
Language Constructs for Programming by Example

Robert V. Rubin

Department of Computer Science
Brown University

Providence, Rhode Island 02912

Abstract

Systems for programming by example permit the specification of algorithms
through the use of demonstrations that manipulate examples. This paper
analyzes systems for programming by example from a language point of view.
Examples are analyzed as data abstractions, and demonstrations as abstrac-
tions for evaluation and control. Criteria are introduced for evaluating both
the computational power and the expressiveness of the abstractions. The

several previously unconsidered
associated with programming by

analysis I demonstrates the existence of
approaches to the more difficult problems
example.

1. Introduction - Programming by Example

Programming by example is a mechanism
whereby programs, or algorithms, can be specified via
examples of their application. Consider, for example,
the specification of a push operation for manipulat-
ing a stack. An element, serving as an ezampZe of an
input argument, is composed with a second argu-
ment, serving as a canonical example of a stack, to
form a new example of a stack. The composition of
the two example elements corresponds to a demons-
tration. The operational components of this illustra-
tion are two: the example and the demonstration.
This paper examines these operational components
from a programming language point of view. Exam-
ples are treated as data abstractions, and demons-
trations as abstractions for evaluationa and control.

A system for programming by example has
several properties distinguishing it from a program-
ming language environment. An example is a data
abstraction with an equivalent visualization. A
demonstration is a pattern of control, or evaluation,
defined by direct manipu1ation.l Languages for pro-
gramming by example describe examples and
demonstrations. Conventional programming

languages need consider neither the visualization of

This work was supported by a fellowship from the Graduate Education
Engineering Program of Digital Equipment Corporation.

Permission to copy without fee all or part of this material is gra, :d
provided that the copies are not made or distributed for di.,ct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

an abstraction, nor the direct manipulation associ-
ated with the demonstration. While several declara-
tive and applicative languages have certainly been
designed with a subset of similar considerations in
mind, most languages are not explicitly concerned
with “how” an abstraction is to be specified. Sys-
tems for programming by example embed representa-
tion and manipulation in the language constructs
underlying examples and demonstrations.

Casting the operational components of program-
ming by example in terms of programming language
constructs permits the use of well established criteria
in evaluating and contrasting such systems. Two
such criteria are particularly relevant: ezpcpressiveness,
and expressive power. Expressiveness is a measure of
generality, flexibility, and applicability. Expressive
power is a hard computational metric. The visual
depiction of an example may be attributable to its
expressiveness, and reflect little on its expressive
power. On the other hand, a construct of deep
expressive power may be of little use because of its
poor expressiveness. This paper generates specific
criteria for expressiveness and expressive power, and
applies them to the language constructs used to
specify examples, and demonstrations.

Algorithms and programs have classically been
described via examples of their application.
Babylonian mathematicians working between 1800-
1600 B.C. developed formalisms notationally analo-
gous to programming by example to specify algo-
rithms for the solution of linear equations.2 They had
no algebraic notation equivalent to today’s; instead,
each algorithm was represented as a set of rules
organized systematically around a set of numerical
examples or diagrams containing reference points and
numerical data (in sexagesimal notation). (See Figure

1).

@ 1986 ACM 0-89791-210-l/86/1000-0092 754

92

http://crossmark.crossref.org/dialog/?doi=10.1145%2F15847.15858&domain=pdf&date_stamp=1986-12-01

Although there are Babylonian algorithms without
accompanying numbers serving as examples,
apparently they are rare. Babylonian mathemati-
cians also have conventions for specifying demonstra-
tions that correspond to conditionals and iteration.
Conditionals were not introduced explicitly in a pro-
gram; instead, separate procedures with a distinctly
different data set were provided. The correct pro-
cedure was identified from the example, and then the
rules were systematically evaluated. Iteration was
introduced in what notationally constitutes a macro
expansion. If a computation was to be performed
repeatedly, every computation using the example was
specified explicitly, until the desired result was
obtained. These methods differ little from some of
the mechanisms used today in systems for program-
ming by example.

Al-Khowarizmi, an Arabic mathematician from
the 9th century A.D., (and from whose name is
derived the term “algorithm”), authored a treatise on
Algebra3 where he prescribes computational abstrac-
tions fundamentally operational in nature. His
definitional mechanism for an abstraction relies on
specific examples. Al-Khowarizmi specifies a pro-
cedure encapsulating a set of computations via pre-
cise textual descriptions and labeled geometric
figures. Notational abstraction in an algebraic sense
did not exist in Qth-century Babylonian mathemat-
ics. Al-Khowarizmi describes the solution of qua-
dratic equations by systematically referring his algo-
rithm to six geometric diagrams. For mathemati-
cians of the day, the operational abstraction was
intimately connected with an example of its visuali-
zation and demonstrations of its application.

Modern programming languages and environ-
ments provide capabilities stylistically similar to the
notations developed by the Babylonian mathemati-
cians. Systems for programming by example are
extraordinarily consonant with the specification tech-
niques of Al-Khowarizmi and his Babylonian prede-
cessors. Some of the same flavor of programming-
by-example is retained in work in inductive inference,
where a procedure is synthesized from examples of a
program’s behavior. This paper does not address
program synthesis via induction.4 Nevertheless, it is
interesting to note that some of the early work in
program synthesis contained definitional mechanisms
complete within specific complexity classes; Essen-
tially, the systems provided all the components of a
programming language.

The systems considered here are enumerated in
Figure 2. This paper provides a methodological
approach to language design for programming-by-
example. Specific features of each system are
explored; no attempt is made to explore all features
of these systems, nor is this particular list of systems
assumed to be comprehensive.

2. Examples and Data Abstraction

The question “What is an example?” is categori-
cally answered here as a form of data abstraction.
The examples may represent data, records, variables,
a sequence of variables, or perhaps an expression in
the relational algebra. The semantics of the
abstraction is dependent on the language in which
the example is formulated.

