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Abstract
We show that recursive programs where variables range over fi-
nite domains can be effectively and efficiently analyzed by describ-
ing the analysis algorithm using a formula in a fixed-point calcu-
lus. In contrast with programming in traditional languages, a fixed-
point calculus serves as a high-level programming language to eas-
ily, correctly, and succinctly describe model-checking algorithms.
While there have been declarative high-level formalisms that have
been proposed earlier for analysis problems (e.g., Datalog), the
fixed-point calculus we propose has the salient feature that it also
allows algorithmic aspects to be specified.

We exhibit two classes of algorithms of symbolic (BDD-based)
algorithms written using this framework— one for checking for
errors in sequential recursive Boolean programs, and the other to
check for errors reachable within a bounded number of context-
switches in a concurrent recursive Boolean program. Our formal-
ization of these otherwise complex algorithms is extremely simple,
and spans just a page of fixed-point formulae. Moreover, we imple-
ment these algorithms in a tool called GETAFIX which expresses
algorithms as fixed-point formulae and evaluates them efficiently
using a symbolic fixed-point solver called MUCKE. The resulting
model-checking tools are surprisingly efficient and are competitive
in performance with mature existing tools that have been fine-tuned
for these problems.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program VerificationModel checking; F.3.1 [The-
ory of Computation]: Specifying and Verifying and Reasoning
about Programs; F.4.1 [Theory of Computation]: Mathematical
LogicTemporal logic.

General Terms Algorithms, Experimentation, Verification.

Keywords Software verification, abstraction, logic, μ-calculus,
model-checking, recursive systems.
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1. Introduction
Abstraction is a key concept in verification. Analyzing complex
programs against relatively simple properties has become practical
in recent years primarily due to abstraction based techniques, which
include type-checking, static-analysis, and abstract-interpretation.
Abstraction-based verification is often composed of two distinct
methods— the abstraction engine that simplifies a complex pro-
gram into a tractable model and an analysis engine that, using fixed-
point computations, deduces properties of the model.

This paper is devoted to the key analysis component in the
second phase of verification— model-checking the state-spaces of
recursive Boolean models of imperative programs.

A Boolean program is a recursive imperative program where
all variables range over the Boolean domain only. Boolean pro-
grams are a standard model used in abstraction based verification.
The fairly successful paradigm of verifying control-intensive prop-
erties using predicate abstraction, for instance, generates Boolean
program models. Microsoft Research’s SLAM engine [5], its com-
mercial developer-kit cousin SDV (Static Driver Verifier [3]), the
checker BLAST [6], and the tool Terminator [10] that checks ter-
mination for programs, are all prominent artifacts that construct
Boolean models whose analysis leads to finding errors or proving
programs correct.

Several model-checkers for Boolean programs exist, and many
of the efficient checkers use symbolic techniques that represent sets
of states using Boolean Decision Diagrams (BDDs). The SLAM
tool utilizes the reachability solver BEBOP [4] that computes pro-
cedure summaries using BDDs (see [21, 18] for the traditional al-
gorithms for reachability). The MOPED tool is a very efficient and
mature checker: one of its versions computes the reachable set by
computing the finite automaton that represents the set of all reach-
able configurations (including the stack), while the other two ver-
sions use a weighted pushdown system library [11].

Implementing symbolic model-checking algorithms is, in gen-
eral, a complex task. A researcher who comes up with a new al-
gorithm to model-check a system often implements in a traditional
programming languages like C or Java, utilizing a BDD-library to
perform the symbolic operations. Myriad heuristics needs to be put
in place, including decisions on ordering of variables, managing
memory and caching, deciding order of evaluations, when to reset
temporary terms, and a host of other tricks, to obtain a reasonably
efficient implementation. Moreover, small changes to the algorithm
may require considerable change in the design of the program, dis-
couraging the testing of new ideas, and severely affecting the pro-
ductivity of the programmer.

In this paper, we propose that most symbolic model-checking
algorithms are essentially fixed-point computations that can be
compactly described in a high-level fixed-point calculus. Our main
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thesis is that model-checking algorithms for Boolean programs
can be described easily using a fixed-point calculus, and by utiliz-
ing a symbolic fixed-point solver, we can obtain efficient model-
checkers, without resorting to low-level programming.

Our main contribution is to substantiate the above thesis by
building efficient symbolic model-checking algorithms for solving
the reachability problem for sequential and concurrent recursive
Boolean programs, writing the algorithms in a fixed-point calculus.
We show that by using a fixed-point solver, we can automatically
obtain an efficient implementation of these algorithms. We have im-
plemented our ideas in a new tool, GETAFIX (“get a fix using fixed-
points”), which take as input sequential and concurrent Boolean
programs, and model-checks them against reachability specifica-
tions. A detailed experimental evaluation shows that our solvers
are competitive with sophisticated mature checkers that have been
engineered for these problems.

For sequential Boolean programs, we show that we can en-
code the traditional algorithm for reachability using simple fixed-
point formulae. We adapt the traditional algorithm into two algo-
rithms, which ensure better performance by restricting themselves
to searching using only the reachable parts of the search-space. The
formulae depicting the two algorithms are very readable small for-
mulae, one of 40 lines and the other of 50 lines!

Concurrent recursive Boolean programs with shared memory do
not have a decidable reachability problem. Since concurrency bugs
are notoriously hard to find, and since abstracting a program natu-
rally yields a recursive model, the problem of checking reachability
in concurrent programs is an important one. A recent proposal [16]
is to search the space reached by a concurrent program using at
most k context switches, where k is a fixed bound. Intuitively, ex-
ploring a few number of context-switches exhaustively searches
a very interesting space for concurrency errors, and studies have
shown that a few context-switches give very high coverability of
the entire search space, and that many concurrency errors manifest
within a small context-switch bound [15].

Bounded context-switching reachability for concurrent recur-
sive programs (with a fixed number of threads) was shown to be
decidable by Qadeer and Rehof in 2005 [16]. The first algorithms
proposed to solve this problem involved, unfortunately, keeping the
entire description of stack contents reached by each individual pro-
cess using finite automata (similar to the way BEBOP computes
reachability). A model-checker for bounded context-switching was
not implemented until recently as it involved a complex algo-
rithm involving automata represented as BDDs. Recently, Lal and
Reps [12] have shown how to reduce the context-bounded reacha-
bility problem to the reachability problem for sequential recursive
programs. However, this conversion and the implementation are
algorithms that search using even unreachable parts of the search
space (called the eager approach in their paper). They also propose
a set of rules for computing the reachable states lazily, exploring
only the reachable parts of the search space, but this has not been
implemented. Also, very recently, there has been an implemen-
tation of context-bounded reachability in an extension of Moped
(called JMoped) that solves the problem by iteratively computing
the automata representing reachable configurations.

In this paper, we show a new (and simple) fixed-point formu-
lation of the algorithm to solve bounded context-switching reacha-
bility of concurrent recursive programs. Our algorithm is described
using a formula that adds a couple of clauses to the sequential
reachability algorithm, and computes only using the reachable
states of the concurrent program. While our fixed-point formu-
lation is similar to the set of rules for lazy evaluation described
in [12], it is new and more efficient. In particular, the rules pre-
sented in [12] involve keeping tuples, where the tuple contains
as many as 3k global variables, where k is the context-switching

bound. Ours, in contrast, involves a fixed-point computation of tu-
ples that keep track of at most k+1 copies of global variables only.
As k increases, this tuple’s length depicts the precise space increase
in model-checking, and hence we believe that our formulation is
significantly more efficient. It is worth mentioning that in [12] the
authors assume that along any computation the control switches
happen according to a round-robin scheduling. Thus, for computa-
tions allowing up to r round-switches (which, for 2 threads, means
2r context switches), they can implement their rules by using just
3r global variables. We observe that this improvement is orthogo-
nal to what we propose in this paper, and our ideas are applicable
in their setting too, thus reducing the number of global variables
required.

Turning to the implementation, we encode our algorithm for
bounded-context switching reachability as a fixed-point formula,
and obtain an efficient symbolic model-checking algorithm. The
fixed-point formulation is quite simple, and in fact it took us only
a couple of days to write the formula (algorithm), and rearrange
terms to get efficiency! This algorithm is also incorporated in our
implementation, and we show that it works well in practice on a
class of Bluetooth examples.

