analysis, then the composed language has no parse)

table shift-reduce or reduce-reduce conflicts. This analysis parti- ext(_an_dsFH. Let CFG de_note the set of context-free grammars
tions LR DFA of the extended language into éets of states that aredefInlng language extensions. We will often use the unqualified

- - g term “grammar” but it will be clear from the context if the grammar
either the purview of the host language or of an individual language . :

X X) : : . .- “Y~ is a language or extension grammar.

extension. This section also provides a discussion of the algorithm’s
correctness. Section 4 describes the lexical ambiguity analysis andExamples: Figure 2 shows a small portion of the grammars for
how these techniques can be applied in the presence of “practical’Java 1.4 and its SQL and tables extensions. Each grammar declares
specifications such as operator and lexical precedence. Section 8he specified nonterminals, terminals, and productions. The mark-
discusses related work and briefly explains how this partitioning of ing terminal for the SQL query extension is the termidating,
the LR DFA can allow extension grammars to be separately com- which has the regular expressignsing/; the extension’s start
piled down to parse tables that are composed by the programmer;symbol isSql. The marking terminal of the tables extensiorfis.
thus allowing extensions to be distributed in a pre-compiled format. Note that while the SQL productions do not use host language con-
This section also discusses limitations of this approach, and arguesstructs (except for a few terminals) the tables extension allows Java
that the benefits of safe language composition outweigh the moder-expressions to be in table rowsRow). Thus, it is syntactically
ate loss of expressibility imposed by the restrictions of the modular correct (but not semantically so) to allow an SQL query or other
analysis. Finally we discuss Silver (24), an attribute grammar sys- phrase derived frorixpr to appear at the beginning of a row.
tem, and Copper (27), an LALR(1) parser and context-aware scan- The SQL extension is split into two grammars here to conform
ner generator we have developed to support the specification andto the grammar structure used in the proof of the modular analysis
implementation of extensible languages and language extensions. in Section 3, but in practice these are combined into one grammar.

2.1 Context-free grammars and grammar composition.

rf = (Tg,NTg, Pe,nty — UESE,Teger)

Java 1.4:

NonterminalsExpr, PrimaryExpr , Dcl

Terminals:Question /?/, Colon /:/, Comma /,/ Semi /;/,
LParen /(/, RParen /)/, LBrk /{/, RBrk /}/,
1d / [A-Za-2z] [A-Za-z0-9]*]/

— Expr Question Expr Colon Expr

— PrimaryExpr

— Id

Expr
Expr
PrimaryExpr
Dcl

SQL Connection:

—

NonterminalsConnDcl

Terminals:Connection /connection/, Sqlld /[A-Za-z]+/,
With /with/, Table /table/

Dcl — Connection ConnDcl

ConnDcl — Sqlld With Table Sqlld Sems

SQL Query:

NonterminalsSql, SqlQ, Sqllds, SqlExpr

Terminals:Using /using/, Query /query/, Select /SELECT/,
From /FROM/, Where /WHERE/, Sqlld /[A-Za-z]+/

Expr — Using Sql

Sql — Sqlld Query LBrk SqlQ RBrk

SqlQ — Select Sqllds From Sqlld Where SqlExpr

Sqllds — Sqlld

Sqllds — Sqlld Comma Sqllds

SqlExpr

N
Tables:

NonterminalsBTable, TRows, TRow
Terminals:Tbl /table/

PrimaryExpr — Tbl BTable
BTable — LParen TRows RParen
TRows — TRow

TRows — TRow TRows

TRow — Expr Colon TFStarList

Figure 2. Sample grammar productions from host and extensions.

Also, in practice we do not need to use a start nonterminal in the ex-

The names of nonterminal and terminal symbols in host and
extension grammars can be assumed to be distinct. One way to
achieve this is to name grammars in the same way that Java pack-
ages are uniquely named (based on Internet domain names) and
append symbol names to their defining grammar name.

2.2 Background on parser generation.

This subsection provides some background on LR parsing, LALR(1)
parsers, parse tables, and monolithic analysis of grammars. Readers
familiar with these topics may wish to skim this section.

Traditionally, we would compose the host language and exten-
sion grammars to create the composed language gramfmae
' ug {TF, .. TP} and then create a parser for that grammar. If
LR parsing is used, we would create an LR DBA® from the
composed grammar (16; 17; 1). This LR DFA can be used to gen-
erate an LR parse table which is then checked for shift-reduce and
reduce-reduce conflicts. From a context free gramMaan LR
parser generator creates an LR DFA from which an LR parse ta-
ble is directly constructed. We do not review how LR DFAs are
constructed from a context free grammar, but only the structure of
these DFAs and how they are used. The above references discuss
the construction of LR DFAs.

LALR(1) DFA. An LALR(1) DFA for a grammai'” is a 4-tuple
MY = <FL, Statesr,, si, € Statesy, dr), where Statesy, is
the set of statessy, is the DFA's start state, and, : States x
(T, UNTL) — States is the DFAs transition function. An LR
DFA state is a paitS = (Items,la: Items — P(TL)), where
Items is the set of items in that state ahdmaps each item to its
lookahead set. An item is a productionlity with a marker placed
on its right hand side, to indicate the state of parsing. An item of
the formz — « e t3, {t1,t2} in a state indicates that the parser
has consumed input, a suffix of which can be derived frorif the
next terminal symbol consumediisnd it is shifted onto the parse
stack the DFA moves to a state with the item~ at e 3, {t1,t2}.

In the discussion of the modular analysis and argument for its
correctness we will have need to compare different LR DFA states;
we introduce these comparisons here.

Given two LR DFA states andt: e s is anl-subsef ¢, written
s Cy t, if Itemss C Items:. @ They areLR(0)-equivalentwritten
s =0 t,if s C; tandt Cp s — i.e, they have the same item
set. We use the termaR(0)-equivalenbecause in an LR(0) DFA,

tensions; in the case of the Tables extension we use the productionyhere there are no lookahead sets, two LR(0)-equivalent states

PrimaryExpr — Tbl LParen TRows R Paren instead. The proof

would be equale s is anlL-subsetof ¢, writtens Cyp, ¢, if s C1 ¢

generalizes to capture both of these modifications, but the simplerandv; e Items.. (la.(i) C lai(i)). » They areLR(1)-equivalent
proof is presented below and thus the grammars in the figure matchyyritten s =, ¢, if s Cyp, t andt Ci, s — i.e., the states’ item

that format.

Composition of grammars. LetUg : CFGL x CFGg — CFG,

be a non-commutative, non-associative operation on context-
free grammars. "7 extendsI', thenT'® = T Ug I'F
(Te,NTy UNTg, Pc, su, regex) where:

o Tc = TuUTeU{uEr}. ug is the extension’s marking terminal.

¢ Pc = Py UPg U{h— ugsg}, whereh — pgsg is the
bridge production im"Z.

{

The operation for composing an unordered set of extensions,
Us : CFGr x P(CFGE) — CFGyr, which is writtenT"* U,
{T¥,...,TE}, is the straightforward generalization ©f;. There
is no notion of ordering when composing multiple extensions

ifteTy
ifteTgort=pug

regexr (t)
regexg (t)

e regexc ()

sets and all lookahead sets are equal. Note thatdfy;, ¢, andt
produces a conflict-free parse state, so does

LR DFAs are converted to parse tables, a more convenient
representation, for use in parsing. See (1) for details on how this
is done.