The criteria for analyzing the expressiveness of
the examples in a system are primarily visual:

[l] Can the semantics of an example be completely
specified diagrammatically?

[2] Are multiple views of the abstraction possible?
Is there a function mapping each visualization
to a specific component of the semantics?

We define a structure diagram as a tw*
dimensional figure that contains a potentially iso-
morphic mapping to the clauses used to represent the
object. The counterpart to structure diagrams, logic
diagrams, are defined in5 as two-dimensional
geometric figures with spatial relations that are iso-
morphic with the structure of a logical statement. A
simple form of logic diagram is one that expresses a
set of transitive asymmetric relations. The evolu-
tionary scale, for example, provides a graphical dep-
iction of “is derived from” relations. The logic
diagram is well established as a useful tool that nei-
ther supplants nor detracts from other notational
abstractions.

Criteria for evaluating expressive power are clas-
sically applied to the evaluat on of programming
languages:

[l] What is the relevant notion of aggregation? Are
there corresponding notions of ordered, or unor-
dered aggregates? Can all classes of n-ary trees
be represented? Finite, or infinite?

[2] What facilities are available for expressing the
relationships between different examples?

[3] Does the language permit the expression of type
information? When and where is typechecking
applied? Can polymorphic operators be defined?

How powerful a notion of aggregation is desir-
able? S-expressions in Lisp are sufficient and
mathematically elegant (defined recursively or induc-
tively) and can be used to represent all classes of
trees.

What language facilities can be used to charac-
terize relationships between examples? Are the
expressions/predicates generated in the system first-
or second-order? First-order languages are not as
expressive as second-order languages. For example,
transitive closure cannot be expressed in the first-
order predicate calculus or the relational algebra.6
However, first-order expressions can be evaluated
more e%ciently, and, as described below, contain
visual properties second-order expressions do not.

93

Is type information important as a characteriza-
tion of expressiveness, or expressive power? Lisp ori-
ginally contained only two types: atoms and dotted
pairs. Pascal, considered by some as more expres-
sive, has facilities for user defined types. Yet its
expressive power is identical to that of Lisp.

Questions may be raised about the formulation
of these particular criteria. Languages have offered
different solutions to these problems, cast often
within different models of computation. The
justification offered here is that these provide a basic
platform for comparison.

2.1, Clauses in QBE, ThinkPad, and PHD

The examples manipulated in Query-by-example
(QBE): ThinkPad,* and PHDg represent ctavses or
terms in the relational algebra, Horn-clause logic,
and a second-order logic language by the name of
Omega, respectively. Examples in all of these sys-
tems are manipulated in the context of structure
diagrams, which depict the set of clauses associated
with a particular algorithm.

The design of QBE is based on the observation
that the relational algebra can visually be
represented by a table. The table in QBE is a struc-
ture diagram. A translation function maps the data
associated with the structure diagram to expressions
in the relational algebra. An example in QBE is a
variable, or a set thereof, defined by its membership
property in the structure diagram, and its relation to
other examples. Minimally, an element in each row
in a table corresponds to a tuple. All examples
represent terms within an expression in the relational
algebra. If the identical variable is used in more
than one structure diagram, it provides a pattern
that must be properly formulated in the translation
to an expression in the relational algebra.

The expressiveness, and consequently the
elegance of QBE lies in its use of a table as a struc-
ture diagram. The table provides the user with a
model that is highly intuitive. The power of QBE
lies in its expressiveness.

QBE’s expressive power includes the ability to
specify arbitrary n-ary trees, although its underlying
language also includes integrity constraints con-
straining a tree from containing cycles. The integrity
constraints ensure three properties of an acyclic tree:
that examples within a tree are irreflexive (e.g. an
employee cannot be his own manager), and, asym-
metric on the transitive closure of an example (e.g.
an employee cannot be both somebodys subordinate
and his manager), and unique (e.g. an employee can-
not have more than one manager). Examples
representing any arbitrary position in the tree may
be specified.

An example in ThinkPad is a structure diagram
that embodies a set of clauses constraining the par-
ticular example. The expressiveness of ThinkPad is
derived from a clausal representation of structure
diagrams translated into Prolog clause (Horn-
clauses).1° ThinkPad, unlike QBE, provides some of
the graphical tools for the design of an arbitrary
representation (i.e. structure diagram) for a set of
clauses. It is from the ability to design an arbitrary
representation that ThinkPad gains its expressive-
ness. For example, a structure diagram may
represent a data structure containing typed elements
or substructures. Each type has a graphical depic-
tion, each subcomponent a specific spatial location.
Substructures of the same type as the structure
diagram are defined recursively. Recursive structure
diagrams contain sufficient expressive power to gen-
erate all classes of trees.

Structure diagrams in ThinkPad are not neces-
sarily isomorphic with their clausal representation.
For example, a table may be expressed in n-ary or
binary normal form. To solve this problem, a normal
form is automatically selected before the diagram is
translated into a set of clauses.lI Once a normal
form is selected, the mappings become isomorphic.
The algorithms for translation between structure
diagram and Horn-clauses are described inl2

Type information and the membership proper-
ties are modeled by specific asymmetric transitive
Horn-clauses. Containment within a structure
corresponds to an is-member clause. Identification as
a type is modeled as a is-a clause. An n-ary normal
form is used for mapping containment predicates.
Type information in ThinkPad is problematic. Vari-
ables in Prolog, and consequently, their operators,
are generally polymorphic. For example, the “<
operator may be applied to strings as well as
integers. In ThinkPad, the is-a relationship pre-
cludes polymorphism.