Our proposal of using a high-level fixed-point calculus as a pro-
gramming language to easily write symbolic model-checking algo-
rithms has several advantages. First, it eases the effort in building
model-checking tools considerably. We have implemented scores
of variants of the model-checking algorithm, using a simple rewrit-
ing of the formula, and evaluated the results. If we had implemented
our checker using a language such as C, we would have certainly
not have tried these many variants, nor would we have implemented
the concurrent program checker (let alone implementing it two
days). We believe that our approach greatly eases programming,
letting novice programmers and theoreticians implement their al-
gorithmic ideas with little effort, while not sacrificing efficiency.

Secondly, we believe that our framework aids building of cor-
rect correctness tools. Most model-checking tools have bugs, pri-
marily due to the hard task of managing computations and algo-
rithms natively in a traditional programming language. During our
experiments, we found errors in MOPED, which were duly cor-
rected by its authors. Seeing our entire algorithm on one page aided
us greatly in reviewing the “code” (formula) and arguing its correct-
ness. We found the transformation from the mathematical formula-
tion of the algorithm on paper to the fixed-point formula easy and
intuitive.

The fixed-point calculus that we propose to use is a quantified
Boolean logic with least-fixed point operators (more precisely, we
use first-order logic on the domain {true, false} with an additional
least fixed-point operator). While this calculus has a natural seman-
tics based on least-fixed points, we also endow it with an opera-
tional semantics that precisely describes how the fixed point will
be computed. This operational semantics is the natural Tarskian it-
erative computation, and is intuitive and natural. Furthermore, even
if the formulae we write are not monotonic (and hence least-fixed
points may not exist), the operational semantics gives precise al-
gorithmic meaning to our formulae. In fact, in one of our algo-
rithms (the optimized entry-forward algorithm), it becomes essen-
tial to use a non-monotonic operator. In this case, the operational
semantics is what gives us algorithmic control over the way the
fixed-points are computed.

Declarative approaches to building analysis tools have been pro-
posed earlier. Notably, Lam et al [13] propose to reduce context-
sensitive static analysis questions to answering queries in Data-
log. Using an efficient BDD-based solver for Datalog (bddbddb),
the authors obtain automatic implementation for program analysis
problems. They too argue that using an intermediate high-level lan-
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guage to state analysis problems greatly eases the engineering of
an efficient static analysis tool.

It is in fact well known that reachability of recursive programs
reduces to querying Datalog (see [1] for a precise reduction). How-
ever, though Datalog is a convenient way to declaratively state the
reachability problem, Datalog is too weak to express the algorith-
mic control that we desire in guiding the search. One may of course
wonder whether a clever Datalog solver like bddbddb may outper-
form the algorithms that we wish to encode. We actually did try this
idea, and in fact built an automatic transformation of Boolean pro-
grams to Datalog. However, the initial experimental results were
poor, and we abandoned this approach. The programmer has very
little control on how the Datalog queries are computed; heuris-
tics like magic-set transformations and other optimizations are of-
ten implemented and discourage control by the programmer. We
believe that some control on how exactly the algorithm searches
the state-space (like the control required to describe the optimized
entry-forward algorithm we formulate in this paper) is required to
build an efficient reachability solver.

In summary, this paper makes the following contributions:

• The thesis that symbolic model-checking algorithms can be
easily, correctly, and efficiently engineered by expressing the
model-checking algorithm as a formula in a fixed-point calculus
over the Boolean domain.

• The formulation of three algorithms for checking reachability in
recursive Boolean programs as fixed-point formulae. The algo-
rithms get increasingly complex to describe but are increasingly
efficient, and the final one is competitive with existing mature
solvers.

• A new fixed-point formulation of the reachability problem
for concurrent recursive Boolean programs under a context-
switching bound. Our formulation involves a fixed-point over a
tuple that is considerably shorter than previous formulations.

• The implementation of a model-checker, called GETAFIX, that
automatically translates Boolean programs to Boolean formu-
lae that capture its behavior, and by incorporating the above
mentioned algorithms written using fixed-point formulae, im-
plements them using the symbolic fixed-point solver MUCKE.

• An extensive evaluation of GETAFIX on sequential programs,
derived from SLAM device-driver benchmarks and TERMINA-
TOR benchmarks that show that GETAFIX is extremely compet-
itive with existing tools.

• An evaluation of the GETAFIX for reachability in concurrent
programs on a class of BlueTooth benchmarks, where it per-
forms well, competitive with existing prototype tools that have
been developed to solve this problem.

Related work

The BEBOP tool implements reachability in recursive Boolean pro-
grams using summaries, similar to the algorithms proposed in this
paper. The tool MOPED [11, 20] implements both forward and
backward symbolic reachability algorithms for Boolean programs.
The tool is built for pushdown systems with local and global vari-
ables ranging over finite domains, and the implemented algorithms
construct a finite automaton accepting the set of reachable config-
urations (correctness relies on the fact that this set is regular [8]).
The algorithms proceed by growing the automaton until saturation.
Each edge added to the automaton in this process corresponds to
adding a pair to the summary of a procedure, and in these regards,
the forward algorithm builds the summary by taking the entry for-
ward (ε-edges summarize the entry-to-exit reachability relation)
and the backward algorithm by taking the exit backward.

Weighted pushdown systems, where edges of the pushdown
graph are endowed with weights, have been used to analyze in-
terprocedural dataflow analysis problems [19]. A new version of
MOPED has been built using the weighted pushdown system library
to compute reachability of Boolean programs as well.

In [1], the model-checking of recursive state machines (a for-
malism equivalent to Boolean programs) is studied. There, the au-
thors propose a reachability algorithm that computes the summary
for each procedure going either forward or backward depending on
whether the number of entries and the number of exits is smaller.
This yields an O(n θ2) bound on the time complexity for solving
reachability, where n is the number of vertices and θ is the maxi-
mum over all procedures of the minimum between the number of
entries and the number of exits. Though the algorithm can be imple-
mented symbolically via Datalog rules, the backward-computation
utilized in this can discover unreachable states. Recently, a sub-
cubic algorithm for recursive state machines was given in [9],
though it is not clear how to implement it symbolically. Symbolic
reachability has been implemented for hierarchic reactive modules
(no recursion) in the tool HERMES [2].

The idea of studying context-bounded reachability stems from a
paper by Qadeer and Wu [17] where the authors study the problem
for two context-switches. In [16], it was shown that the bounded
context-switching problem for recursive concurrent programs is de-
cidable for any bound. In a recent paper, Lal and Reps propose a
constructive reduction of the bounded context-switching reachabil-
ity problem to reachability on sequential recursive programs. They
also provide an eager implementation of their algorithm. More re-
cently, the paper [22] describes an implementation of the original
algorithm by Qadeer and Rehof [16] that checks bounded context-
switching reachability using a tuple of automata that represent the
configurations of the individual threads.

As mentioned earlier, Datalog has also been successfully used
as a high-level language to express context-sensitive analysis of
recursive programs, by using a BDD-based solver (bddbddb) for
Datalog [24, 13].

A convenient intermediate level between using high-level spec-
ifications and programming directly with BDDs in order to imple-
ment program analysis tools is given by JEDD [14], where BDDs
are abstracted as database-style relations and operations on rela-
tions. Jedd, however, does not provide fixed-point operators that
we need to express algorithms.

2. Recursive Boolean programs
Let us fix the syntax of a simple sequential programming language
with variables ranging only over the Boolean domain, and with
explicit syntax for nondeterminism, (recursive) function calls, and
tuples of return values.

Let us fix a set of variable names Var . Programs are described
by the following grammar:

〈pgm〉 ::= 〈gvar-decl〉 〈proc-list〉
〈gvar-decl〉::= decl x; | 〈gvar-decl〉 〈gvar-decl〉
〈proc-list〉 ::= 〈proc〉 〈proc-list〉 | 〈proc〉
〈proc〉 ::= fh,k (x1, . . . , xh) begin 〈lvar-decl〉 〈stmt〉 end
〈lvar-decl〉 ::= decl x ; | 〈lvar-decl〉 〈lvar-decl〉
〈stmt〉 ::= 〈stmt〉 ; 〈stmt〉 | skip | 〈assign〉 |

call fh,0( 〈expr1〉,. . .,〈exprh〉) |
return 〈expr1〉,. . .,〈exprk〉 |
if (〈expr〉) then 〈stmt〉 else 〈stmt〉 fi |
while (〈expr〉) do 〈stmt〉 od

〈assign〉 ::= x1, . . . , xm := 〈expr1〉,. . .,〈exprm〉 |
x1, . . . , xk := fh,k(〈expr1〉,. . .,〈exprh〉)

〈expr〉 ::= T | F | ∗ | x | ¬ 〈expr〉 | 〈expr〉 ∨ 〈expr〉 |
〈expr〉 ∧ 〈expr〉
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In the above, xi are variables in Var , and fh,k denotes a
procedure with h formal parameters and k return values.