Parse tables. Let States denote the set of all rows of all parse ta-
bles. A parse table is defined as a 4-tupl€ = (I'pr, Statespr,
TPT, YPT, n}ZT S StatesPT), where:

e I'pr is a grammar that this parse table parses correctly.

e mpr : Statespr x T — P(Actions), where Actions
{accept} U {reduce(p): p € P} U {shift(z): € States}.

vpr : Statespr X NTpr — P(Goto), where Goto
{goto(x) :€ States}.

If for some parse tablet, somen € States andt € T,

with the host language; they can be seen as being applied all atr,,(n,t) = (), that cell contains an error action. A céh, t) in

once. Thus, the following equivalences hdi! Ug, {T¥ T¥} =
THF U TP)Ue T = (TP UgTF) U I'Y.

a parse table’T has a conflict ifjrpr(n,t)| > 2. A staten is
conflict-free if for allt € Tpr, cell (n,t) does not have a conflict:

Vvt € Tpr. (|rpr(n,t)] < 1). A parse tablePT is conflict-free if grammar but on the LR DFA generated when compilifguc I'F
all n € States pr are conflict-free. as compared to the LR DFA generated when compiliffgalone,

The programmer can run this monolithic analysis on the com- i.e.,, what states, items, and lookahead can be added to the LR DFA
posed grammar to ensure that there are no parse-table conflicts oof 'y to yield the LR DFA forl'¥! Ug T'E. The key factor is that
lexical ambiguities. This comes too late, however, as the program- items and lookahead added by one extension cause conflicts neither
mer will not necessarily have the skills to modify the grammars to with the host language nor with any other extensions that are
fix the problems. What is needed is a modular analysis that the ex-added later (and have also passed this modular analysis). In brief,
tension writer can use on his or her extension to ensure that whenthe testisComposable(I'™,I'?) must ensure that the grammar
it is composed, by the programmer, with other extensions that alsoT# U, I'®, and the LR DFA generated for it, have the following
pass the modular analysis, the resulting composed grammar will properties:
pass the monolithic test.

1. For allnty € NT g, no new terminals appear in itsllow set
2.3 Context-aware scanners. follow(nt), except the marking terminat®.
The context-aware scanners used here are an extension of thos P ;
described _in (27). The scanner can be constructed as described therez' ilir;);gf ﬁ] ?rl]seol g gf:ﬁ égdg slgttsr,]eez:;tﬁtbri’ r?w(;rrllier:,ic,] ttgnrggzlls
or alternatively one can generate a scanner for each parse state that
only matches those in the valid lookahead set. How this scanner 3. For states that do not appear in the DFA Fdf, but contain

is constructed is not of concern; it is sufficient that it return only only host syntax items and thus could potentially be generated
tokens in the valid lookahead set for the current parse state. by several extensions, their item set and lookahead sets are

Given a parse table?T (with terminals T'), valid looka- subsets of those of some state also appearing in the DFA for
head sets are represented collectively by the functidiiLA : ' that contains no conflicts, ensuring that these types of states
Statespr — P(T), wherevalidLA(n) = {t : wpr(n,t) # 0} (even when combined with similar types of states generated by

(the terminals with non-error actions). For this parse table and other extensions) will contain no conflicts.

the functionscan : P(T) x ¥* — P(T) x ¥*, it holds that .))

scan(X,w) = (X', w') whereX' is the set of terminals matched In describing the analysis and argument for its correctness we
by the scanner and’ the lexeme they matctX is the valid looka- will need to consider various LR DFAs and different states thereof:

head set and is the input. Thusy’ is a prefix ofw and X’ C X. 1. The LR DFA for the original host language, denofefd™;

If scan(X,w) = 0, it means that no € X matches a prefix ob. - 5 _
A lexical ambiguityoccurs when3n € Statespr,w € 2. The LR DFA generated for'” Ug I';” by the designer of

$*. (|scan(validLA(n), w)| > 2). An ambiguity-free scanneis extensionsZ;, denoted\/ *; and
one for which this is untrue of eveify:, w) € States x X*. This 3. The LR DFA generated far” Ug {T'Y,...,TZ} by the pro-
can be verified for allv by analyses on scanner DFAs (27). grammer, denoted/© .

Lexical disambiguation. Context is the primary way in which he gyperscripterig, E;, andC indicate when the LR DFA is
terminals with overlapping regular expressions are disambiguated. constructed: when the host language is defined, when an extension
Notions of lexical precedence.g, indicating that a keyword takes yesigner specifies an extension and performs the modular analysis,
precedence over an identifier terminal) can also be used. Usinganq when a programmer combines multiple extensions.

marking terminals from different extensions may lead to lexical The extension designer will perform the modular analysis
ambiguities because they may appear in the same comt@stdl hich takes andI'” as inputsisComposable(I'™ , T'F). The

the beginning of an expression) and no lexical precedence Sett'ngsanalysis generatds” LG ' and builds the two LR ISFAM"”Q

can be specified to disambiguate them, since they are in dlﬁerentandMEi (in the usual way) and then proceeds in two phases. First,

ﬁ)ﬁiﬂslgn?érﬁrggﬂso?ooéist;i?t?ipi;etgt tﬁ;ergxss (saefs(iﬁecttkl\%%‘L\)vi?rl; it checks that no follow sets of host nonterminals have changed
prog 9 y P g the : gxcept to add the marking terminal. Formally, it checks if
the grammar name, the same way that a Java class hame is prefixe

with its package name when two imported packages define a class E
with thepsamegname. Other precedepnce se?ting tgchniques are alsg ™ & VT (fouowFHuGFEi (nt) \ followpn (nt) C {Mz }) ~
described in Section 4. These are used to ensure that a composeff additional (non-marking) terminals exist in the follow sets in
languagel® will have no lexical ambiguities that prevent the use T#UsT'F:, then the analysis fails. Consider the producfidRow
of a deterministic scanner. Thus, in the following discussion of the — Expr Colon TFStarList from the tables extension and the
modular analysis, we can focus our attention on the parser and as-conditional-expression productidxpr — Expr Question Expr

sume that there are no lexical ambiguities. Colon Expr from the host language Java grammar, both shown in
o] Figure 2. The extension does not add to the follow seExybr
3. The modular determinism analysis. since terminalColon is already there due the the conditional-

expression production. If new terminals are added to the follow
sets of host language nonterminals two different extensions may
fompose individually with the host language to create conflict-free
parsers, but when combined together, the conflict can arise.

