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Abstract 

Systems for programming by example permit the specification of algorithms 
through the use of demonstrations that manipulate examples. This paper 
analyzes systems for programming by example from a language point of view. 
Examples are analyzed as data abstractions, and demonstrations as abstrac- 
tions for evaluation and control. Criteria are introduced for evaluating both 
the computational power and the expressiveness of the abstractions. The 

several previously unconsidered 
associated with programming by 

analysis I demonstrates the existence of 
approaches to the more difficult problems 
example. 

1. Introduction - Programming by Example 

Programming by example is a mechanism 
whereby programs, or algorithms, can be specified via 
examples of their application. Consider, for example, 
the specification of a push operation for manipulat- 
ing a stack. An element, serving as an ezampZe of an 
input argument, is composed with a second argu- 
ment, serving as a canonical example of a stack, to 
form a new example of a stack. The composition of 
the two example elements corresponds to a demons- 
tration. The operational components of this illustra- 
tion are two: the example and the demonstration. 
This paper examines these operational components 
from a programming language point of view. Exam- 
ples are treated as data abstractions, and demons- 
trations as abstractions for evaluationa and control. 

A system for programming by example has 
several properties distinguishing it from a program- 
ming language environment. An example is a data 
abstraction with an equivalent visualization. A 
demonstration is a pattern of control, or evaluation, 
defined by direct manipu1ation.l Languages for pro- 
gramming by example describe examples and 
demonstrations. Conventional programming 

languages need consider neither the visualization of 
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an abstraction, nor the direct manipulation associ- 
ated with the demonstration. While several declara- 
tive and applicative languages have certainly been 
designed with a subset of similar considerations in 
mind, most languages are not explicitly concerned 
with “how” an abstraction is to be specified. Sys- 
tems for programming by example embed representa- 
tion and manipulation in the language constructs 
underlying examples and demonstrations. 

Casting the operational components of program- 
ming by example in terms of programming language 
constructs permits the use of well established criteria 
in evaluating and contrasting such systems. Two 
such criteria are particularly relevant: ezpcpressiveness, 
and expressive power. Expressiveness is a measure of 
generality, flexibility, and applicability. Expressive 
power is a hard computational metric. The visual 
depiction of an example may be attributable to its 
expressiveness, and reflect little on its expressive 
power. On the other hand, a construct of deep 
expressive power may be of little use because of its 
poor expressiveness. This paper generates specific 
criteria for expressiveness and expressive power, and 
applies them to the language constructs used to 
specify examples, and demonstrations. 

Algorithms and programs have classically been 
described via examples of their application. 
Babylonian mathematicians working between 1800- 
1600 B.C. developed formalisms notationally analo- 
gous to programming by example to specify algo- 
rithms for the solution of linear equations.2 They had 
no algebraic notation equivalent to today’s; instead, 
each algorithm was represented as a set of rules 
organized systematically around a set of numerical 
examples or diagrams containing reference points and 
numerical data (in sexagesimal notation). (See Figure 

1). 
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Although there are Babylonian algorithms without 
accompanying numbers serving as examples, 
apparently they are rare. Babylonian mathemati- 
cians also have conventions for specifying demonstra- 
tions that correspond to conditionals and iteration. 
Conditionals were not introduced explicitly in a pro- 
gram; instead, separate procedures with a distinctly 
different data set were provided. The correct pro- 
cedure was identified from the example, and then the 
rules were systematically evaluated. Iteration was 
introduced in what notationally constitutes a macro 
expansion. If a computation was to be performed 
repeatedly, every computation using the example was 
specified explicitly, until the desired result was 
obtained. These methods differ little from some of 
the mechanisms used today in systems for program- 
ming by example. 

Al-Khowarizmi, an Arabic mathematician from 
the 9th century A.D., (and from whose name is 
derived the term “algorithm”), authored a treatise on 
Algebra3 where he prescribes computational abstrac- 
tions fundamentally operational in nature. His 
definitional mechanism for an abstraction relies on 
specific examples. Al-Khowarizmi specifies a pro- 
cedure encapsulating a set of computations via pre- 
cise textual descriptions and labeled geometric 
figures. Notational abstraction in an algebraic sense 
did not exist in Qth-century Babylonian mathemat- 
ics. Al-Khowarizmi describes the solution of qua- 
dratic equations by systematically referring his algo- 
rithm to six geometric diagrams. For mathemati- 
cians of the day, the operational abstraction was 
intimately connected with an example of its visuali- 
zation and demonstrations of its application. 