A program has a global variable declaration followed by a list
of procedures. Each procedure is a declaration of local variables
followed by a sequence of statements, where statements can be
simultaneous assignments, calls to functions (call-by-value) that
take in multiple parameters and return multiple values, conditional
statements, while-loops, or return statements. Boolean expressions
can be true, false, or non-deterministically true or false (∗), and can
be combined using standard Boolean operations. Functions that do
not return any values are called using the call statement.

We will assume several obvious restrictions on the above syn-
tax: global variables and local variables are assumed to be dis-
joint; formal parameters are local variables; the body of a function
fh,k has only variables that are either globally declared, locally
declared, or a formal parameter; a return statement in the body of
fh,k returns exactly k values.

Let us also assume that there is a procedure main, which is the
procedure where the program starts, and that there are no calls to
this procedure in the code of P .

The semantics is the obvious one: a configuration of a program
consists of a stack which stores the history of positions at which
calls were made, along with valuations for local variables and
formal parameters, and the top of the stack contains the local and
global valuations, and a pointer to the current statement being
executed.

Let us fix a program P , and let the set of formal parameters,
local variables and global variables in P be respectively Par, L and
G. As we observed above Par ⊆ L. A global valuation is a function
vG : G → {T, F} that assigns true or false to every variable in G.
Analogously, a local valuation is a function vL : L → {T, F} that
assigns true or false to every variable in L. Let VG and VL denote
the set of all global and local valuations, respectively.

Let us assume that each individual statement in each procedure
in P is labeled uniquely by an element from a set PC (called
program counter).

A state of the program P is given by a program counter, a local
valuation and a global valuation. We will denote with u the state
defined by the tuple (u.pc, u.Local, u.Global). The configuration
of the program P is a call-stack— a stack of elements, each element
being a pair containing a program counter and a local valuation,
except the top of the stack which is the current state of P (i.e. the
stack is a word in (PC × VL × VG).(PC × VL)∗).

The reachability problem asks whether a particular statement in
the program marked using a special label Goal is reachable. More
precisely, given a program counter pc, the problem is to determine
if there is a reachable configuration where pc is the program counter
of the current state.

3. Fixed-point calculus over Boolean domains
In this paper, we will use a basic first-order logic along with a fixed-
point formula to represent model-checking algorithms for both
sequential and concurrent recursive Boolean programs. Intuitively,
a symbolic model-checking algorithm takes a set of input relations,
typically describing the model that is being checked (for example,
the transition relation and the set of initial states are input relations).
Using these relations, the algorithm proceeds to compute several
sets in order to check the problem at hand— for instance, a model-
checker for non-recursive Boolean programs will start from a set of
initial states, and compute the set of all reachable states.

The central theme of this paper is that a high-level fixed-point
calculus serves as an adequate programming language to describe
typical model-checking algorithms, and moreover, using an effi-

cient underlying platform to execute these formulae, we can obtain
fast and efficient verification tools. Most importantly, the formulae
are very easy to write, follows the mathematical algorithm a pro-
grammer intends to write, and leads often to bug-free implementa-
tions. We believe that this programming paradigm will make novice
programmers quickly implement their ideas, without the need to
learn the (often undocumented) heuristics and yet obtain efficient
implementations.

The fixed-point calculus we use in this paper is a first-order
variant of the μ-calculus (more precisely, first-order logic with
a least-fixed point operator suffices) that has operators Boolean
combinations of sets, existential quantification over the Boolean
domain, and least fixed-point operators.

Let us fix some notation.
A Boolean relation Rk(x1, . . . , xk) is any k-ary relation over

the Boolean domain B = {true, false}, for some k ∈ N. I.e.
Rk ⊆ B

k.
Fix a set of variables Var. A Boolean expression over Var is

given by the following syntax:
BoolExp ::= T | F | Rk(x1, . . . , xk) | ¬BoolExp |

BoolExp ∧ BoolExp | BoolExp ∨ BoolExp |
∃x.(BoolExp) | ∀x.(BoolExp)

In the above, x1, . . . , xk range over variables in Var and Rk

denotes any k-ary Boolean relation. The semantics of Boolean
expressions is the standard one, and an expression defines some
m-ary relation (where m is the number of free variables in the
expression).

We say that a boolean expression is positive if the relations Rk

used in the expression do not occur within an odd number of nega-
tions. (Intuitively, the formula is allowed to “test membership” of
tuples in Rk, but not test non-membership.) In this case, the rela-
tion defined by the expression is monotonic, in the sense that when
the relations Rk are interpreted as larger relations, the expression
also relates a (not-strictly) larger relation as well.

An equation over R is an equation of the form R = BoolExp .
Note that R may appear also in BoolExp and thus this depicts a
recursive definition of R.

By Tarski’s fixed-point theorem, it follows that any positive
equation system (set of equations) has a unique least fixed-point
(and unique greatest fixed-point). That is, there is a unique least
interpretation for the relation that satisfy the equations.

Algorithmic semantics of a fixed-point formula

Consider a system of equations (not necessarily positive): Eq =
{R1 = B1, R2 = B2, . . . Rk = Bk}.

Then we define a precise algorithmic computation of a particu-
lar relation, say R1, as follows:

Evaluate(R,Eq) :-
Let (R = B) occur in Eq;
Set S := Emptyset;
while (S does not stabilize) {
-Eq ′ := Eq \ R = B;
-Replace R in each expression of Eq ′ with S
to get Eq ′′;

-for every relation Ri that occurs in B {
Si := Evaluate(Ri,Eq ′);
}
-Substitute each Ri in B with Si, replace
R in B with S, and evaluate B to obtain
the new value of S;

}
return S;

While the above may look daunting, it is actually quite intuitive.
The algorithm above, in order to compute a relation R in an equa-
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tion system with R = B in it, essentially tries to find a fixed-point
by starting with interpreting R as the empty set, and in each round
replacing R with its current interpretation, evaluating the remain-
ing equation system, and substituting those relations in B to obtain
the next interpretation of R.

The Tarski-Knaster theorem says that the above iterative algo-
rithm will always converge to the least fixed-point of the relations,
when all the expressions are positive. In other words, there is a
smallest interpretation for each of the Ri’s that satisfies all the
equations in the system, and the above algorithm computes it.

In this paper, we will confine ourselves to algorithms that can be
described as a least fixed-point of a set of equations. While most of
our algorithms will use only positive expressions, there are certain
situations when we may want to use expressions negatively (for
instance, to compute on a set smaller than the current set of reach-
able states, in order to speed up computation). When non-positive
expressions are used, the above algorithm need not terminate (the
interpretation for a relation may never stabilize), but we will ensure
that the particular algorithms we write do indeed terminate.

Let’s give an example of an algorithm written as a formula.
Consider a transition system, where states are valuations over the
Boolean variables v̄ = v1, . . . vk , let the transition relation be
Trans(v̄, v̄′) and let Init(v̄) the set of initial states, both expresses
as Boolean formulae.

Then the least fixed-point of the equation system with a single
equation

Reach(ū) = Init(ū) ∨ ∃x̄.(Reach(x̄) ∧ Trans(x̄, ū))

is the set of all states reachable in the transition system. Also, the
above formula gives a concrete way of computing it: we start with
the Reach set empty, and evaluate the expression, to get the initial
states. We then substitute it back in the formula, and obtain the set
of states reachable from the initial states in zero or one steps. We
continue this till we reach a fixed-point, and stop.

The above formula is in fact all that we need to write an al-
gorithm that symbolically model-checks a (non-recursive) transi-
tion system. We will have an underlying fixed-point calculus solver
that will perform the iterations efficiently using BDDs, employing
heuristics to order variables, evaluate sub-expressions, project away
variables that are existentially/universally quantified, etc. The aim
of this paper is to show that efficient model-checking algorithms
for recursive sequential and concurrent programs can be obtained
by simply writing such formulae.