It is worth noting that this restriction is more easily satisfied in
syntactically rich fully-developed languages (such as Java), since

The modular parser analysisComposable(I'? , TF) analyzes
the context-free grammar of an extension with respect to the host
language being extended. If the extension passes this analysis it ca
be considered “certified” and safely composed with other certified
extensions by the programmer. Formally, this is expressed as

(Vi € [1,n].isComposable(I'™ , TF) A their nonterminals have larger follow sets, than in small toy lan-
conflictFree(T' Ug T'F)) guages with smaller follow sets.
= conflictFree(T" U; {I'7,...,TH}) In the second phase, which is used only if the follow sets have
- not expanded, the analysis compares the two constructed LR DFAs
3.1 The modular analysisisComposable. M°"9 andM P to determine ifM/®: can be constructed by adding

The restrictions we place on what kind of constructs can be added innew LR DFA states td/°"* in a specific way (defined below), and
an extension to a host language are not restrictions on the extensioradding new items and lookahead elements corresponding to this

addition to the states already existingifi’"*?. The constraints of to be in markingLA(M}?) if Ing € M°™.ng =o n A (Vi €

the modular analysis only allow such additions to the states of the Ttemsng-(lan (i) \ lan, (1) C {MF}))- This checks that some state
host LR DFAM °™ as to allow a partitioning of the statesii”: . no in the original host LR DFA has the same set of itemshas
Such a partitioning assigns “ownership” of the states\bfi to (no =0 n) and for each item, either its lookahead sets are the same
either the host language, the extension, or neither. The LR DFA in both states or its lookaheadsrhas the single additional element
MPFi consists of the states in the three DFA partiti(w@j (states 1Z . This does not cause any conflicts; see lemma 3, below.

owned by the extension)/~ (states owned by the host language), This may result in shift and reduce actions based on this mark-

and M %, (states owned by neither). The notion of ownership is N9 terminal to appear in the parse tablerdf™:, but any conflicts

indicated by the subscript. A diagram of this partitioned LR DFA will _be dete_cted by the_extensm_n writer when checkl_ng that th'$ ta-

is shown in Figure 3(a). ble is conflict free. This check is part of the analysis as specified
It is possible that these three partitions have no transitions be- &t the beginning of Section 3. Note the similarity of this test to the

tween them except for the single transition frdwﬁ’ into Mg_"' follow-set test. Both work along the same basic principle; however,

B)) 7 instead of entirely new symbols, this test aims to exclude from a
labeled withy;”, the marking terminal. If one of the extension's giate symbols that were already in the follow set of some nontermi-
productions contains a reference to a host language nonterminal ing 5 but did not show up as lookahead in this state.

its right hand side there may also be other transitions, labeled with The third is bridge(MEi) These are states that have exactly
host terminals, between the partitions. These possible transmonsone new item, of the form uZsP [2], and also allow the

are indicated by the dotted lines in Figure 3. . . B o
The analysis inspects each stati M”:. If each state can be marking terminaly;” in the lookahead of existing items. A state
' € M¥iisin M}, and is assigned to be ibridge(My;') if

assigned to one of these partitions, then the extension passes th& orig) /
modular analysigsComposable, and when several extensions are dng € M°™ (Items, = Itemspn, U{h — ou;’si'} A (Vi €

combined to form\/ € the parse table generated therefrom will be 1t€msng-(lan (9) \ lany (i) € {i” })). This checks that some state
conflict-free. no in the original host LR DFA has the same set of itemshas

. . - . (excluding the bridge iterh — o FsF) and that the lookahead on
Extension owned states/;;': A staten € M™ is assigned to the items thak andn, have in common are identical except that
the partitionng if it has at least one itemi (€ Items,) whose the marking terminal:Z may be in the lookahead of itemsiin
left hand side symbott is anT'Z nonterminal (e, nt € NT'z,). These items cause the parser to shift on the marking terminal of
States assigned to this partition are those used for parsing thethat extension to an extension language state/ff7 , as indicated
embedded language &. For the SQL extension, these states by the two edges labeled” in Figure 3(a). Ifn is a bridge state
parse the embedded SQL language. These states are said to béend(n, ug) = nﬁ; it shifts to the start state of the extension. Ex-
ownedby T'F. There are few restrictions on these states since tensions only add items of the for— ep”sZ to host language
they contain parts of the embedded language introduced by thestates. Thus, since the marking terminals for each extension are by
extension, and hence, when extensions are merged, these states wilefinition different we will not have any conflicts in the parse table

not be merged with the states owned by other extensions. of the programmer composed language.
Formally,Vn € M% . (3(nt — ---e---) € Items,.(nt € . . . _
NTp,)=n € ME). “New” host states M}, Extensions do interact with the host
Vg L, . . E_ E language by including host language constructs in the extension-
Letng, be the state inf™ that contagnsthe ite — pi;" @5 introduced constructs. Thus, productionsfp, may include host
This is the extension start statg}, € My'. language nonterminals and terminals on the right hand side.

In the LR DFA for the language composed by the programmer, These productions may cause states to be generated that contain
these states may have new items added to them. These items wilktems consisting of only host language terminals and nonterminals,
only be bridge production items of the form — ey, sg; for but do not correspond to stateshifi;;’ in one of the ways described
some other extensiof;. above. We need to ensure that these new states do not have conflicts
and are consistent with existing host language states, so that the
determinism of the host language is maintained in these states. This
is needed to ensure that in creating the composed language LR DFA

m : Mj — M°" that satisfies the criteria discussed below. c . . -
The inverse function is denoted . If such a bijection cannot be M no conflicts are introduced baseq on how the extensions use
) host language terminals and nonterminals.

constructed, the analysis fails. If one can, then each staité/jh E; i ; P T

has a unique corresponding statelif™?. They are then further Astaten € M is assigned to the partitiohl yj, if

classified by if and how their item sets and lookahead are (safely) 1. It cannot be assigned to the partitidfi;* in any of the three

extended by the extension. If a stat@liff*Y cannot be so classified ways described above;

the analysis fails. B
Irll'constryctlngn, elementslln |t§ domain.¢.,]\/lEHl) are further and nonterminals, or is of the form— . sE:

partitioned into 3 sets. The first isochange(My"). These are , B N

states that have not changed. A state= M " is a member of 3.3n" € My'.(n Cr n'); and

M};i and assigned to the partitiomochange(M};?) if Ing € 4.vn' € MEi.(n Crn/ = n Ci, n).

M°™ .nyg =1 n. In this case we specify that(n) = ng. This

checks ifng andn have the same set of items and each item has

Host owned stated/};: These states are said to be owned by
the host languagé . The analysis attempts to construct a bijection

2. Each item € Items, consists only of host language terminals

Conditions 3 and 4 ensure that productions that generate new-

. . . E;
the same lookahead. #, had no conflicts, then clearly has no host states from different extension DFA¥ 7}, and M y},), when
conflicts. This is one way in which waaintainthe determinism of ~ €ombined, generate compositions of these states in the new-host
M %in MC. partition of the composed LR DFA/“, as in Figure 3(b).
The second isnarkingLA(M};"). These are states that do not
have new items, but may have the extension’s marking termifial If a staten € Mi cannot be classified as belonging to one of the

in the lookahead set of existing items. A state M F is assigned three partitionsME;, M}f or Mf;;,, then the modular analysis

grammar there are no other references tthere; if x occurs in

an extension expression it is derived frdfh This means that
there is inside the extension DFA a state containing only the item
T — xze,{z}. This state is a “new host” state. This is an I-subset
of the state named above, but is not an IL-subset of it, causing this
extension to fail the analysis on a second count.