Structure diagrams in ThinkPad may have
clauses associated with them that are boolean, arith-
metic, or relational (arithmetic and algebraic) expres-
sions. The subcomponents of the structure diagram
may represent bound or unbound variables, con-
stants, terms, or composite functions. Any arbitrary
location in a tree or structure diagram can be used
as an example. The translation algorithm is capable
of generating the set of clauses describing the path
automatically.

PIPI preceded ThinkPad with an environment
(albeit not the underlying language) for manipulating
examples. In PIP the editor provides the typing
mechanism, whereas the underlying FP interpreter
does not. Structure diagrams in PIP have type and
containment relations that are maintained solely by
the editor.

It is unclear that the expressive power of both
QBE and ThinkPad are equivalent. The uniqueness

94

constraint in QBE is relaxed in Prolog, where more
than one binding may be possible. On the other
hand, queries in Prolog are not necessarily satisfiable.
The examples in ThinkPad can be used to model
queries in QBE. This is not surprising given that
Prolog has also been used as an extended implemen-
tation language for QBE.

ThinkPad is designed to permit the user the
graphical flexibility of depicting arbitrary data struc-
tures, and this includes, for example, tables, trees,
lists. QBE is limited in its expressiveness to tables.
The expressiveness of these systems may or may not
be equivalent, depending on the particular concep-
tual models associated with an application.

PHD is a system that also relies on a translation
between structure diagrams and a clausal form to
represent examples. The structure diagrams in PHD
are called forms. The language for forms is based on
a second-order logic language called Omega.l* PHD
was designed to provide more expressive power to a
system like QBE. It included a more generalized
control structure, called a homomorphism (described
below), and its logic Ianguage is second-order, per-
mitting the expression of more complex relationships
between data than the relational algebra. The struc-
ture diagrams in Omega permit the definition of all
first-order structures, i.e. all classes of trees. Recur-
sive data types in Omega are considered as C-
algebras. Lists are inductively defined as:

List = Null + Cona(Car:Numb;Cdr:Liat)

This algebraic formulation states that objects of type
List are either of type Null or of type Cons. The data
type Cons is a record containing a Car (which is a
Numb) and a Cdr (which is a List). Null and Numb are
referred to as the generators of the C-algebra, and
done is its only operation. This corresponds to the
notion of a list embodied as an s-expression in Lisp.

Omega also permits the specification of existen-
tially and universally quantified relationships
between examples. Translating a first-order expres-
sion into a structure diagram is a problem reducible
to selecting a norma form; this is not the case with
second-order descriptions. Second-order descriptions
are capable of describing the transitive closure of a
relation. The structure diagram used in PHD is not
inherently capable of describing such a relationship.
Consequently, forms in PHD rely on a highly textual
notation inside of structure diagrams.

Remarkably, it appears that although PHD pro-
vides greater expressive power, it lacks the expres-
siveness of QBE because it is heavily reliant on tex-
tual notations within a form to depict its relation-
ships. Under the operative assumption that diagram-
matic properties are important to expressiveness,
PI-ID is problematic. PHD provides no mechanisms
with which to represent second-order expressions in a
structure diagram. The structure diagrams in

Omega permit the definition of all first-order

structures, i.e. all classes of trees. There is no func-
tion in PHD for mapping second order clauses into a
structure diagram. Providing such a mapping
appears to be an open research question.

Examples in these systems are facilely
represented as variables within a collection of terms
or clauses. Tables and structure diagrams contain
mappings between clauses and visualizations,
although representationally, second order clauses are
problematic. Type information provides for diversity
in visualizations; On the other hand a simple clausal
approach for type characterization precludes opera-
tor overloading. The integrity constraints used to
maintain acyclic graphs are quite possibly more res-
trictive than necessary. Evaluation of the terms
within another model of computation may relax these
restrictions.

2.2. Instances aa Examples in Sketchpad,
ThingLab and SmallStar

SketchPadI and ThingLabls are the seminal
pieces of work in the domain of graphics-based pro-
gramming. The programming language abstraction
for an example, shared in common with SmallStar -
a programming by example system designed for the
same domain as QBE - is an object-oriented one: An
example in these systems is an instance of a class.
The Sketchpad prototype was completed before hhe
introduction of Simula-67; ThingLab and SmallStar
are written in Smalltalk. ThingLab heavily
influenced later revisions of the Smalltalk language.
The classfinstance metaphor for an example is a
powerful but general radicalization of records as
expressed in Algol-derivative languages. We explore
the properties of a class/instance of each system.

Objects in Sketchpad are picture definitions used
to model a hierarchy of graphical objects. Picture
definitions could be combined with other picture
definitions to compose new picture definitions.
Several primitive types were also available for
defining the fundamental elements in a structure.
These types were purely graphical: points, lines, and
circle arc6. Two kinds of relationships could be esta-
blished in Sketchpad among picture definitions:
master/instance, or copy. A masterfrnstance rela-
tionship maintained the same picture definition. An
instance had the same shape, but could be
translated, rotated, and scaled. The private parts of
a picture description were designated attachers -
each instance contained its own values for a particu-
lar attacher. If a picture definition for a master was
modified, all instances of the master were also
modified. A copy of a master no longer held a rela-
tionship to the master. A copy was simply a new
master whose hierarchical description is identical
only initially to the originals. Revisions to the

95

hierarchy of the copy are not reflected in the origi-
nal. Hierarchical descriptions could be embedded
within other hierarchical descriptions. This provides
sufficient to model arbitrary tree structures.

Within the context of programming by example,
picture definitions are structure diagrams with
geometrical constraints. A master generalizes or
encapsulates a specific set constraints germane to an
example; instances are examples of masters with
specific values for the attachers.