4. The entry-forward summary-based algorithm
In this section, we show how to implement a symbolic reachabil-
ity algorithm for recursive Boolean programs. Note that a recursive
Boolean program has, in general, an infinite number of states it
can reach (due to the unbounded stack). Traditional algorithms for
reachability (which are sound and complete) compute the reacha-
bility sets using summaries.

Our aim in this section is to gently introduce the primary ideas
in model-checking recursive programs, and encode the algorithms
using fixed-point formulae. We will first recall the most simple of
the sound and complete summary-based algorithms, and show how
to express it as a fixed-point formula. This algorithm, however, is
not efficient, as it can compute the reachable states using interme-
diate sets that are not reachable. As we progress, we will introduce
better algorithms that are competitive with existing tools.

In order to describe the algorithms for solving reachability of
Boolean programs, let us assume the following template formulae
that describe the semantics of a program. Let us also assume that
the Goal program counter that we test reachability for is in the main
module (we can easily transform a general reachability problem to
such a one).

Internal Transitions: Transitions that happen within a module
(that is, those that are neither a call nor a return) are described
by a formula ProgramInt(u, v). For instance, an assignment
will compute the variables of the next state v depending on
those of the current state u, and update the program counter.

Transitions into a Call: Transitions that take the program from a
call in a procedure to the beginning of the procedure being
called are described by a formula IntoCall(u, v). This formula
ensures that v.Global = u.Global (global variables are pre-
served) and that v.Local initializes the local variables of the
called module (in particular, it sets the value for the formal pa-
rameters).

Entry, Exit: Let us assume formulae Entry(u.pc) and Exit(u.pc)
that capture the entry and exit labels of all procedures in the
program. Entries correspond to labels of the first statement in
all procedures. Exits are labels of return statements or after the
last line of a procedure.

Initial states: The formula Init(u.pc) captures the constraints on
the initial program counter, i.e. states that u.pc is the label that
precedes the first statement of main.

Across a call: Let us assume a formula Across(u.pc, v.pc) that
captures the pairs of program counters denoting from where a
call occurs to where the call returns to (both program counters
in the same procedure).

Return from a call: Let us assume a formula Return(u, v, w) that
captures the update of variables according to the values com-
puted in a procedure call. In this formula, u refers to the state at
the procedure call, v to the state on exiting from the called pro-
cedure, and w to the state of the calling procedure on returning
from the call. Formula Return ensures that Across(u.pc, w.pc)
holds, and also that w.Global matches v.Global and w.Local
matches u.Local except for those variables that are assigned
with return values (in particular, if the called procedure does not
return values, we have w.Global = v.Global and w.Local =
u.Local).

4.1 A simple summary-based algorithm

We are now ready to write a summary-based least-fixed point def-
inition of the reachable states according to a classical summary-
based algorithm. A summary captures the set of all pair of states
(u, v), where u is an entry to a procedure and v is a state of the
same procedure that is reachable from u.

We can easily write a recursive definition of the summary rela-
tion, using the following three clauses:

• If u is an entry, then Summary(u, u) holds.

• If Summary(u, x) holds and there is an internal move from x to
v, then Summary(u, v) holds.

• If Summary(u, x) holds, x is a call, y is the entry x leads to,
v is a return matching the call x and further Summary(y, z)
holds where z is an exit, then Summary(u, v) holds provided v
matches x on the local variables and matches z on the global
variables modulo the assignment of the returned values.

More succinctly, Summary is the least fixed-point of the follow-
ing equation:

Summary(u, v) =
(Entry(u.pc) ∧ u = v)

∨ (∃x.(Summary(u, x) ∧ ProgramInt(x, v)))
∨ (∃x, y, z.(Summary(u, x) ∧ IntoCall(x, y) ∧ Summary(y, z)

∧ Exit(z.pc) ∧ Return(x, z, v)))
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THEOREM 1. Let P be a program. Let u be an entry of procedure
main. The least fixed-point of the equation for Summary given
above relates u and a state v if and only if v is a state of main
that is reachable in P .

The above formula, surprisingly, can be immediately written us-
ing a mu-calculus formula, and using a tool like MUCKE, we would
obtain a symbolic model-checker for recursive Boolean programs!
The standard approach to evaluate a fixed-point formula, when ap-
plied to the above, will result in an algorithm that starts with sum-
maries capturing all entries of all modules (whether they are reach-
able or not) and compute the set of all reachable states in each pro-
cess, utilizing summaries of called procedures. Symbolic model-
checking algorithms that search spaces that are not reachable often
do much worse than those explore forward from the initial state,
ensuring that only reachable states are discovered. We will modify
the above scheme into one that computes only the reachable states.

4.2 The entry-forward summary-based algorithm

Let us now refine the scheme above so that, at any point of the
computation of the set of reachable states, we keep only states that
are reachable. In other words, if Summary(u, v) holds, we insist
that u and v are reachable (with some stack content) from the entry
of the main-procedure.

Intuitively, we start with the set of only the entry summary of
the main procedure. At a call to a procedure, we allow the entry-
summary of the called procedure to be discovered. Computation
proceeds otherwise in a similar manner as above. Let us call this
relation SummaryEF (for “Entry-forward”, as we are intuitively tak-
ing the entry forward to compute the summary).

SummaryEF(u, v) =
(Entry(u.pc) ∧ u=v ∧ Init(u.pc))

∨ (∃x.(SummaryEF(u, x) ∧ ProgramInt(x, v)))
∨ (∃x, y.(SummaryEF(x, y) ∧ IntoCall(y, u) ∧ u=v))
∨(∃x, y, z.(SummaryEF(u, x)∧IntoCall(x, y)∧SummaryEF(y, z)

∧ Exit(z.pc) ∧ Return(x, z, v) ) )

The third clause above, which has been added new, generates
the pair of identical entries of a module that is reachable. It is easy
to see that SummaryEF computes reachability, and any two states
related by summary must be individually reachable from the initial
state of the program.

The above formula (algorithm) can be optimized further. Notice
that the fixed-point computation will, in each round, evaluate the
formula inside out, representing each set using a BDD. Now let
us look closely at the last disjunctive clause which computes the
discovery of a return (SummaryEF(ū, v̄)) to a module, from the
caller (SummaryEF(ū, x̄)) and a summary of a called procedure
(SummaryEF(ȳ, z̄)). This clause has two SummaryEF relations that
are combined conjunctively, and given that this set gets very large,
and the conjunction of two BDDs takes time product of their sizes,
this is a serious bottle-neck in the computation.

We aim to rewrite this clause such that the two summary sets
are first combined with other sets with a presumably small BDD
representation and then their conjunction is computed. We start by
arranging the constraints into two groups: (A) the constraints in-
volving the caller (x̄) and the return (v̄), and (B) the constraints
involving the exit (z̄), the entry (ȳ) and the return (v̄). For this pur-
pose, we split the predicate Return into two parts, called respec-
tively ReturnA and ReturnB, each restricted to state constraints
only on a subset of the variables.

Recall that formula IntoCall(x, y) captures the transitions from
a call x to an entry y. In particular, it ensures x.Global = y.Global
and that y.Local is consistent with the parameters passed to the
module of y when called from x. Thus, to express such constraints,

y.pc is not really needed provided that we can refer to the module
of y. Therefore, instead of IntoCall(x, y) we can use an equivalent
formula IntoCall1(x, pc, y.Local, y.Global) where pc is a program
counter of the same module as y.pc.

Thus, we quantify over x̄ the constraints (A), and extract the
variables in x̄ that are required in (B). Then, we quantify over ȳ
and z̄ the constraints (B) and extract the variables of ȳ and z̄ which
are in use in (A).

Rewriting the algorithm as a formula, we replace the last dis-
junctive clause of the above formula with:

∨ (∃ xpc, zpc, yLocal , yGlobal .
(∃x.(SummaryEF(u, x) ∧ ReturnA(x, zpc, v)

∧ IntoCall1(x, zpc, yLocal , yGlobal)∧ xpc = x.pc) )
∧ (∃y, z.(SummaryEF(y, z)

∧ (yGlobal = y.Global ∧ yLocal = y.Local)
∧ (zpc = z.pc ∧ Exit(z.pc))
∧ ReturnB(y, z, xpc, v)))

)

The above formula, except for some implementation details, is
exactly the formula for one of the algorithms that we report in
the implementation (see the Appendix for the exact implemented
formula).