3.3 Correctness of the modular analysigsComposable.

Composability Theorem: The modular conflict-free analysis
isComposable performed on the LR DFAs foF ¥ andT'® and
traditional conflict-free analysis performed &% U I'® ensure

that when the extension gramm@rs composed with{ and other

(a) (b) extensions passing these analyses, the resulting grammar will have
a conflict-free LR parse table. Formally, this is expressed as

Figure 3. Abstract diagram of merging the host language with one

extension (a) and with two extensions (b). (Vi € [1,n].isComposable(TH , TE) A
conflictFree(T™ Ug TF))
. H | % E E
fails. Since the partitions are, by these definitions, disjoint, the order = conflictFree(I'"” Ug {F1 IR A })
in which the staten € MPi is checked against them does not

A sketch of the proof of this theorem follows. It is based on the
matter. f

If each extension passes the modular analysis and the hostact that the partitioning of states i ", as seen in Figure 3(a),

! . . is extended to the partitioning of states in the composed language
language extended with the extension has a conflict free ParseryCa 1/C “as seen in Figure 3(b). A full version of the proof ap-

then the host language extended with all such extensions has a - . ; .
conflict free parser as well. In Section 4 we define the modular pears in an accompanying technical report (23). The following lem-

lexical ambiguity checkeisLezComp. In tandem, they ensure mas are used in the proof; for brevity, their proofs are summarized.

that “certified” language extensions can be safely composed by | emma 1: No items from two extensions in any statelf a state
the programmer and recognized with a deterministic parser andy, has(nt; — o e 8) € Items,, then ifnt; € NTg,, {nt

scanner. Next we provide some examples and then explain why this s —, - e §) € Items,} C NTu U NTg,, i.e., no state has items

claimis true. with left-hand sides from more than one extension.
3.2 Examples of passing and failing grammars. Proof summary: The only transition path from the start state
Composable extension. Consider the host, extension, and bridge ©Of the composed LR DFAV/ to any state with such an item in
productions below: it must, by construction, pass through a state seeded from item
h — uF e sP, that is, the extension start staﬁ@i. This state
*Pp={E—-T+EE—TT—z} functions as a “bottleneck” that filters out syntax from all other
e Py, ={S — S1 E,S1 — #}, bridge productiortl — ug S extensions.

This grammar passes the modular determinism analysis becaus@ emma 2: The follow sets of host nonterminals in the grammar
the only reference to a host nonterminal inside the extension syntax¢ add only marking terminals to the follow sets iR,
occurs at the end of the first productionfiz, . Therefore, the only

symbols added tgollowy.c (E) are those irfollowpc (S). Since Proof summary: Any non-marking terminals introduced to the

S itself appears only at the end of a production derived fipthis ~ follow sets would have to have been put there by a single exten-

adds no new terminals fllow .c (E). sion, which means that it would have been caught in the modular
analysis.

Extension adding to the follow set of a host nonterminal Con- .))]
sider an extension with the following productions, which fails the Lemma 3: The class of conflict-free states is closed under intro-

analysis: duction of bridge items and marking terminal lookahead.
e Py={F—-T+EE—-TT—x} Proof summary: Since marking terminals are only defined with

_ : - one productiorh — i sE, wherever” can be shifted, so can the
* Pp, = {5 = 81 B, 8 — T}, bridge production — iz other terminals ofirst(h) (the setfirst(h) is the set of terminals

In this extension, an expression derived frécan occur imme- that begin any phrase derivable fraim. Similarly, if xZ is in a
diately after an expression derived fréfn This means that all ter- |ookahead set, so is everything elsefirst(h). It follows that if
minals in followyn (E) are added tgollowpc (T'). This includes there is a parse table conflict if’, an identical conflict would
x ¢ followru (T); thus, the extension fails the analysis. occur on all other terminals ifirst(h). Therefore, if a state is

conflict-free, conflicts cannot be introduced to it by adding bridge

Extension producing a “non-IL-subset” condition. Consider items or marking terminal lookahead.

another failing extension, with these following productions:

«Py={E—T+EE—TE—az!,T—a} Proof sketch of the comp%sabillity theorem:The proof shows
) that the states in LR DFA/® built from the composed grammar
* Pp,={S — 512 E,5 — T}, bridgeE — pugp S rl, {Tf,T%,..T7} can be partitioned into the seldf;, Mg,
In the host grammar, both’ andT" can derive expressions begin- M,%, _,_,Mgn, andM§y. This partitioning is straightforward and
ning withz. This results in there being a state inside™’ contain- depends one the structure of the state. The proof then shows that
ing the itemsE — ze!, {$} andT — ze, {$,+}. The extension states in each of these sets are conflict-free. Each of these partitions
contains a reference @; the placement addsto followrc (T), is described below and it is argued that the states in these partitions

per secausing the extension to fail. However, unlike in the host are necessarily conflict-free.

Host state partitionM/G: M S will contain states: that

1. are notin an;MSi (see below), and

2. There exists a path through only non-extension states from the

start state ofM© to this stateji.e, there exists a sequence
{’rlo7 (Tll7 0’1) Sy (n;ﬁ O'k)} with no = Syc, 5ch(ni717 O'i)

= ni, ng = n, andvi, j.n; ¢ M}gz

To reach this state from the start state i, we followed

the path(oq,...,0k). None of theser;s are extension symbols
or marking terminals, since ea@h,;c (n;—1,0;) points to a host

state. Therefore, in each of the LR DFA&™:, i € [1,n], in which

by construction that for every state in € Mgi there is a corre-
sponding state im’ € ME accessible via the same path. Since
every acyclic path frormf;i to n goes entirely through states in
Mgi, structural induction shows that new bridge items are the only
sort of new items that can appear, ar@li and these bridge items
being the sole source for any new lookahead, marking terminals are
the only new lookahead.

Therefore, by lemma 3, no stateMEi has a conflict.

“New" host partition M$y: M§y will contain all states not in
the above subsets, which by elimination:

the host and a single extension are composed, we could follow the 1. are not in anngi, and

pathoy,...,o0r and in each one end up in a statel\'trﬁ'i that, if

bridge items and marking terminal lookahead are not considered, is

identical ton.
This follows by construction, since host syntax is common to
all MPi(for eachi) and any states along the same sequence of

2. all paths fromM ©’s start state to: pass through some exten-
sion start state3, .

Firstly, note that it is altogether possible that there are paths
from severalsuch ngs to n, not counting paths through other

transitions on hOSt-Only SymbOlS must have an identical set of host- extension start Stat@éj . Call the set of grammars with such a path

only items and host-only lookahead. The statelii’is a union
of the item set and lookahead sets of all of the stated/ff¥ . It
only differs from any of these in that it contains additional bridge
production items and marking terminal lookahead from multiple

extensions. Since the marking terminals are distinct, the state in

MCwill not have any conflicts even though it may have several
bridge production items or lookahead sets with several marking
terminals. If there were conflicts in this state, that conflict would
have to exist in one of the DFAK! i | for somei.

Extension state partitionsl\/[,%: The LR DFAM,%,@' € [1,n],

will consist of states containing items with an extension nontermi-
nalnt € NT g, on the left hand side. Note that by lemma 1, these
subsets are all disjoint.

Suppose that the bridge production 1of is h — pZsE. By
construction, the only paths to any statec Mgi from the start
state ofM © run through the extension start sta@i . Furthermore,
such a path must exist, since no state in the DFA is isolated.

If there is some statea; on a path betweem%m and n for
whichn; ¢ Mg, then there is no syntax in its items frofif’
in it, so by constructiom%i must be on the path between and

n. This constitutes a cycle. Since there is by definition an acyclic .
path between those two states, every such acyclic path must consis

entirely of states i/, .

The sequence of symbols labeling this path are allin U
NTyg UTEg, U NTg,. If one were not, then it is in someg; U
NTg,. But this means that the symbol in question must be in the
state preceding the transition marked with that symbol, which is a
contradiction. This means thMﬁ forms an unbroken “block” of
states connected by transition fro@ along paths marked solely
with symbols inTy U NTx U Tg, U NTg,.