ThingLab extended the expressive power of
these language features in several significant ways.
Objects contained in ThingLab are not constrained
to geometric forms - ThingLab uses Smalltalk’sl’
more general class-instance structure where instances
contain internal variables that can hold any instance
state. ThingLab also introduces constraints on
objects. A constraint specifies a relation that must
be maintained. Constraints provide a mechanism for
describing relationships in a part-whole hierarchy.
Constraints are also integrated in the description of
inheritance hierarchies. (Multiple inheritance was
introduced in ThingLab before it was introduced in
Smalltalk.) Multiple inheritance provides the expres-
sive power to model asymmetric transitive relations
between classes.

In SmaliStar, examples are referred to as data
descriptions. SmallStar data descriptions are
instances of a class. Every example in SmallStar is a
member of a predefined class. All objects in a class
have the same properties. All instances of data
descriptions in a class contain the same property list.
The values for properties of a particular instance
may differ from those of another instance. Unfor-
tunately, SmallStar data descriptions are closed enti-
ties. It is not possible to dynamically add or delete
properties of a class. The property sheets are not
computationally complete. For example, the class
Folder contains a method for choosing the first or last
Document, but not the nth Document. No facility is
included for adding nth to the property sheet.
Though the nth document may be computed using
iteration, this is a liability from an expressiveness
point of view.

The class Container is the superclass in SmallStar
where aggregation of objects is possible. The class
Container in SmallStar appears to be inherited only
by Folder and Filedrawer. Container appears not to per-
mit the aggregation of Containers; as a consequence it
cannot be used to model all classes of trees. For
example, can Folders be inserted in Folders? Can they
be inserted in FileDrawers? Can Filedrawers be inserted
in Filedrawers? In no example in SmallStar is this
capability found. A major increase in expressive
power could be gained with the inclusion of such a
minimal data structure.

The emphasis in the design of SmallStar was
placed clearly on expressiveness. Experimental

studies accompanied expressiveness considerations in
the design of the user-interface. The data-
descriptions in SmallStar are depicted using structure
diagrams that supports various levels of abstraction.
Data descriptions are depicted using the property
sheet metaphor established for the Star workstation.
The property sheets for classes are organized
hierarchically; information is encapsulated within a
property sheets’ according to the hierarchy esta-
blished for the class. It appears that given more con-
sideration to expressive power, SmallStar data
descriptions can embody within a completely
different framework computational expressiveness
and power equivalent to QBE.

The importance of master-instance and class-
instance language mechanisms to programming-by-
example cannot be understated. Semantically the
class-instance relationship is well prescribed. An
instance corresponds closely to our intuition of an
example. Hierarchy, inheritance, multiple-
inheritance, and constraints permit the definition of
both symmetric and asymmetric transitive relation-
ships. Multiple-inheritance, in particular, lends itself
to reuse of object classes. Distinguishing between
classes in ThingLab corresponds to creating an
instance (copy) of a class and specifying a new set of
constraints. Creating a new class definition involves
the addition of new asymmetric transitive relation-
ships. New classes can be programmed by example
by copying relationships and constraints belonging to
instances of other classes.

3. Demonstrations and Control of Evaluation

In a programming by example system, a user
manipulates examples to demonstrate a desired pat-
tern of evaluation. The demonstrations correspond
to the language constructs for evaluation and control
in the underlying system. This section analyzes the
expressive power and the expressiveness of these
language constructs. Figure 3 provides a table of
these control structures.

What language constructs are embedded within
a demonstration? In some systems, a demonstration
is the establishment of an additional relationship
between examples. Often, this corresponds to the
introduction of an additional clause or a conditional.
In that case, the demonstration differs little from the
characterization of an example, as discussed above.
Yet another form of demonstration incorporates
iteration. Demonstrations are also a form of pro-
cedure invocation. For example, grouping two
objects may correspond to the invocation of an
append operation. The different models of procedure
invocation provide equivalent computational power.
The expressiveness associated with the underlying
model of computation gives a significantly different

96

feel to the user interface.

This section examines the expressiveness and the
expressive power of programming by example con-
structs for iteration, procedure invocation, and condi-
tionals. Expressive power is a measure of the compu-
tations possible in a given language. The use of com-
plexity metrics in analyzing practical programming
environments provides insights on the fundamental
nature of the computation. An oft cited example is
that the clean theoretical semantics of the relational
model underlying QBE are insufficient for expressing
the transitive closure of a relation. This computa-
tional difficulty is overcome by the introduction of
practical language constructs. A language containing
bounded loops, generic variables, and equalityI is
sufficient for computing the primitive recursive junc-
tions. (Virtually all functions of practical value are
primitive recursive.) On the other hand, decision
problems associated with a language may still
remain. Where relevant, we discuss these considera-
tions.

Whereas expressive power is a hard computa-
tional metric, criteria for the expressiveness language
structures for evaluation and control remains a
metric with properties that are difficult to define.
Expressiveness, is intended as a measure of both gen-
eral applicability - e.g. modularity - and represen-
tativeness. As a metric for representational proper-
ties, the criteria for evaluating examples established
in section 2 are applicable. Iteration in a flow chart,
and recursion in a dataflow diagram may in some
ways be viewed as of equivalent expressiveness. Both
contain functions providing mappings to particular
implementations of a structure diagram. On the
other hand, a construct incorporating iteration and a
conditional is equivalent in expressive power to a
construct for recursion, and yet by the representation
metric, may also be said to be equivalent in expres-
siveness. The definitional properties associated with
constructs for recursion fulfill the language require-
ments for encapsulation, modularity, and scope;
Iteration constructs often do not contain these
features. In the following discussion, we distinguish
between demonstrations embedding procedure invo-
cation, and demonstrations embedding iteration and
conditionals.