The following theorem holds.

THEOREM 2. Let P be a program. The least fixed-point of the
equation for SummaryEF given above relates a state u and a state v
if and only if u is an entry of a procedure that is reachable in P and
v is a state in the same procedure reachable from the entry u using
a run that returns from all calls. In particular, SummaryEF(u, v)
holds when u is an entry of main iff v is a state of main that is
reachable in P .

4.3 An optimized entry-forward algorithm

We now present a high-level description of an optimization of
the entry-forward algorithm. This algorithm involves several issues
that we will highlight.

We compute the set SummaryEFopt as described by the following
iterative algorithm. SummaryEFopt is initialized with the initial con-
figurations. Now, let X be the configurations discovered in the last
iteration, and Relevant be set of all SummaryEFopt configurations
that have as a program counter the program counter of a configura-
tion of X. We define New1 to be the the image-closure of Relevant
on internal transitions, and define New2 as the image of Relevant
on transitions that call a module or skip a called module using a
summary. Thus, SummaryEFopt is the union of SummaryEFopt in the
previous round, New1, and New2. The algorithm terminates when
SummaryEFopt stabilizes.

Two aspects are relevant in the algorithm described above. Typ-
ically, programs exhibit many more internal transitions than calls
and/or returns, and the computation of calls and returns are quite
expensive compared to internal transitions— a call or a return in-
volves at least two configurations of different modules and the pa-
rameter/return values are typically set in a non-trivial way. Thus,
the first idea is to compute, in one iteration, only one set of new
calls and returns, but compute the internal moves to completion
(ignoring calls and the returns that may become active). Another
important intuition is that we would compute only starting from
configurations that are newly discovered in the previous round. Un-
fortunately, the BDD representing such a set can be quite complex
and completely different from the one for SummaryEFopt. A better
solution is to take the configurations to process by considering only
the pc. Thus, at a given iteration, a configuration is processed if its
program counter is the same as that of a state newly discovered in
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the previous iteration. Usually the BDD configuration for it is less
complex of the one for SummaryEFopt, resulting in faster computa-
tion.

In the following equations, we use a new bit fr; fr=1 is used
to mark each pair of states (u, v) which is added to SummaryEFopt,
and fr =0 to mark all such pairs that have been added in any of
the previous iterations but the last one. According to this mark-
ing, we can determine the set of pairs (u, v) which have been
added to SummaryEFopt for the first time in the last iteration— the
tuple (1, u, v) must be in SummaryEFopt while the tuple (0, u, v)
should not. This is used to compute the relevant set of program
counters Relevant which the next iteration works on. Formally,
SummaryEFopt is defined as the least fixed-point of the relation
SummaryEFopt(fr, u, v) in the system of equations below:

SummaryEFopt(fr, u, v) =
(fr=1 ∧ Entry(u.pc) ∧ u=v ∧ Init(u.pc)) [1]

∨ SummaryEFopt(1, u, v) [2]
∨ (fr=1 ∧ (New1(u, v) ∨ New2(u, v)) ) [3]

Relevant(pc)=∃u, v.(SummaryEFopt(1, u, v)
∧ ¬SummaryEFopt(0, u, v)
∧ v.pc=pc) [4]

New1(u, v) =
(SummaryEFopt(1, u, v) ∧ Relevant(v.pc)) [5]

∨ (∃x.(New1(u, x) ∧ ProgramInt(x, v))) [6]

New2(u, v) =
(∃x.(Relevant(x.pc) ∧ SummaryEFopt(1, u, x)

∧ IntoCall(x, v))) [7]
∨ (∃x, y, z.(SummaryEFopt(u, x) [8]

∧ IntoCall(x, y) ∧ SummaryEFopt(y, z) [9]
∧ Exit(z.pc) ∧ Return(x, z, v) [10]
∧ (Relevant(x.pc) ∨ Relevant(z.pc)))) [11]

All the above equations are interpreted as least-fixed-point
equations, with the main computation being that of SummaryEFopt
(note that this is important as some of the equations, such as
Relevant employs negation— see Section 3 for the precise algo-
rithmic semantics of evaluation).

By clause 1, the initial states are added to the current set in
each iteration. Note that they will contribute to determining the
set of “relevant” program counters only once (when they are first
inserted). By clause 2, for each tuple (1, u, v), the tuple (0, u, v)
is added to SummaryEFopt, i.e., all the pairs (u, v) already discov-
ered so far are marked as not newly discovered. Clause 3 adds to
SummaryEFopt the tuples belonging to either one of the sets New1
and New2, and mark them with fr =1. Equation 4 computes the
set Relevant of all program counters pc such that there are pairs
of states (u, v) in SummaryEFopt which are marked with fr=1 but
not fr=0, and pc is the program counter of the newly discovered
states v. In the equation defining New1, clause 5 adds to New1 each
pair (u, v) which has been already discovered and such that v.pc is
in the set Relevant, and clause 6 allows us to discover new states
by taking internal transitions. The least fixed-point of New1 com-
putes the set of all pairs (u, v) such that v can be reached within
any number of internal transitions from a state w such that w.pc is
in Relevant and (1, u, w) is in SummaryEFopt. The above equation
for New2 defines New2 as the set of all pairs (u, v) such that v is
either reachable by a call from a reachable relevant state (clause 7)
or by a transition across a call to a module (clauses 8–11). Notice
that for the correctness of the algorithm in this second case it is
crucial to require just that for either one among the caller state and

the exit state involved in the transition to be in the relevant set, and
not both (clause 11). In fact, such caller and exit states could be
discovered in different times and thus it might be the case that they
never happen to be in the relevant set at the same time.

The following that captures the correctness of the above fixed-
point algorithm:

THEOREM 3. Let P be a program. Consider the least fixed-
point of the equation for SummaryEFopt given above. Then
SummaryEFopt(1, u, v) holds if and only if u is an entry of a proce-
dure that is reachable in P and v is a state in the same procedure
reachable from the entry u using a run that returns from all calls. In
particular, SummaryEFopt(1, u, v) holds when u is an entry of main
iff v is a state of main that is reachable in P .

The above algorithm is similar to frontier-set simplification or
incrementalization techniques often implemented in solvers. How-
ever, we emphasize that they are not the same. In frontier-set sim-
plification, the precise set of states discovered in the previous round
are used to compute the image. However, in many situations, the
BDD for the frontier-set can be much larger than the BDD for
all reachable states. In our algorithm, we wish to take the set of
all reachable nodes whose pc-value was part of some state on the
frontier-set. This is a restriction of the reachable set to a particu-
lar set of program-counter values, and hence does not blow up in
practice.

5. Bounded-context reachability in concurrent
programs

A concurrent Boolean program is a set of boolean recursive pro-
grams running in parallel and sharing some (global) variables. For-
mally, the syntax of concurrent boolean programs is defined by ex-
tending the syntax of boolean recursive programs (Section 2) with
the following rules:

〈conc-pgm〉 ::= 〈gvar-decl〉 〈pgm-list〉
〈pgm-list〉 ::= 〈pgm〉 〈pgm-list〉 | 〈pgm〉

Let P be a concurrent program formed by the sequential pro-
grams P1, . . . , Pn (where n > 0). Each program Pi has its own
global and local variables, and can access also to other variables
which are shared with the other component programs. We denote
with S the set of the shared variables and with VS the set of their
valuations.

We give the semantics of P using interleaved the behaviors
of P1, . . . , Pn. At any point of a computation, only one of the
programs is active. Therefore, a configuration of P is denoted
by a tuple (i, uS , u1, . . . , un) where Pi is the currently active
program, uS ∈ VS and uj is a configuration of Pj (valuation of
global and local variables and stack) for j = 1, . . . , n. From the
configuration (i, uS , u1, . . . , un) the computation of P can evolve
either according to the local behavior of Pi or by switching to
another program Pj , which then becomes the new active program.
The consecutive portion of a run that executing only program Pi is
called a context.