Consider the properties oi%q It is seeded from the single
itemiz = h — uf e sF, and is the only state containing this
item. There is a corresponding state € Mﬁ seeded fromig.

By constructionlan, (ir) C la,s (ir). Since by construction

there is a transition t@%i from any state in which there are items
h — e---, the lookahead orig is exactly the whole follow
set of h: lan%(iE) = followrc (h). Analogously,lan,(ig) =

followFHuGF;,i (h). Therefore, the difference between the two

lookahead sets is the same as the difference between the two foIIowA

SetS:lan%v (ip)\ lan, (i) = followpc (h)\ followpn e, (h).

By lemma 2, this difference consists entirely of marking terminals.
Using the above process of following transitions simultane-

ously, this time inM“ and M ®iand fromnj, andn, it follows

Contriby,. |Contrib,| > 1. No such path contains any marking
terminals (that would put it through som@j) or terminals not
from the particular extension from whose start state it originates (in
consequence of there being no marking terminals). Neither does it
go through any state;; € M§: as all transitions out of such states,
except those labeled with marking terminals, have another state in
Mg as a destination, it follows that every state betwegnandn

is in M §. But this would putr in M§, which it is not.

It is now established that for eadtf’ € Contrib,, there is a
path with every transition iy UNTy UTEg, UNTE, leading from
n%, ton. This means that there is an identical pattidif leading
to a staten; that, ignoring bridge items, is LR(0)-equivalentsio
This state is in neitheb/;;* nor My, hence must be in/ ;. For
the same reasons as above, in addition to the new marking terminal
lookaheady contains exactly all the lookahead from all such
This is the set of lookahead that could potentially cause conflicts in
this state.

By conditions 3 and 4 of the analysis that assigns stat£§),
there is some, € My, with n; Ci nj, and furthermore for
all suchn}, n; Ci, n}. Furthermore, since the most the item sets
of the n;s differ is one bridge item, and the addition of a bridge
ftem ton,; would imply that it was also added to any I-superset of
n;, it follows that the space of I-supersets of eaghmaps to the
same set of states i/ °"?, which are these states shorn of their
bridge items and marking terminal lookahead. Furthermore, each
hypothetical state consisting af shorn of its one possible bridge
item and marking terminal lookahead is an IL-subset of each of
these states i/ ™.

Now the subset relation is closed under union. This means that
if a state consists of the union of the items and lookahead of several
IL-subsets of the same state, the union state is itself an IL-subset
of that state. It follows immediately that the hypothetical state
consisting of: shorn of all its bridge items and lookahead is an IL-
subset of each of th&/°™ states. This state, therefore, is conflict-
free, and the addition of marking terminal lookahead and bridge
items will not add conflicts; therefore, is also conflict-free.

4. Lexical disambiguation and practical concerns.
4.1 Resolving lexical ambiguities.

bove, we have assumed that there are no lexical ambiguities, em-
phasizing that if each language extension chosen by the program-
mer passes the modular analysi€omposable, then the com-

posed language parse table will be deterministic. In practice, reg-
ular expressions for terminal symbols do overlap and the language

designer resolves them, typically by specifying some sort of lexical name before the marking token. This is the same burden that is
precedence so that, for example, keyword terminals are preferredplaced on Java programmers and thus we do not feel that it is
over identifier terminals for lexemes that match both. unreasonable. Our lexical ambiguity analysis reports these possible
With context-aware scanners such as Copper (27), the parse-ambiguities, but these do not prevent the extension from passing the
state-based context used to disambiguate the lexical syntax allowsmodular lexical ambiguity analysis. The analysis does, of course,
the composed language to have terminal symbols that have overlap-check for lexical ambiguities between extension and host language
ping regular expressions (those that share at least one common lexterminals, which are then resolved by the extension writer.
eme) as long as those terminals are not in the same valid lookahead In addition to providing transparent prefixes, the extension
set for any parse state. Based on the partitioning/6fdescribed in writer must specify a “default” behavior that use of the prefix can
Section 3 we know that non-marking terminals of different exten- preempt. This is done by indicating that a marking termjnalis
sions cannot cause lexical ambiguities in the composed languageof one of the following sorts:
since they never occur in the same valid lookahead set. (Lexical . .]]
ambiguities between terminals in a single extension and/or the host ® “Reserve against other terminals.” This means that static prece-
language can be resolved by the extension designer.) For example, ~dence relations will be formed withy taking precedence over

the Table keyword terminal introduced by the SQL extension will any terminals with which it conflicts lexically, and no string
never be in the same context as the table extensi®histermi- matchingu's regular expression can match any of these ter-
nal even though both have the same regular expregsiable/; minals in any context. The use of this option should be avoided
therefore, that causes no lexical ambiguity. for the same reason as other static precedence relations between

But since bridge-production items can be (safely) added to parse host and extension terminals should be avoided.
states owned by the host language or other extensions we have the e “Prefer over host terminals.” This means that wherener
possibility for lexical ambiguities in two ways. The first is between causes an ambiguity with another terminal or terminals, the
marking terminals from different extensions. For example, the SQL ambiguity is resolved in favor giz.
marking terminallsing and the “tables” marking termindlbl can
both appear at the beginning of an expression and there are thus in
the same valid lookahead set for several parse states.

The second occurs more rarely, in parse states owned by an ex-
tensionE between its non-marking terminals and other extension
marking terminals. (Note that this does not occur in the SQL exten-
sion since itsTable terminal cannot appear in the same location as
a Java expression, which can begin with the table extensibit's
marking terminal.)

Most scanner generators, including context-aware ones such a%en

t(\:/\;)ppe{, a”QW Ia glollﬁ)?l kprecedendce relation to bte. speuftleﬁ be- lexical ambiguity checking analysis LexComp verifies that no
tween _ﬁrmlntahs% SO B laKes prtemt'—.\ enhce overno Isd“r']l'gh'm? €M=" |exical ambiguities are possible in the composed languagept
ing s will maich z, even in contexts where s invaiid. This type g)r those involving marking terminals that can be disambiguated

of static precedence does not respect boundaries of parse state: i y the programmer. Thus, a deterministic scanner can still be used
and it can be designed to give helpful error messages when a lex-

some terminat. € TF is made to take precedence over a host
ical ambiguity occurs. It can rescan the input with all terminals in

terminalt, € Tu, no lexeme matching. can matchi;, — even
the valid lookahead set, see which match, determine which exten-

in a state belonging to some other extensign For this reason,
extension writers should avoid defining static precedence relations gjyns defined those terminals and suggest to the programmer that a

between host terminals and extension terminals, though itis reason(-{j

¢ “Avoid in favor of host terminals.” This means that wherever
uE causes an ambiguity with another terminal, the ambiguity
is resolved in favor of the other terminal. If one has a set of
terminals X disambiguated via this mechanism, and a new
marking terminalu? is introduced, a new ambiguity =X U
{ui’} —isresolved the same way was. N.B.: The use of this
option mandates the use pf’s transparent prefix to match it.

Thus, there are a number of ways to design the host and ex-
sion languages to handle lexical disambiguation. The modular

; o ransparent prefix naming one of these extensions is needed. This
able for static precedence to be specified on host language keywordyisampiguation process requires no implementation-level knowl-
terminals. If an extension writer does this, no additional conflicts

biquiti il but th Il alter the | edge of the composed language parser or scanner and is essentially
or ambiguities will occur, but the presenceltf will alter the lan- the same as disambiguation done for ambiguous Java class names.

o) :
guage ofl’;". Also, extensions may not define any new precedence Thys we do not consider it a significant burden on the programmer.
relations between host terminals.