Modern programming languages and environ- 
ments provide capabilities stylistically similar to the 
notations developed by the Babylonian mathemati- 
cians. Systems for programming by example are 
extraordinarily consonant with the specification tech- 
niques of Al-Khowarizmi and his Babylonian prede- 
cessors. Some of the same flavor of programming- 
by-example is retained in work in inductive inference, 
where a procedure is synthesized from examples of a 
program’s behavior. This paper does not address 
program synthesis via induction.4 Nevertheless, it is 
interesting to note that some of the early work in 
program synthesis contained definitional mechanisms 
complete within specific complexity classes; Essen- 
tially, the systems provided all the components of a 
programming language. 

The systems considered here are enumerated in 
Figure 2. This paper provides a methodological 
approach to language design for programming-by- 
example. Specific features of each system are 
explored; no attempt is made to explore all features 
of these systems, nor is this particular list of systems 
assumed to be comprehensive. 

2. Examples and Data Abstraction 

The question “What is an example?” is categori- 
cally answered here as a form of data abstraction. 
The examples may represent data, records, variables, 
a sequence of variables, or perhaps an expression in 
the relational algebra. The semantics of the 
abstraction is dependent on the language in which 
the example is formulated. 

The criteria for analyzing the expressiveness of 
the examples in a system are primarily visual: 

[l] Can the semantics of an example be completely 
specified diagrammatically? 

[2] Are multiple views of the abstraction possible? 
Is there a function mapping each visualization 
to a specific component of the semantics? 

We define a structure diagram as a tw* 
dimensional figure that contains a potentially iso- 
morphic mapping to the clauses used to represent the 
object. The counterpart to structure diagrams, logic 
diagrams, are defined in5 as two-dimensional 
geometric figures with spatial relations that are iso- 
morphic with the structure of a logical statement. A 
simple form of logic diagram is one that expresses a 
set of transitive asymmetric relations. The evolu- 
tionary scale, for example, provides a graphical dep- 
iction of “is derived from” relations. The logic 
diagram is well established as a useful tool that nei- 
ther supplants nor detracts from other notational 
abstractions. 

Criteria for evaluating expressive power are clas- 
sically applied to the evaluat on of programming 
languages: 

[l] What is the relevant notion of aggregation? Are 
there corresponding notions of ordered, or unor- 
dered aggregates? Can all classes of n-ary trees 
be represented? Finite, or infinite? 

[2] What facilities are available for expressing the 
relationships between different examples? 

[3] Does the language permit the expression of type 
information? When and where is typechecking 
applied? Can polymorphic operators be defined? 

How powerful a notion of aggregation is desir- 
able? S-expressions in Lisp are sufficient and 
mathematically elegant (defined recursively or induc- 
tively) and can be used to represent all classes of 
trees. 

What language facilities can be used to charac- 
terize relationships between examples? Are the 
expressions/predicates generated in the system first- 
or second-order? First-order languages are not as 
expressive as second-order languages. For example, 
transitive closure cannot be expressed in the first- 
order predicate calculus or the relational algebra.6 
However, first-order expressions can be evaluated 
more e%ciently, and, as described below, contain 
visual properties second-order expressions do not. 
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Is type information important as a characteriza- 
tion of expressiveness, or expressive power? Lisp ori- 
ginally contained only two types: atoms and dotted 
pairs. Pascal, considered by some as more expres- 
sive, has facilities for user defined types. Yet its 
expressive power is identical to that of Lisp. 

Questions may be raised about the formulation 
of these particular criteria. Languages have offered 
different solutions to these problems, cast often 
within different models of computation. The 
justification offered here is that these provide a basic 
platform for comparison. 

2.1, Clauses in QBE, ThinkPad, and PHD 

The examples manipulated in Query-by-example 
(QBE): ThinkPad,* and PHDg represent ctavses or 
terms in the relational algebra, Horn-clause logic, 
and a second-order logic language by the name of 
Omega, respectively. Examples in all of these sys- 
tems are manipulated in the context of structure 
diagrams, which depict the set of clauses associated 
with a particular algorithm. 

The design of QBE is based on the observation 
that the relational algebra can visually be 
represented by a table. The table in QBE is a struc- 
ture diagram. A translation function maps the data 
associated with the structure diagram to expressions 
in the relational algebra. An example in QBE is a 
variable, or a set thereof, defined by its membership 
property in the structure diagram, and its relation to 
other examples. Minimally, an element in each row 
in a table corresponds to a tuple. All examples 
represent terms within an expression in the relational 
algebra. If the identical variable is used in more 
than one structure diagram, it provides a pattern 
that must be properly formulated in the translation 
to an expression in the relational algebra. 