Given a program counter pc (of any component program), the
reachability problem for concurrent programs asks whether a state
containing pc can be reached in a computation of P . It is well-
known that the reachability problem for concurrent recursive pro-
grams is undecidable. For model-checking such programs sev-
eral authors have considered a simpler reachability problem, the
bounded context-switch reachability. Given a program counter pc
and an integer k, the k-bounded context-switch reachability prob-
lem asks whether a state containing pc can be reached in a compu-
tation where the active program has changed at most k times (i.e.,
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at most k context-switches happened). In the following, we refer to
a component program of a concurrent program also as a thread.

5.1 An algorithm for bounded context-switching reachability
in concurrent programs

Our fixed-point algorithm for computing the set of states reachable
by a concurrent Boolean program in k context-switches is a bit
involved— we will give here the main intuition of the construction
of the fixed-point equations, and skip formal proofs of correctness.

Fix a bound k on the number of context-switches and fix n
the number of threads in the program. Our fixed-point formula
is parameterized over k and n. Assume, for simplicity, that each
thread of the concurrent program is over the same set of local and
global variables, and further, that all global variables are shared by
the threads. Let L denote the local variables and G the global (and
shared) variables.

We compute a predicate Reach(u, v, ecs , cs, {gi}k
i=1, {ti}k

i=0),
where both u and v represent valuations of L ∪ G, cs and ecs
are variables ranging over {0, 1, . . . , k}, each gi is a valuation
of the global shared variables G, and each ti is a variable over
{1, . . . , n}. Intuitively, the pair (u, v) captures a summary relation
of one particular thread, where u represents the point of entry into
the current procedure of the thread and v represents the current
state of the thread. The variable cs denotes the current context-
switch number (i.e. the number of context-switches that have taken
place) while ecs represents the number of context-switches that had
happened at the point of entry into the current procedure (and hence
ecs ≤ cs). The variable ti (i = 0, . . . cs) represents the thread that
is active at the i’th context. The variable gi represents the valuation
of the shared global variables at the point at which the i’th context-
switch happened.

More formally, Reach(u, v, ecs , cs , {gi}k
i=1, {ti}k

i=0) holds iff
there is a global execution ρ that switches contexts cs times, the
i’th context-switch happening at global valuation gi (for each i ∈
{1, . . . , cs}), and reaches a global state where thread T = tcs is in
the state v, and furthermore, the valuation of the global variables at
the entry to the procedure in thread T was u.Global, and the num-
ber of context-switches done before the last entry to the procedure
was ecs . This is the precise semantics of Reach, and is essential to
understand the fixed-point formulation that we provide below. No-
tice that the values of gj and tj , where j > cs, are not relevant at
all, and do not contribute to the semantics of Reach.

Note that a program counter pc is reachable by
the concurrent program within k context-switches iff
Reach(u, v, cs , {gi}k

i=1, {ti}k
i=0) holds for some tuple with

v.pc = pc. Hence computation of Reach suffices to solve the
reachability problem.

One property of our formulation of the fixed-point greatly
simplifies understanding it and hence is worth noting.
When inferring that Reach(u, v, ecs , cs , {gi}k

i=1, {ti}k
i=0)

holds, we will use the fact that other tuples of the form
Reach(u′, v′, ecs ′, cs ′, {g′

i}k
i=1, {t′i}k

i=0) hold. However, these
tuples will always be such that g′

i = gi and t′i = ti. In other words,
when we infer tuples in Reach using other tuples, we will ensure
that the gi and ti tuples are precisely the same, for all values of i.
Furthermore, cs′ ≤ cs also will always hold.

We are now ready to define the fixed-point. In the following, let
g denote {gi}k

i=1 and let t denote {ti}k
i=0.

Reach(u, v, ecs , cs , g, t) =
ϕinit ∨ϕint ∨ϕcall ∨ϕret ∨ϕ1st−switch ∨ϕswitch

where the sub-formulae are defined as follows:

[Initial tuples:]

ϕinit = (cs= ecs=0 ∧ Entry(u.pc) ∧ u=v ∧ Init(t0, u.pc) )

This is similar to the initial clause we had for sequential summaries,
except that we set the number of context-switches that have hap-
pened to 0 and make sure u.pc is the initial program-counter for
thread t0, the thread active in the first context.

[Internal transitions:]

ϕint =∃x.
(
Reach(u, x, ecs , cs , g, t) ∧ ProgramInt(x, v)

)

[Call transitions:]

ϕcall =∃x, y, ecs ′.( Reach(x, y, ecs ′, cs , g, t) ∧ IntoCall(y, u)

∧ ecs =cs ∧ u=v )

[Return transitions:]

ϕret =∃x, y, z, cs ′.( Reach(u, x, ecs , cs ′, g, t)∧ IntoCall(x, y)

∧Reach(y, z, cs ′, cs, g, t)∧Exit(z.pc)∧Return(x, z, v)∧ cs ′≤cs)

The above three clauses explore states reached using internal
transitions, call transitions, and return transitions of the current
thread, and are very similar to the corresponding clauses we had for
sequential summaries. Note that taking these transitions preserves
the value of cs .

However, there are some subtleties to note regarding the formula
for return transitions. The state of the caller of the current module,
x, could have been reached using a different number of context-
switches cs ′; but we must then insist that cs ′ is not larger than cs .

The soundness argument for this last rule is subtle. Since
Reach(u, x, ecs , cs ′, g, t), there is a run ρ that reaches x using cs ′

context-switches. From the fact that Reach(y, z, cs ′, cs , g, t) holds,
it follows that there is a run ρ′ that reaches z using cs context-
switches. The crucial argument is that we can construct from ρ and
ρ′ a run that reaches v using cs context-switches. This run ρ′′ is
obtained as follows: from ρ, we take the portions of the run in the
current thread that reaches the caller x in cs ′ context-switches, and
stitch it with the local run of the current thread in ρ′ within the cur-
rent procedure from entry y to exit z, and then proceed to v. More-
over, the runs in the other threads are obtained by using appropriate
portions in the run ρ′. The fact that this results in a valid global run
ρ′′ depends crucially on the fact that the two Reach-tuples are over
the same vectors g and t. In particular, the local run which we pull
out from ρ assumes context-switches to other threads that result
in changes to global variables, and cannot be invalidated when we
substitute the runs in other threads using different runs (from ρ′)
that result in the same changes to global variables.

[Context-switching to a thread for the first time:]

ϕ1st−switch =∃x, y, cs ′, ecs ′. ( Reach(x, y, ecs ′, cs ′, g, t)∧
(cs =cs ′+1)∧First(tcs , cs , t)∧ (v.Global =gcs =y.Global)∧

(u = v) ∧ (ecs = cs) ∧ Init(tcs , v.pc) )

In the above, First(t, s, t) is a predicate that is true iff ts =
t and there is no r < s such that tr = t. In other words,
First(tcs , cs, t) checks whether cs is the first context the thread
we are switching to (tcs ) is active in.

This clause deals with the first time we switch to a thread,
and allows a tuple to be added to Reach provided there was some
state reachable in a different thread with the same global variables
and one less context-switch; we record the globals in gcs (i.e., the
component of g at index cs).

[Context-switching back to a thread:]

ϕswitch =
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(∃x, y, cs ′, ecs ′. (Reach(x, y, ecs ′, cs ′, g, t)∧(cs =cs ′ +1)∧
¬First(tcs , cs, t) ∧ (v.Global = gcs = y.Global) ) )

∧
(∃v′, cs ′′.(Reach(u, v′, ecs , cs ′′, g, t) ∧ (cs ′′<cs) ∧

Consecutive(cs ′′, cs , t) ∧ v.Local =v′.Local) )

This case handles the scenario when we switch to a thread we
had executed previously at some point.

The first conjunct above checks whether a state is reachable in
another thread, and imbibes the global valuation from there (similar
to the previous case). The second conjunct is more involved as it
retrieves the local valuation of the thread we are context-switching
to.

The predicate Consecutive(r, s, t) checks whether ts = tr and
further that there is no r < i < s such that ts = ti. Hence
Consecutive(cs ′′, cs, t) checks whether cs ′′ was the last context
the thread we are switching to was last active in. We recover the
local state of the thread by checking for a compatible tuple in Reach
with cs ′′ context-switches.

The soundness of this rule also involves stitching runs. Given
two runs that witness the two tuples in Reach in the above clause,
we can stitch them into a single run that witnesses the new tuple we
are adding to Reach. The crucial condition that helps in showing
this is again that the runs in other threads can be freely substituted
using runs that effect the same change in global variables.