Transparent prefixe@7) provide a solution for disambiguating
marking tokens. The technique is similar to how class names are4-2 Operator precedence.
disambiguated in Java programs when two packages that define aye prove above that the introduction of a marking terminfl
class with the same name are imported into a Java program; thewhereh, — 2 s, cannot cause parse-table conflicts because the
package name (based on the unique Internet domain name of thesonflict in question would also occur on other membergt ()
package author) is prepended to the class name to indicate theand, therefore, be caught by the modular analysis. However, this
desired class. Grammar names, which can also be based on Internedoes not hold true if the conflicts on the non-marking terminal
domain names, can be used to disambiguate marking tokens. Thiscells have been resolved by setting operator precedence rules on
approach is taken by Copper and Silver. The grammar names arehese other members gif-st(h), which do not apply to.”. Given
added to the valid lookahead tokens passed to the scanner. If thehat marking terminals are “prefixes” of a sort, this is unlikely to
input matches such a name, the scanner does not return it to theyccur in practice. We have not seen any instance where it occurs,

parser, but instead uses this extension name to remove terminalgyt for operator precedence to be used in this approach, one of the
defined in other extensions from the valid lookahead set and scansfo|lowing two solutions could be applied.

again from the point in the input after the grammar name. Now,

only terminals from the extension and the host language are in the
valid lookahead set so there will be no lexical ambiguities. (If there
were, they would have been resolved by the extension writer.) Thus
if the scanner does report a lexical ambiguity to the programmer, it
can be easily resolved by the programmer by adding the extension

Specify a blanket precedence rule.The extension writer could
provide a blanket precedence rule specifying how to resolve such
'conflicts should they occur. This would simply be an ordinary
operator precedence specified on a “placeholder” marking terminal,
1*, standing in for any.” that are introduced.

Tighten the test. Extensions that reference a host nonterminal than parse-state-based context-aware scanning such as used in Cop-
could also be subjected to more stringent tests. While compiling per, which provides contextual information based on an unbounded
the LR DFA forI' Ug T'F, it is possible to keep track of what ~ number of tokens to the left of the current point in the file. How-
nonterminals contribute lookahead to items in which states. Let ever, the context used in the TICS scanner is more general in two
Interlopers; signify every host nonterminal contributing looka- ways: the scanner also considers the context of whatatkanw the

head to any state owned ﬂ“ﬁ_ Then ensure that each of these current token and it introduces the notionnafn-contexin which
nonterminals has a symbol in ifgst set with no operator prece- terminals can specify contexts in which they aat valid. These

dence defined on it. Define a bijection can be used, for example, to distinguish an integer constant termi-
nal from a label. They may have the same regular expression, but
mark : {ML e ,urlnmlopmj‘} — Interlopers;, the label has a following context of a colon and the integer has a

) . i colon in its following non-context specification (21).
mapping a fresh new marking terminal to every member of the set The Tatoo parser and scanner generator (7) has two innovations

Interlopers;. Then compile a grammar consisting Bf’ Ug I'y’ of relevance here. First, it usedakahead activatoimplement-
combined with a set of productionsark(u;) — uj. If this ing an independently developed notion of parse-state-based con-
compiles without conflicts, the validity of the proof is restored. text aware scanning. However, the expressiveness of parse-state
based context-aware scanning appears not to have been fleshed out
5. Discussion. Ir?]ilg'ticc))% as the lookahead activator is presented as a scanner opti-

In this section we discuss some opportunities for future work based
on the partitioning of the LR DFA described in Section 3 as well as Separate parse table-based approache$he second innovation
some of the related work. We then describe our experience in build- of Tatoo is that it also supports rapid composition of extensions
ing various language extensions and the limitations imposed by thewithout the need for regenerating parse tables. The system can
modularisComposablenalysis. Finally we comment on the im- switch between different pre-compiled parse tables and thus sup-
portance of static analyses in the adoption of extensible languagesport some notion of parse table composition. But Tatoo’s concept
and tools we have developed to support extensible languages. of extensions is different from ours: while we conceive of a fully
independent host grammar supplemented by an unspecified set of
5.1 Future work. extensions, in Tatoo, certain “holes” are explicitly left in the host

Parse table composition. The strict separation of the parse states 9rammar, and useraustfill" each of these with one ?f a p(’?ssible
described above suggests that it may be possible to compile an exSelection of extensions written to fill that particular “hole.” There-
tension grammar into a parse taitagmentthat could be com- fore, the extensions to a Tatoo grammar are not optional, are of a
posed with the host language parse table (and other extension parsﬂxe‘d number, and are of a more restricted character. '

table fragments) at the direction of the programmer when he or she ~ Component LR-parsing (30) (CLR) is similar to Tatoo's ap-

selects the set of extensions with which to extend the host language Proach in that multiple separate parse tables are used, but CLR in-
Because of this strict separation, the itens— eufs? are the troduces two new actionswitchandreturn. When a component
only additions to states in host language partition of the LR DFA Parser enters a@rror state it inspects the current state and will ei-
M¢ for the composed language. Thus, in those states, any new acther switch to another component parser, return to the parser that
tioﬁs introduced by adding an extensién are only addéd infhe called it, or backtrack. This point at which the calling parser fails
columns of the parse table. States associated with the extensions (irlS Where. in our approach, a shift on a marking terminal would oc-

ME) are entirely separate. It follows thatJif’ Uc T'F has passed C:”' Tne priodritiﬁs of dthe_se nhe_V\;] actions are fixed by the pe}lrs(ijn_g
g . _ algorithm and the order in which component parsers are called is
the modular test, one can take parse tablesMtt* and M P,

hei d add | ith . determined by the textual-order in which they appear in the spec-
concatenate their rows, and add a new co wfinl\gt appropriate jscation. Backtracking is used when a component parser fails and
actions, one will have a parse table 6f Ug I'?, verified cor-

g the system backtracks to try another component parser. It would
rect and fre()eri;)f conflicts. Furthermore, one can concatenate@ pars pe interesting to add backtracking to our approach, but limit it to
table forA/°" with those ofseveralextensions, adding anew col- e states at which a marking terminal is shifted. This would allow

umn foreachmarking termin_al; the resulting parse table would then gyiensions with overlapping marking terminals, at the expense of
parseM “ and also be conflict-free. backtracking.