3.1. Demonstrations Embedding Operators,
Conditionals, and Iteration

In PHD, a user selects a form representing an
example, and then creates a homomorphism that
operates over the example. The homomorphism
primitive embeds an operator, conditionals, and
iteration in a single control structure. (The
homomorphism primitive has its origins in theoretical
work done by Burstall and Landin.)lg In the PHD
system, an operator is applied to a list using the map

primitive. The algebraic properties of the operator,
as well as those of the list (including conditional pro-
perties associated with the list) are embedded within
the homomorphism. Map is an iteration construct
that applies an operator to a list of arbitrary length.
The semantics of a homomorphism (in Lisp notation)
as specified by Aeillo20 is provided in Figure 4. The
computational power of a homomorphism can express
at least all of the primitive recursive functions.

The homomorphism is particularly expressive
when used with a general-purpose operator (e.g. sum-
mation, see Figure 5). Two algebraic properties are
requisite in the design of operators incorporated
within map: operators must contain an identity func-
tion, and operators must accept as input a list of any
arbitrary size. The identity property permits the
determination of the type of the result where fields
have not been completely specified. The requirement
that an operator accept an arbitrary number of ele-
ments implies that functions composing the example
and the operator must specifically handle structures
with no elements, structures with one element, and
structures with many elements. (An equivalent alge-
braic viewpoint has been implemented by Goguen et
al.21 in the language OBJ and its variants.)

The algebraic regime for operators seems to
increase the expressiveness of the language. Cer-
tainly the algebraic definition provides a precise
characterization of the corresponding language
notions of applicability and generalizability. It is in
this light, however, that we note the absence of a
facility for defining the algebraic properties of new
operators. It appears that only operators defined
within the system meet the algebraic criteria and
new operators do not. The design of a facility for
the demonstration of the algebraic properties of
operators is an open research problem. The
homomorphism primitive is closed under composition.
From an expressiveness point of view, a composition
facility adds a mechanism for encapsulation. This
increases the expressiveness of a language by
encouraging modularity and reusability.

Apply is a control structure formulated for use
with ThinkPad. Like a homomorphism, the control
structure derives its expressiveness by providing a
facility for embedding examples (in clausal form),
conditionals, and, iteration.22 The apply control
structure is derived from the “universa1”6 control
structure

for tuple t in relation R do <statement>
where <statement> may modify relation R. Intui-
tively, it is designed to traverse a well-defined route
over a two-dimensional data structure while opera-
tions are executed at each point along the route.
The route itself may be modified by the result of an
operation.

The apply function contains three components:
a Route, an Operation, and Modijy. Evaluation of

97

the clauses representing the Route yields the univer-
sal closure of the clause (whose binding may be
deferred); this Route corresponds to R above. An
Operation object iterates over each element in the
route. The Operation component maps a predicate
to each tuple in the Route. The modify component
specifies the order in which clauses are to be con-
sidered in the route.

Apply is of expressive power capable of comput-
ing polynomial, or primitive recursive functions. The
expressiveness of this control structure is that all the
components are explicitly available for manipulation.
A route is specified via an example. The same exam-
ple used for the route is subjected to the demonstra-
tions associated with an operation - this may
include specifying additional relationships, or incor-
porating the clause within a predicate. Unlike a
recursive definition of breadth-first search where the
stack is an implicit structure the apply primitive
forces the user to select the representation of the
data structure for use as the route object. For
example, the route may be a tree, a list, a stack, or
an ordered or unordered set. When the route is
explicitly defined as a stack, manipulations are per-
mitted only via “pop” and “push” operations.

SmallStar includes a set iteration construct. To
add the primitive for set iteration an example is
selected, and demonstrations applying operators to
the example are recorded. (The transcription
mechanism is described below.) After the demonstra-
tions are recorded, the statement Repeat with every-
thing matching is inserted into the prerecorded
sequence of statements. The data description
describing the “match” is simply the class that can
be extracted from the example used in the demons-
trations. Unfortunately, it appears that the only
classes for which iteration can be defined consist of
examples belonging to the class container or the class
Table.

In defining the SmallStar control structure, the
emphasis was once again on the expressiveness of the
structure. The SmallStar strategy for introducing
iteration was the result of several prototyping and
testing efforts. In the initial prototype a user began
an iteration with a for each do statement and then
proceeded to define the manipulations. It was felt
that inserting iteration after the procedure was
defined was more useful. The computational power
is equivalent to a language containing bounded loops
and equality.

Homomorphism, apply, and to some extent, set
iteration, are constructs designed from equivalent
points of view. They are similar in many ways to the
“generator” constructs in modern languages. The
basis for their construction lies in their encapsulation
of an aggregate to operate on individual members of
the set in a constructive order. This in direct con-
strast to the approach taken in QBE. QBE contains

special purpose operators incorporating iteration and
few langauge constructs for encapsaulating and
parameterizing queries. Examples of such operators
include average, sum, maximum. The homomor-
phism, and apply constructs explicitly attempt to
define a generalized control construct.

3.2. Procedure Encapsulation and its Mechan-
ics

Procedures are a language mechanism used pri-
marily to encapsulate a sequence of statements and
as a vehicle for introducing recursion. Adding recur-
sion to a language containing either apply, or a
homomorphism, or for that matter, a construct
embedding conditionals and iteration, provides an
alternate approach to specifying fun&ions of
equivalent computational power. In such cases it is a
syntactic device used to encourage modularity.

In this section we discuss the mechanics of how
a procedure is encapsulated because of the semantic
nature of the editing commands used for encapsula-
tion. Some of editing commands are equivalent to
procedure invocation, and are as such, explicit
demonstrations. Other editing commands are simply
a device for encapsulating a procedure, and are not
particularly relevant.

Procedure encapsulation appears to be an
integral part of the (misguided) folklore surrounding
programming-by-example. The actual mechanics of
how examples are used to define a program are in
some ways irrelevant to the power of the program,
but can be interesting in their own right. They pro-
vide a perspective on the synergy between a language
and the editing technology used to prepare a pro-
gram in that language.