We can now check whether pc is reachable using the following
predicate:
Reachable(pc) = ∃u, v, ecs , cs , g, t.

( Reach(u, v, ecs , cs, g, t)∧v.pc = pc )
The following theorem states the correctness of the above fixed-

point formulation:

THEOREM 4. Fix an integer k > 0. Let P be a concurrent Boolean
program with n threads, and let Goal be a program counter of
P . Let Reach and Reachable be the predicates as defined above.
Then a state with program counter Goal is reachable in P within k
context-switches iff Reachable(Goal) holds.

One of the salient features of the above formulation is the
economic use of copies of global variables. A natural formulation
would keep track of the g and t vectors at the entry to a called
procedure; however, since these vectors never really change, we
can do away with keeping these vectors at the entry to a procedure.
In other words, summaries do not involve two copies of the k-tuple
of global variables. Hence the number of global variables we use
in the fixed-point formulation in k · |G| + 2|G| only (we can in
fact reduce this even to k · |G|+ |G| by getting rid of the v.Global
variables, and instead use gcs ). Previous formulations of capturing
the reachable states using fixed points required more copies of
global variables [12].

A nice feature of the formulation presented in [12] is that the
authors show how to handle k round-robin schedules (not context-
switches) using O(k) copies of global variables only. We have ex-
tended our formulation above to rounds as well, and can capture a k
round-robin schedule using 2k copies of global variables. However,
this is considerably more complex, and is out of the scope of this
paper. We do emphasize that this formulation too can be captured
using our fixed-point calculus.

6. Implementation and experiments
In this section, we describe the implementation of the ideas pre-
sented in this paper in a new tool GETAFIX (“get-a-fix using fixed-
points”), and is available at the website below:

http://www.cs.uiuc.edu/∼madhu/getafix .

6.1 GETAFIX on sequential recursive programs

GETAFIX is a BDD-based symbolic verifier for Boolean programs
which answers reachability queries. The tool takes as an input a
Boolean program and a statement label, and gives as an output a
YES/NO answer to the question “is the statement at the input label
reachable in the input program?”. The answer can be computed
using one of the algorithms presented in the previous sections,
which have all been implemented in the tool. The model-checking
engine of the tool is the mu-calculus symbolic model checker
MUCKE [7]: the input program and the reachability algorithm are
all translated into a mu-calculus formula which is fed to MUCKE
for evaluation.

The high level architecture of the tool is shown in Figure 1.
GETAFIX takes the input Boolean program and a target program la-
bel, and generates Boolean formulae (without fixed-points) that de-
scribe the various predicates in the Boolean program. These are the
template formulae described in Section 4, and includes predicates
that capture the internal transition relation, the transition relation
on calls, etc. These templates are succinctly described as Boolean
formulae. GETAFIX also computes a fairly simple BDD-ordering
suggestion to MUCKE, encoding it as allocation constraints. This
BDD ordering is based on a simple algorithm which looks at the
assignments in the program, and tries to allocate the variables in-
volved in the assignment together. This algorithm is essentially the
same algorithm followed by both MOPED VERSION 1 and BEBOP
(the Boolean program checker used in SLAM).

The formulae resulting from the translation step has a first part
that concerns the encoding of the input program and a second part
that concerns the encoding of the chosen reachability algorithm.
The two parts have a clear interface represented by the formulae
ProgramInt, IntoCall, Entry, Exit, Init, Across and Return that have
been described in Section 4. Therefore, each of the parts can be
implemented independently of the other as long as the program
translation will define those formulae and the algorithm will use
only those abstractions of the program.

The table in Figure 2 summarizes our experimental results. For
each analyzed program, we report the number of non-blank lines
of code (LOC), the maximal number of return values and input
parameters in any procedure in the program, the number of global
variables, the total number of local variables, the maximal number
of local variables in any procedure, and the number of procedures
in the program. For the GETAFIX tool, we report the final BDD size
of the summary set, and the time taken to compute the answer, in
seconds, for both the entry-forward algorithm and the optimized
entry-forward algorithm. Note that the final BDD size is the same
for both algorithms. We also report the time MOPED VERSION 1,
MOPED VERSION 2 and BEBOP took to answer the same queries
on the same machine. As regards to BEBOP, on each suite we
have tried different options which enable/disable counter-example
generation and switch on/off optimizations; we report in the table
the best time (minimum time) taken by BEBOP for each experiment.
The programs were all in compatible syntax so that they could be
input to any of the tools. For aggregated suites, the time and space
reported are the average of the times and spaces for the suite. We
took care not to combine examples with very different complexities
into a sub-suite.

The first suite is the set of Regression examples; the positive
ones are those where the target label is reachable, and the negative
ones are where it is unreachable. The Regression suite consists
of 177 small programs meant to test SLAM on correctness of
abstraction of language features.

The next suite is a set of drivers from SLAM benchmarks, which
we obtained from Stefan Schwoon. Each sub-suite contains several
Boolean programs. For all these suites, we report average statistics.
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GETAFIX

Reachability
Algorithm
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Figure 1. Architecture of the GETAFIX tool

GETAFIX MOPED 1 MOPED 2 BEBOP

# LOC #ret #param. #globals #locals max locals # proc-
(g) per proc. edures Reach? #Nodes Time (s) Time (s) Time (s) Time (s)

(l) in BDD

EF EF opt
REGRESSION

Positive 368 1.8 2.3 0.81 4.8 3.2 6.9 Yes 240 1 1 1 1 1
(99 programs)

Negative 224 1.9 2.5 2 8.2 3.6 6.5 No 625 1 1 1 1 1
(79 programs)
SLAM

Driver iscsiprt 10K 10 9 3.5 211 11.8 148 Yes 8K 2 2 1 1 1
(positive)
(15 programs)

Driver floppy 17K 15 12 5.3 172.5 16 103 Yes 9K 2 2 1 1 1
(positive)
(12 programs)

Driver (negative) 10K 11 8.25 10.7 154.2 12 116.2 No 17K 2 2 1 1 1
(4 programs)

iscsi (positive) 12K 18 18 17.1 358.8 18 158 Yes 81K 5 5 2 4 6
(16 programs)
TERMINATOR

Terminator-A
(iterative) 284 18 12 9 97 68 4 Yes 141K 4 3 - 1 4
(schoose) 284 18 12 9 97 68 4 Yes 162K 3 3 14 1 3
Terminator-B
(iterative) 471 9 7 14 77 42 4 No 997K 72 12 - - -
(schoose) 471 9 7 14 77 42 4 No 660K 32 9 24 490 953
Terminator-C
(iterative) 908 1 0 23 19 19 4 No 48K 2 3 1 1 711
(schoose) 908 1 0 23 19 19 4 No 48K 2 3 1 1 709

Figure 2. Experimental results: “–” denotes time-out in 30 minutes

Finally, the last suite contains three programs generated by the
TERMINATOR tool [10] and provided to us by Byron Cook.

First, note that the entry-forward optimized algorithm outper-
forms the entry-forward algorithm, essentially, overall.

In SLAM driver suites, notice that GETAFIX takes a little longer
than MOPED, and except for the ISCSI suite, also than BEBOP. This
is primarily due to an overhead in using MUCKE— MUCKE first
computes allocations of BDD-variables using an algorithm which
actually takes a few seconds. These examples are extremely large in
code-length (not particularly complex in the set of reachable states).
Profiling the tool, we found that the actual image computation time
is less than a second on these examples in GETAFIX.

Let us turn to the TERMINATOR benchmarks, which are actually
quite complex and with large BDDs representing reachable states.
The benchmarks we obtained had a dead statement that currently
the tools MOPED and GETAFIX do not support. A declaration of
a set of variables as dead essentially means that the variables will
no longer be used in the computation of a module. We modeled the

dead statement in two ways— one way was to iteratively assign the
variable to a nondeterministic value using conditional if-then-else
statements (marked ‘iterative’ in the table), and the other was to
replace them using an assignment called schoose which can assign
non-deterministic values (marked ‘schoose’ in the table). Notice
that Moped does not terminate on two of the three examples, in the
iterative version. We cannot believe that it is actually experiencing
difficulty in solving the problem; we suspect this may just be an
error in Moped. Also, these examples are quite challenging for
BEBOP. On TERMINATOR-B and TERMINATOR-C it takes several
minutes and on the iterative version of TERMINATOR-B it did
not terminate in 30 minutes. In all the TERMINATOR examples
GETAFIX terminates in less than 30 seconds.