Extension-specific lexical static precedenceStatic lexical prece- Arbitrary parse table composition. Bravenboer and Visser (6)
dence, as used to specify that keywords take precedence over idengtjine a strategy for composing the parse tablearbftrary ex-
tifiers, is a convenient mechanism for disambiguating lexical syn-c{)

h)) :) ensions into a single GLR (specifically, GLR(0)) table. This ap-
tax. However, as discussed in Section 4, its use is not recommende roach is based upon a construct called @NFA' — a nondeter-

for indicating that extension introduced terminals have precedence yinistic LR(0) finite automaton that allowstransitions.e-NFAs
over those defined in the host language, since such precedencgeing very easy to glom together in a composition, they are made
specifications have effect in all parse states. The strict separation;ga of as an intermediate step in the process of producing compos-

of parse states may also be useful here in that it would allow an gp|e parse tables. TheNFA for the host or a particular extension
extension-specific static precedence that only has effect in the parsgg geterminized into ane:DFA” which is an ordinary DFA with

states owned by the extension in which the keyword is defined. ¢ .transitions retained as metadata. This allows the addition of
new items to are-DFA state {.e., the introduction of new exten-

5.2 Related work. sions) without the need to recompute the entire closure of the state.
Context-aware scanning. In the TICS algebraic compiler frame- Most of the information from the-DFA is then included with the
work (20) the notion of context is used in the pattern-matching parse table. The generality of this method is at once a strength and a
parser and in the scanner. The scanner can take into account theveakness: although it is able to do on-the-fly composition of a host
results of then previous scans in determining how to recognize the grammar withanyextension, there is no way to guarantee that even
current input (21); the value of is determined when the scanner onesuch extension, let alone several unrelated ones, will compose
is generated. This is a lexical notion of context and is more limited deterministically or without other issues. As most of this method

concentrates on the potentially inefficient process of recomputing structis being parsed. This allows different keywords to be reserved
closures on-the-fly (entirely unneeded when using our approach of based on the scanner mode, but the hand-written mode-switching
marking tokens) and ignores scanner issues (being designed for specifications are not declarative. More recently, Visseal. (4)

scannerless GLR parser), its results, but not its methods, are similarhave devised a declarative parser for AspectJ in their nondetermin-
to ours. istic scannerless-GLR framework — although they had to add a

. new featuregrammar mix-insto handle the problem of the differ-
Incremental generation of LR parse tables.Many have stud- ent sets of keywords.

ied the problem of incrementally generating LR parse tables. Hor- — \we have adapted the LALR(1) grammar usedabt to ex-
spool (15), for example, presents a similar method to Bravenboer's 1anqg the Java grammar in our ableJ framework. As it happens,
for addition and deletion of productioria situ in det.erministic. with a context-aware scanner, thc version of Aspect) can
parse tables. However, Horspool's method was designed for inter- e harsed deterministically and declaratively (22). Essentially,
active development of grammars, where a whole grammar is being ¢ontext-aware scanning provides a more fine-grained version of
modified and debugged all in one place and a monolithic determin- y,q mode-switching that is done manually in #e scanner.
ism analysis would be of much more use. However, AspectJ does not pass our modular determinism anal-
5.3 Experience with the modular analysis restrictions ysis, for two reasons. _First, AspectJ introduces large numbers of
’) new keywords, placed in such a way that they are allowed to follow
We have built parsers and scanners in Copper for Java 1.4 andhost Java constructe.g, type constructs). This adds these termi-
ANSI C and designed several language extensions to these host lannals to the follow sets of host nonterminals and causes the test to
guages that pass the modular analysis. For example, to the Java 1.fail. Second, Aspect] extends some Java host nonterminals that de-
host language we have added the significant subset of SQL and theive phrases beginning with an access modifier suguasic or
boolean-expressions tables mentioned in Section 1 (25). We haveprotected. For example, Java specifies the production

also implemented an extension that adds algebraic data types to Dcl — Modifiers Type Id ...
Java in a manner similar to that of Pizza (19), specifying concrete for methods and AspectJ adds the production
syntax for defining different cases of a class and for pattern match- Dcl — Modifiers Aspect Id ...

ing over them. Further examples include dimension-types used toto define certain aspect constructs. The nespect keyword is not
check for errors in computations over physical measuremergs (a marking terminal at the beginning of the productions right-hand
to check that a length measurement is not added to a mass or accelside. However, the host Java grammar could be refactored, and the
eration measurement (26)). All of these extensions pass the mod-extension productions modified, so that they satisfy the require-
ular analysissComposablein fact, many of them were designed ments ofisComposableThus writers of a host grammar may be
before the modular analysis was. able to increase the number of extensions that pass the analysis by

Thus, our experience shows that the restrictions imposes-by designing the grammar in a particular way. Our Java 1.4 grammar
Composableare not too severe. That said, there are some limita- was directly derived from the freely available JavaCup version (2)
tions. For example, adding a new infix binary operatg@) to with no such modifications, and our extensions (except AspectJ)
the host language is not allowed since a production of the form passed the analysis with that host grammar. Thus it seems that the
Expr ::= Expr’'@' Ezpr does not have a marking terminal. (New way one naturally writes grammars does lead to a high degree of
infix binary operators can, however, be specified in the languagesextensibility.
defined in extensions.) Many extensible language frameworks (10;
24) do support type-based overloading of existing host language
operators. Thus, adding a new numeric typg{ complex or ratio-
nal numbers) may require new syntax to define the type but no new
syntax for arithmetic operators over these values.

If in the extension in Figure 1 we replaced the extension key-
word foreach with the host language keywortbr, we would
not have a marking terminal in the bridge production of this ex-
tension and our analysis would thus reject this extension. This type
of extension would be possible with traditional LALR(1) parsers,
PEGs and GLR parsers. In our approach, one could also write th
production using the host languafge terminal, but now we must
rely on the monolithic analysis to detect any conflicts. Thus, one
does not lose determinism completely, but the ability of the exten-
sion writer to ensure it is lost. In this case one could also design
the host language to support overloading of the enhanced for 100p5 4 Restrictions on expressiveness versus safe composition.
(similar to operator overloading). Such an overloading would be , L . ,
appropriate since the intention of iterating over each element re- |t may still be askedAre the restrictions imposed by this analy-
turned from the query is consistent with the intuitive understanding SIS {00 severeWe argue that the importance of a static analysis,

of the construct. Thus the extension would not need to add new Performed by the extension writeutweighs the moderate loss of
concrete syntax specifications. Therefore, one area of future work €XPressibility imposed by the modular analysis restrictions. Other
is to study how to best design host languages to support different P2rsing techniques that support language extension do allow some

types of overloading to mitigate this limitation to some degree. constructs not allowed by our analysis and it is appropriate to com-
pare these approaches, as we have. Itis also appropriate to compare

Aspect]. We have also extended our Java 1.4 specification to cre- all of these approaches to the accepted mechanism that program-
ate a specification for AspectJ, a language that provides aspectmers currently use to “extend” their language with new abstrac-
constructs in Java. This language has historically proven difficult tions:libraries. They provide no new syntactic constructs (or new
to parse using traditional methods. The AspectJ Bench Compiler semantic analysis), but because the library writer can compile and
(abc) (14) uses a traditional LALR(1) parser, but uses a moded type-check the code before it is distributéoe programmer is as-
scanner that switches modes based on whether or not an aspect corsured that he or she can pick any combination of libraries needed

Alternate restrictions. The set of restrictions imposed by tise
Composableanalysis are not the only ones that we have consid-
ered. For example, we experimented with tighter but simpler re-
strictions defined on the grammar (25), instead of on the LR DFA.
One required beginning and ending marking terminals. However,
these proved too restrictive to admit many of our previously imple-
mented extensions. We also considered relaxing, but complicating,
the restrictions as follows: the analysis would, given a sudset

host nonterminals, only guarantee that the extension would com-
gPose if all the other extensions with which it was composed had a
bridge production with its left-hand side id. This exploited the
fact that few host nonterminals would be used on left-hand sides of
bridge productions (e.g., "expression” and "statement”). However
it is unclear if this is worth the added complexity.

to address the particular problem, and use them as needed in a pro- [9] T. Ekman and G. Hedin. The JastAdd extensible Java compifer

gram. It is this level of assurance that we seek, and our approach Proc. Conf. on Object oriented programming systems andegins

provides, allowing a wide range of new expressive syntactic con- (OOPSLA) pages 1-18. ACM, 2007.