Pygmaliona pioneered the use of program tran-
scription as a device for encapsulating procedures.
To encapsulate a set of operations, a user begins a
command such as Start Recording and proceeds to
manipulate objects. Each manipulation is recorded
in the transcript. Manipulations (i.e. demonstra-
tions) include assignment, or calculation of arith-
metic or boolean expressions. The set of manipula- .
tions that appear in the transcript is defined by the
language constructs or icons (procedures) available in
the system. To close the encapsulation, a user gives
the command Stop Recording. The commands
entered in a transcript can now be reinvoked, or they
can be modified. In Pygmalion, the transcript is
stored within a particular icon for playback.

Demonstrations in SmallStar and Pygmalion
correspond to either establishing new boolean or
arithmetic relationships between examples, or pro-
cedure invocation. SmallStar contains a message-
passing model of procedure invocation which is based
on the object-oriented programming paradigm of

98

Smalltalk. Objects on the screen belong to a class
named Icon. All members of the class Icon can
evaluate a set of messages which are used for invok-
ing methods that operate on the object. User mani-
pulations are translated into specific messages. For
example, the point mouseclick is translated into a
SELECT message which is sent to the icon. Select-
ing the Move button sends the MOVE message to the
icon. This results in in replacing the cursor with the
icon. A subsequent point mouseclick translates the
command into the message INSERTA T:pt that is
sent to the Desktop icon.

SmallStar provides translation functions to
increase “readability” of the transcript. A transcrip-
tion was more than a transcript of the raw opera-
tions. A user was exposed to a transcript that had
been parsed and translated into a more readable
form. While this had no effect on the expressive
power of the system, it appears to be a useful tech-
nique for increasing the expressiveness in the
representation of a procedure. Transcription in Pyg-
malion and SmallStar results in a sequential block of
operations.

The semantics of message passing coupled with
the translation technique described above forms the
basis for much of the well-emulated visual program-
ming paradigms in place today. It is executed rather I
elegantly in the SmallStar user interface.

The Pygmalion model for program transcription
appears to provide computational power equivalent
to the power of a finite state automaton. Embedded
at the nodes are sequences of operations. Arcs con-
tain decision functions embedded within 07 then else
expressions. Pygmalion transcripts can accept
parameters, can be named, and can be invoked. It is
certainly possible to define a recursive program tran-
scription. This appears not to be possible in
SmallStar even though virtually identical transcrip-
tion mechanisms are used. Much along the same
lines as Pygmalion, an experimental programming
environment, Tinker,24 has been developed. Tinker
examines the finite state transcription, and queries
the user for transcriptions where additional transi-
tion functions may be included.

New messages cannot be synthesized in the
SmallStar system. The SmallStar virtual machine is
defined in terms of the predefined set of messages
and is a closed system. Although SmallStar does
have a procedure encapsulation mechanism, no
mechanism for parameter passing is provided. Pro-
cedures access data by the access conventions esta-
blished for data descriptions and icons.

PIPI uses a modified form of program tran-
scription to define procedures. The language under-
lying PIP is functional, and is based on a variant of
Backus’s FP.25 The syntactic and semantic restric-
tions of FP, i.e. no temporaries, carry through to the
program transcription process. A function is initially

defined as having several input and output types.
Input types are composed with output types to form
functional expressions.

In PIP the notion of a transcript is inherently
connected to that of a stack. A user initiates a tran-
script by issuing the Connect command. To compose
a set of objects, a user selects the set of input
objects. Each object selected is then placed on a
stack transcription, available for manipulations. The
user may connect a set of inputs by selecting an
object that represents an operator. Selecting an
operator pushes the operator on the stack as well.
Issuing a Done command pops the stack and com-
pletes the transcription.

Although the choice of transcription mechanism
in PIP was dictated by the semantics of the underly-
ing language, it is an interesting program construc-
tion technique in its own right. It appears to provide
the power of a pushdown-automaton in constructing
a program. Finite-state-automata are of less expres-
sive power than pushdown-automata. Stack-based
transcription is more powerful than a finite-state
transcription. While this discussion concerns the
preparation of demonstrations for a program and not
the expressive power of the program generated, it is
possible that with greater computational power in
the specification process, more examples may sys-
tematically be addressed. This is an area ripe for
future examination.

PIP permits the same function to be defined
several times, each with a different specification of
the input data-structure requirements. This facili-
tates the definition of functions whose actions are
determined by the structure of the input. Each
instance of a multiply defined procedure is referred
to as a junction variant. This may, for example, be
particularly useful in defining tree manipulation algo-
rithms that handle leaf nodes and internal nodes
differently. Permitting a function to be multiply
defined makes it easy to generate a procedure whose
components are designed to use examples that are
semantically unequivalent.

The semantics of a function defined via several
function variants are derived using a maximal match
procedure. The specific function variant to be
invoked is chosen from those attributes of the passed
data structure that fit best with the various input
descriptions.

Unlike Pygmalion, SmallStar, and PIP, the
encapsulation and demonstration of a procedure in
ThinkPad is not based on a transcription mechanism.
Procedures in ThinkPad are composed of four collec-
tions: a Function collection, an Input collection, a
Result collection, and a Demonstration collection.
The Function collection represents a type
specification of the inputs and the results. The Input
collection contains examples conforming to the type
specification. Parameter specifications in ThinkPad

99

are strongly typed, and may be part of a class-
subclass hierarchy of relations. Most relevant, the
Demonstration collection, contains groups of objects
with explicit relations between the groups and
between the objects in each group. These relations
are established through use of demonstrations.
Demonstrations in ThinkPad correspond to semantic
actions of the commands in an editor. For example,
the editing function group corresponds to either the
lisp dot operator (cons), or the addition of a variable
or a clause to a predicate.