In summary, the experiments clearly show that GETAFIX is
competitive against well-tuned mature tools. Note that this is de-
spite the fact that GETAFIX lacks several other low-level heuristic
tricks built into other tools, such as static analysis to eliminate dead
code, etc.
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Context Reachable Max reach Time
switches set size sec.

Two processes: one adder and one stopper
(12 local variables and 8 global variables)

1 No 0.6k 5.4
2 No 1.5k 5.5
3 No 5.5k 5.7
4 No 7.0k 5.8
5 No 13.3k 6.3
6 No 23.2k 7.3

Three processes: one adder and two stoppers
(18 local variables and 8 global variables)

1 No 0.7k 5.5
2 No 2.9k 5.5
3 Yes 9.9k 5.7
4 Yes 34.6k 6.8
5 Yes 115.0k 9.2
6 Yes 370.5k 17.4

Three processes: two adders and one stopper
(18 local variables and 8 global variables)

1 No 0.7k 5.4
2 No 2.6k 5.6
3 No 10.4k 6.0
4 Yes 41.1k 7.6
5 Yes 90.9k 9.1
6 Yes 250.1k 9.1

Four processes: two adders and two stoppers
(24 local variables and 8 global variables)

1 No 0.8k 5.5
2 No 3.6k 5.6
3 Yes 15.8k 5.9
4 Yes 67.8k 7.6
5 Yes 296.9k 13.0
6 Yes 1227.4k 57.1

Figure 3. Experimental results on the Bluetooth driver example

6.2 GETAFIX on concurrent programs

The table in Figure 3 resumes the experiments we have run on our
tool to test a Boolean model of Windows NT Bluetooth driver [17].
Briefly, this driver has two types of threads, stoppers and adders. A
stopper calls a stopping procedure to halt the driver, while an adder
calls a procedure to perform I/O in the driver. We have considered
four different configurations: an adder and a stopper, two adders
and a stopper, an adder and two stoppers, and two adders and
two stoppers. For each of this configurations we report the results
allowing up to six context switches. Except for the configuration
with only two programs, GETAFIX discovered a bug using at least
three context switches when using two stoppers and at least four
context switches when using only one stopper. The execution times
shown in Figure 3 are competitive with those obtained by other
tools on which this driver was tested [22, 12].

7. Conclusions
We have implemented in the tool GETAFIX two classes of algo-
rithms that solve respectively reachability in Boolean programs and
bounded context-switch reachability in concurrent Boolean pro-
grams, using formulae in a fixed-point calculus. The experimental
results presented in this paper, and the ease of building algorithms
using the fixed-point calculus, encourage us also to extend our tool
to solve static-analysis problems in program analysis.

GETAFIX uses MUCKE a symbolic fixed-point solver to evalu-
ate formulae. While we have used only alternation-free fixed-point
calculus formulae in this work (as we were interested in reachabil-
ity), our formalism can easily be extended to arbitrary mu-calculus
specifications. In fact, it is well-known that any mu-calculus spec-
ification on pushdown systems can be reduced to a mu-calculus
formula on a finite-state system (modeling a parity game solution
on the pushdown graph) [23]. Moreover, MUCKE accepts specifi-
cations expressed as a formula of the mu-calculus.

Currently, GETAFIX does not support reporting of counter-
examples. Mucke does support counterexamples; we plan to adapt
it to report readable counter-examples for reachability to the user.
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Appendix: Precise fixed-point formula for the
entry-forward algorithm
We now describe the implementation of the relation SummaryEF
from Section 4.2, and is hence the precise algorithm implemented
in that section. Notice the brevity of the code (∼40 LOC without
comments).

In the following code, we use a structure Conf defined as a
tuple (mod, pc, CL, CG, ENTRY CL, ENTRY CG) where: mod is a
module name, pc is a program counter of module mod, CL and
ENTRY CL are vectors of local variables, CG and ENTRY CG are
vectors of global variables. Note that (mod, pc) uniquely determine
a program counter in a program. We assume that pc of an entry state
is 0 in any module. The intended meaning of a given Conf s is
as follows. Tuple ((s.mod, s.pc), s.CL, s.CG) denotes the current
state of the program (in the following, we refer to it as s-current),
and ((s.mod, 0), s.CL, s.CG) is the state visited when the current
module was entered for the last time on a computation leading to
the current state (in the following, we refer to it as s-entry).

The following formula Reachable defines the relation SummaryEF
from Section 4.2. In fact, it is possible to show that Reachable(s)
holds true if and only if SummaryEF(u, v) holds true where u is the
state s-current and v is the state s-entry.

mu bool Reachable (Conf s) (
/* early termination */
( exists Conf t. ( target(t.mod,t.pc) & Reachable(t) ))

/* add initial configurations */
| Init(s)

/* forward propagation on internal transitions:
s-current is reachable via a transition internal
to s-module from t-current, for a reachable t */

| (exists Conf t. ( Reachable(t)
& t.mod=s.mod /* module does not change */
& t.ENTRY_CG=s.ENTRY_CG & t.ENTRY_CL=s.ENTRY_CL

/* entry state does not change */
& programInt(s.mod,t.pc,s.pc,t.CL,s.CL,t.CG,s.CG)

/* internal transition from t-current to s-current */
))

/* forward propagation on calling a module:

there is a reachable t such that t-current is
a call and s-current is a corresponding entry */

| (s.pc=0 & s.ENTRY_CG=s.CG /*s-current is an entry*/
& CopyLocals(s.mod,s.ENTRY_CL,s.CL)

/* s.ENTRY_CL=s.CL on local variables in s.mod */
& (exists Conf t.

(Reachable(t) & t.CG=s.CG
/* s-current and t-current match on global vars*/

& programCall(t.mod,s.mod,t.pc,t.CL,s.CL,s.CG)
/* t-current is a call to s.mod and parameters

are passed from t-current to s-current */
)))

/* forward propagation from call to matching return:
s-current is a return,

(1) there is a reachable t such that
(1.1) s-entry and t-entry match
(1.2) t-current is a call matching s-current
(1.3) s-current and t-current match on local

variables not assigned with return values
(1.4) t-current is a call corresponding to u-entry
(1.5) call parameters are computed from t-current

and assigned to local variables of u-entry
and
(2) there is a reachable
u=(u_mod,u_pc,u_CL,u_CG,u_ECL,u_ECG) s. t.
(2.1) u-entry is an entry corresponding to

t-current (u_ECG = t.CG)
(2.2) u-current is an exit
(2.3) u-current corresponds to return s-current
(2.4) s-current and u-current match on global

variables not assigned with return values
(2.5) remaining global variables and assigned

local variables of s-current are assigned
with return values computed from u-current

*/
| (exists PrCount t_pc, Global t_CG, Module u_mod,

PrCount u_pc, Local u_ECL.
/* clause (1) */

(exists Conf t.
(Reachable(t)
& (t.pc=t_pc & t.CG=t_CG)

/* extract t components needed in clause 2 */
& (t.mod=s.mod & t.ENTRY_CL=s.ENTRY_CL

& t.ENTRY_CG=s.ENTRY_CG) /*clause 1.1*/
& SkipCall(s.mod,t.pc,s.pc) /*clause 1.2*/
& SetReturn1(s.mod,u_mod,t.pc,u_pc,t.CL,s.CL)

/* clause 1.3 */
& programCall(t.mod,u_mod,t.pc,t.CL,u_ECL,t.CG)

/* clauses 1.4 and 1.5 */
))
&
/* clause 2 */
(exists Conf u.(
(u.mod=u_mod & u.pc=u_pc & u.ENTRY_CL=u_ECL

& u.ENTRY_CG=t_CG)
/* u conforms to extracted values & clause 2.1*/
& Reachable(u)
/* u is reachable */
& Exit(u_mod,u_pc)
/* clause 2.2 */
& SetReturn2(s_mod,u_mod,t_pc,u_pc,

u_CL,s_CL,u_CG,s_CG)
/* clauses 2.3, 2.4 and 2.5 */

)))
);

/* Reachability query: is a target state reachable?*/
(exists Conf s. (target(s.mod,s.pc) & Reachable(s)));
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