structs to be safely added to the host language. [10] T. Ekman and G. Hedin. The JastAdd system - modular exinsi
The requirements for truly extensible languages are different compiler constructionScience of Computer Programmir@f:14-26,

from those for traditional language design in which a language December 2007.

expert is expected to understand the language and the parsing11] B. Ford. Parsing expression grammars: a recognitioeagntactic

and scanning technology. Here, one may reasonably choose to foundation. InProc. of Symp. on Principles of Programming Lan-

use a GLR parser to simplify the grammar rules and accept the ~ 9uages (POPL)pages 111-122. ACM, 2004.

responsibility of extensively testing and manually analyzing the [12] R. Grimm. Better extensibility through modular syntax. Rroc. of

grammar to ensure that no ambiguities exist at the top-level of the Conf. on Programming Language Design and Implementati&uD(},

grammar. For PEGs, though it is unlikely that two extensions will pages 38-51. ACM Press, 2006.

introduce the exact same syntax, it is possible, and then the order{13] C. Heitmeyer, A. Bull, C. Gasarch, and B. Labaw. SCR toolset

in which the extensions are added will determine which construct for specifying and analyzing requirements. Rroc. of Tenth Annual

is recognized by the PEG parser and must be managed by someone ~ €onf. on Computer Assurance (COMPASIPS.

familiar with PEGs.

If extensible languages are to become widely used, we need

static analyses that let extension writegstify their language ex-

tensions to provide guaranteethat language extensions can be

safelycomposed by the non-expert programmer.

5.5 Tool support.

Copper is an integrated LALR(1) parser and context-aware scanner

[14] L. Hendren, O. de Moor, A. S. Christensen, and the abmtedhe
abc scanner and parser, including an LALR(1) grammar for As-
pect]. Available ahttp://abc.comlab.ox.ac.uk/documents/
scanparse.pdf, September 2004.

[15] R. N. Horspool. Incremental generation of LR parsefSomputer
Languages15(4):205-223, 1990.

[16] D. E. Knuth. On the translation of languages from leftright.
Information and Contrql8(6):607-639, 1965.

generator that we developed to address the challenges in parsing17] W. R. LaLonde. An efficient LALR parser generator. Teith

and scanning extensible languages (27). Copper also implements

the modular analysisComposabléescribed in this paper. Copper

Report 2, Computer Systems Research Group, University ofiforo
1971.

serves as the parser and scanner generator for our attribute grammd18] N. Nystrom, M. R. Clarkson, and A. C. Myer. Polyglot: AnteRrsi-

system, Silver (24), which was used to implement ableJ (25).

Copper, Silver, and the host language and language extension
specifications mentioned in this paper are available on the web at

http://melt.cs.umn.edu.

Acknowledgments

We thank the anonymous reviewers for their helpful and insight-
ful comments. This work was partially funded by the McKnight
Foundation and by the National Science Foundation under grants

#0347860 and #0429640.

References

[1] A. Aho, R. Sethi, and J. UllmanCompilers — Principles, Techniques,
and Tools Addison-Wesley, Reading, MA, 1986.

[2] S. Ananian. Java 1.4 LALR(1) grammar. Availablenatp: //www2.
cs.tum.edu/projects/cup/.

[3] M. Bravenboer, E. Dolstra, and E. Visser. Preventingdtipn attacks
with syntax embeddings. IRAroc. of the Intl. Conf. on Generative pro-
gramming and component engineering (GPCEgges 3-12. ACM,
2007.

M. BravenboerEric Tanter, and E. Visser. Declarative, formal, and
extensible syntax definition for AspectJ. Pmoc. of Conf. on Object-
oriented programming systems, languages, and applicat{@OP-
SLA) pages 209-228. ACM, 2006.

M. Bravenboer and E. Visser. Concrete syntax for objedtsnain-

specific language embedding and assimilation without réistnis. In

Proc. Conf. on Object-oriented programming, systems, uages, and
applications (OOPSLApages 365-383. ACM, 2004.

M. Bravenboer and E. Visser. Parse table composition arsgp
compilation and binary extensibility of grammars. Rmoc. of Intl.
Conf. on Software Language Engineering (SLE)08.

[7] J. Cervelle, R. Forax, and G. Roussel. Tatoo: an inneggtiarser
generator. IrProc. Principles and practice of programming in Java
(PPPJ) pages 13-20. ACM, 2006.

[8] R. Cox, T. Bergany, A. T. Clements, F. Kaashoek, and E. BnghlXoc,
an extension-oriented compiler for systems programmingPrbe.
of Architectural Support for Programming Languages and @peg
Systems (ASPLOS)008.

[4

5

[6

ble compiler framework for Java. IRroc. 12th International Conf.
on Compiler Constructionvolume 2622 ofLNCS pages 138-152.
Springer-Verlag, 2003.

[19] M. Odersky and P. Wadler. Pizza into Java: translatimepty into
practice. InProc. of Symp. on Principles of Programming Languages
(POPL), pages 146-159. ACM Press, 1997.

[20] T. Rus. A unified language processing methodologyheoretical
Computer Scienc@81(1-2):499-536, 2002.

[21] T. Rus and T. Halverson. A language independent scayeregrator.
Paper available atttp: //www.uiowa.cs.edu/~rus, 1998.

[22] A. Schwerdfeger. A declarative specification of a deli@istic parser
and scanner for Aspect). Technical Report 09-007, Uniyersi
Minnesota, 2009. Available atttp://www.cs.umn.edu.

[23] A. Schwerdfeger and E. Van Wyk. Verifiable compositiomefermin-
istic grammars. Technical Report 09-008, University of Misota,
2009. Available ahttp://www.cs.umn. edu.

[24] E. Van Wk, D. Bodin, L. Krishnan, and J. Gao. Silver: attemsible
attribute grammar systenklectronic Notes in Theoretical Computer
Science (ENTCS203(2):103-116, 2008. Originally in LDTA 2007.

[25] E. Van Wyk, L. Krishnan, A. Schwerdfeger, and D. Bodinttriute
grammar-based language extensions for Java.European Conf.
on Object Oriented Programming (ECOQRiplume 4609 oLNCS
pages 575-599. Springer-Verlag, July 2007.

[26] E. Van Wyk and Y. Mali. Adding dimension analysis to jassacom-
posable language extension.Raost Proc. of Generative and Transfor-
mational Techniques in Software Engineering (GTT8Hnber 5235
in LNCS, pages 442-456. Springer-Verlag, 2008.

[27] E. Van Wyk and A. Schwerdfeger. Context-aware scanfongarsing
extensible languages. Intl. Conf. on Generative Programming and
Component Engineering, (GPCHBCM Press, October 2007.

[28] E. Visser. Scannerless generalized-LR parsing. TieahfReport
P9707, Programming Research Group, University of Amsterdam,
Aug. 1997.

[29] E. Visser. Program transformation with Stratego/XTld®ystrategies,
tools, and systems in StrategoXT-0.9. In C. Lengauer et @itors,
Domain-Specific Program Generatiowolume 3016 oLNCS pages
216-238. Spinger-Verlag, June 2004.

[30] X. Wu, B. R. Bryant, J. Gray, and M. Mernik. Component$a4R
parsing.Computer Languages, Systems & Structu?€99. In press.