ThinkPad provides a translation algorithm that
accepts these collections and generates Prolog code.
Theoretically, it should be possible to specify opera-
tions nondeterministically. However, the
satisfiability of a clause or procedure set in Prolog is
often dependent on the ordering of its clauses. Con-
sequently, ThinkPad collections retain a left-to-right,
top-down ordering. Functions are defined in Think-
Pad using a mechanism that resembles syntactically
the function variants used by PIP, but whose seman-
tics radically differ. Functions may be multiply
defined, with different constraints on the types of
data accepted for each definition. The underlying
semantics are the Prolog semantics of Horn-clause
interpretation using resolution.26 The semantics pro-
vides a mathematically clean approach to defining
functions based on the individual examples. If data
do not meet the requirements of the description, the
predicate invocation will fail, and another function
variant selected.

Functions in PHD are forms (structure
diagrams) containing a title, a set of input parame-
ters and a field for a result. Forms increase the
expressiveness of the language by providing a general
purpose mechanism that encapsulates and modular-
izes homomorphisms. The entries may contain predi-
cates specifying relationships between pieces of data
and type information. Forms are in this way,
equivalent to function invariants. The result field is
derived from a set of computations. Its description
as a parameter consists only of a name. The invoca-
tion of a procedure corresponds to the visual display
of the form displaying the function name, its parame-
ters (and attributes), and its result. Procedures have
the additional property of embodying a homomor-
phism. Homomorphisms are closed under composi-
tion. Consequently, procedure invocation is
equivalent to the explicit inclusion of a homomor-
phism specification within another homomorphism.

We have shown that many of the demonstra-
tions performed in these systems may not be readily
recognized as a form of procedure invocation. This is
attributable to the underlying model used for invok-
ing procedures. For example, the SmallStar and
Pygmalion model rely on the message-passing model
of procedure invocation. A click on an icon is
translated into a specific message that is then passed

to the icon. PIP and ThinkPad permit procedure
invocations as well, although the semantics of a pro-
cedure within each system differs significantly.

Whereas the different models of procedure invc+
cation provide equivalent computational power, the
properties associated with the expressiveness of these
constructs differs qualitatively. Transcriptions pro-
vide a modularized pattern of control. “Extended”
transcripts are parameterized and reusable. Func-
tion invariants tend to reduce the size of the demons-
tration sequence by constraining the scope of appli-
cable examples. If a particular data set is not
relevant, a new specification based on a different set
of examples is in order. Interestingly enough, the
transcription tools are of different expressive power -
however, the environment is of no impact on the
expressive power on the generated programs, and
only help to systematically organize the generation of
examples.

3.3. Conditionals

The semantics of an example in many of the
systems for programming by example significantly
reduces the need for explicit conditionals, Data
descriptions in SmallStar serve to describe the attri-
butes of a particular example. If the attributes are
inadequate, they may either be modified, or an if
then else conditional may be post-facto inserted in
the transcripted procedure. In systems relying on
clausal representations of data, the clauses them-
selves and the function invariants make explicit i/
then else conditionals unnecessary. Function invari-
ants are a form of implicit if then else, as are predi-
cates within a function invariant.

4. Conclusions

For the most part, programming by example has
been viewed as a user-interface problem. D-C.
Smith, the designer of Pygmalion and the primary
architect behind the Star user interface, has written
about user interface design:27

User-interface design is still an art, not a science.
Many times during the Star design we were
amazed at the depth and subtlety of user-
interface issues, even such supposedly straightfor-
ward issues as consistency and simplicity. Often
there is no one “right” answer. Much of the time
there is no scientific evidence to support one alter-
native over another, just intuition. Almost al-
ways there will be tradeoffs...

Programming by example, like many concepts in
mathematics, is to a large extent a methodology born
of intuition. Al-Khowarizmi and his fellow Babyloni-
ans were hampered not as much by the unavailabil-
ity of a computing device as by lack of a conceptual
and notational framework with which to express a

100

“variable”. At the h%art of programming-by-example
lies a problem in a similar vein: precisely what con-
stitutes an example, and its demonstrations? This
question has been approached not as a problem of
“user-interface design” but as an applied exercise in
computability.

By what principles can better systems be built?
The strategy suggested here is to treat the system as
a programming language. When programming by

example fails to scale up, the cause may often be
found in an examination of the expressive power vis
a vis the expressiveness. The criteria of computa-
tional power and computational expressiveness are
useful metrics in examining the relationship between
what are seemingly unrelated systems, Ultimately, it
is both the expressive power and expressiveness of a
language that defines its usefulness. Good language
design, as underlies programming-by-example and
good systems design, is part science, and part art.

Acknowledgements

Marc Brown, Eric Golin, Joseph Pato, Steven Reiss,
and Peter Wegner provided many insightful com-
ments. The anonymous critique of the reviewers on
the selection committee were particularly helpful in
reorganizing this paper, and are gratefully appreci-
ated.

References

1. B. Shneiderman, So/tware Psychology:
Human factors In Computer and Information
Systems, Winthrop Publishers, Cambridge, Mass
(1980).

2. D. Knuth, “Ancient Babylonian Algorithms,”
Communications of the ACM 15(7) pp. 671-677
(July 1972).

3. Al-Khowarizmi, Algebra813-846 A.D..

4. A. Biermann and R. Krishnaswamy, “Construct-
ing Programs from Example Computations,”
IEEE Trans. on Software Engineering 2(3) pp,
141-153 (1976).

5. M. Gardner, Logic Machines and Diagrams, 2nd
edition, University of Chicago Press (1982).

6. A. Aho and J. Ullman, “Universality of Data
Retrieval Languages,” Proceedings, 6th ACM
Symp. on Principles of Programming Languages,
pp. 110-117 (January 1979).

7. M. Zloof, “Query-by-Example: Operations on the
Transitive Closure,” IBM Research Report RC-
5526, (1976).

8. Robert V. Rubin, Eric J. Golin, and Steven P.
Reiss, “ThinkPad: A graphical system for
programming-by-demonstration,” IEEE Software
2 4N 2 pp. 73-78 (March 1985).

9. G. Attardi and M. Simi, “Extending the Power
of Programming by Examples,” in Integrated
4zteractive Computing Systems, ed. E.
Sandewall,North-Holland (1982).

10. W. F. Clocksin and C.S. Mellish, Programming
in Prolog, Springer Verlag (1984).

11. C. Beeri, P. Bernstein, and N. Goodman, “A
Sophisticates Introduction to Database Normali-
zation Theory,” Proc Int Conf on Very Large
Data Bases, (September 1978).

12. R. Rubin, E. Golin, and S. Reiss, “Compiler
Aspects of ThinkPad,” in Workshop on Interac-
tive Envrionment, Lecture Notes in Computer
Science, Springer Verlag (1986).

13. G. Raeder, “Programming in Pictures,” PhD
Thesis, University of California 0.

14. G. Attardi and M. Simi, “Consistency and Com-
pleteness of Omega,” Seventh International
Conjerence on Artificial Intelligence, (1981).

15. I. Sutherland, “Sketchpad, A Man-Machine
Graphical Communication System,” PhD Thesis,
MIT (January 1963).

16. A. Borning, Thinglab -- A constraint oriented
simulation laboratory, PhD Dissertation, Depart-
ment of Computer Science, Stanford University
(1979).

17. Adele Goldberg and Dave Robson, Smalltalk-80:
The language and its implementation, Addison-
Wesley (1983).

18. A. Chandra, “Programming Primitives for Data-
base Languages,” Proceedings, 8th ACM Symp.
on Principles of Programming Languages, pp.
50-62 (January 1981).

19. R. Burstall and P. Landin, “Programs and their
proofs: an algebraic approach,” pp. 17-43 in
Machine Intelligence 4, ed. D. Michie,Edinburgh
Univ. Press (1969).

20. L. Aiello and G. Prini, “Technical Correspon-
dence,” ACM Transactions on Programming
Languages and Systems Z(2) pp. 263-64 (April
1980).

21. J. Goguen and J. Meseguer, “Equality, types,
modules and generics for logic programming,”
Proceedings of the Second International Logic
Programming Conference, (July 2-6 1984).

22. R. Rubin and J. Gonczarowski, “Extending a
first-order language with a construct for two-
dimensional programming,” Submitted for publi-
cation (February 1986).

23. D. C. Smith, Pygmalion: A computer program to
model and stimulate creative thought, PhD
dissertation, Stanford University (1975).

24. H. Lieberman and C. Hewitt, “A Session with
TINKER: Interleaving Program Testing with
Program Design,” Record of the 1980 Lisp

101

Conjerence, pp. 90-99 (1980).

25. J. Backus, “Can programming be liberated from
the von Neumann style? A functional style and
its algebra of programs,” Communications of the
ACM 21(8)(August 1978).

26. M. H. Van Emden and R. A. Kowalski, “The
Semantics of Predicate Logic as a Programming
Language,” Journal of the ACM 23 pp. 733-742
4, (October 1976).

27. D. C. Smith, “Designing the STAR User Inter-
face,” in Integrated Interactive Computing Sys-
tems, ed. E. Sandewall,North-Holland (1982).

Figures

The sum of the length, width, and diagonal is 12 and 12 is the area.
What are the corresponding length, width and diagonal?
The quantities are unknown.
12 times 12 is 2,24.
12 times 2 is 24.
Take 24 from 2,24 and 2 remains.
2 times 30 is 1,
By what should 12 be multiplied to obtain l?
12 times 5 is 1, .
5 is the diagonal.
This is the procedure.

Figure 1: Babylonian algorithm for the solution of linear equations.
The procedure was originally analyzed by D. Knuth.

The procedure in Figure 1 presents a Babylonian algorithm to solve a linear
equation based on the formula

d=+(l+w++ (l+y+d) ,

where
A=lw

is the area of the rectangle and
d=w

is the length of its diagonals.

102

Early Office General Purpose Graphical
Mathematics Automation Programming ProgramminE

Linear Equations QBE Pygmalion Sketchpad
Al Khowarizmi-Algebra PHD PAD (?) ThingLab

SmallStar PIP Juno
ThinkPad

Figure 2: Systems that utilize programming-by-example.

Control Structure Construct

Iteration Homomorphism - Map

Apply

Set Iteration

Function Invocation Parameter Resolution

Function Variants

Message Passing

Homomorphic Form Composition

Conditionals Data Description

Filter

Predicate Discrimination

Nondetermintitic Evaluation

Program Encapsulation Transcription (FSA)

Transcription + Translation

Collections

Stack-based Transcription

Figure 3: Control Structures used in Programming by Example Systems

PBE System

PHD

ThinkPad

SmallStar

ThinkPad

PIP

SmallStar

PIID

SmallStar

PIID

PIP

ThinkPad

Pygmalion

SmallStar

ThinkPad

PIP

(DE HOM

(LAMBDA (FNCJLL FNUMB FCONS)
(FUNCTION

(LAMBDA (ARGS)

(CON0
((NULL ARGS) (FNULL)

(T (FCONS (FNUMB (CAR ARGS))
((HOM FNULL FNUMB FCONS)

(C’DR ARW)N)NN

Figure 4: Semantics of a homomorphism

(HOM

(FUNCTION (LAMBDA () 0))
(FUNCTION (LAMBDA (X) X))

(FUNCTION PLUS))

Figure 5: Using the homomorphism primitive to define a summation operator.

103