The expressiveness, and consequently the 
elegance of QBE lies in its use of a table as a struc- 
ture diagram. The table provides the user with a 
model that is highly intuitive. The power of QBE 
lies in its expressiveness. 

QBE’s expressive power includes the ability to 
specify arbitrary n-ary trees, although its underlying 
language also includes integrity constraints con- 
straining a tree from containing cycles. The integrity 
constraints ensure three properties of an acyclic tree: 
that examples within a tree are irreflexive (e.g. an 
employee cannot be his own manager), and, asym- 
metric on the transitive closure of an example (e.g. 
an employee cannot be both somebodys subordinate 
and his manager), and unique (e.g. an employee can- 
not have more than one manager). Examples 
representing any arbitrary position in the tree may 
be specified. 

An example in ThinkPad is a structure diagram 
that embodies a set of clauses constraining the par- 
ticular example. The expressiveness of ThinkPad is 
derived from a clausal representation of structure 
diagrams translated into Prolog clause (Horn- 
clauses).1° ThinkPad, unlike QBE, provides some of 
the graphical tools for the design of an arbitrary 
representation (i.e. structure diagram) for a set of 
clauses. It is from the ability to design an arbitrary 
representation that ThinkPad gains its expressive- 
ness. For example, a structure diagram may 
represent a data structure containing typed elements 
or substructures. Each type has a graphical depic- 
tion, each subcomponent a specific spatial location. 
Substructures of the same type as the structure 
diagram are defined recursively. Recursive structure 
diagrams contain sufficient expressive power to gen- 
erate all classes of trees. 

Structure diagrams in ThinkPad are not neces- 
sarily isomorphic with their clausal representation. 
For example, a table may be expressed in n-ary or 
binary normal form. To solve this problem, a normal 
form is automatically selected before the diagram is 
translated into a set of clauses.lI Once a normal 
form is selected, the mappings become isomorphic. 
The algorithms for translation between structure 
diagram and Horn-clauses are described inl2 

Type information and the membership proper- 
ties are modeled by specific asymmetric transitive 
Horn-clauses. Containment within a structure 
corresponds to an is-member clause. Identification as 
a type is modeled as a is-a clause. An n-ary normal 
form is used for mapping containment predicates. 
Type information in ThinkPad is problematic. Vari- 
ables in Prolog, and consequently, their operators, 
are generally polymorphic. For example, the “< 
operator may be applied to strings as well as 
integers. In ThinkPad, the is-a relationship pre- 
cludes polymorphism. 

Structure diagrams in ThinkPad may have 
clauses associated with them that are boolean, arith- 
metic, or relational (arithmetic and algebraic) expres- 
sions. The subcomponents of the structure diagram 
may represent bound or unbound variables, con- 
stants, terms, or composite functions. Any arbitrary 
location in a tree or structure diagram can be used 
as an example. The translation algorithm is capable 
of generating the set of clauses describing the path 
automatically. 

PIPI preceded ThinkPad with an environment 
(albeit not the underlying language) for manipulating 
examples. In PIP the editor provides the typing 
mechanism, whereas the underlying FP interpreter 
does not. Structure diagrams in PIP have type and 
containment relations that are maintained solely by 
the editor. 

It is unclear that the expressive power of both 
QBE and ThinkPad are equivalent. The uniqueness 
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constraint in QBE is relaxed in Prolog, where more 
than one binding may be possible. On the other 
hand, queries in Prolog are not necessarily satisfiable. 
The examples in ThinkPad can be used to model 
queries in QBE. This is not surprising given that 
Prolog has also been used as an extended implemen- 
tation language for QBE. 

ThinkPad is designed to permit the user the 
graphical flexibility of depicting arbitrary data struc- 
tures, and this includes, for example, tables, trees, 
lists. QBE is limited in its expressiveness to tables. 
The expressiveness of these systems may or may not 
be equivalent, depending on the particular concep- 
tual models associated with an application. 

PHD is a system that also relies on a translation 
between structure diagrams and a clausal form to 
represent examples. The structure diagrams in PHD 
are called forms. The language for forms is based on 
a second-order logic language called Omega.l* PHD 
was designed to provide more expressive power to a 
system like QBE. It included a more generalized 
control structure, called a homomorphism (described 
below), and its logic Ianguage is second-order, per- 
mitting the expression of more complex relationships 
between data than the relational algebra. The struc- 
ture diagrams in Omega permit the definition of all 
first-order structures, i.e. all classes of trees. Recur- 
sive data types in Omega are considered as C- 
algebras. Lists are inductively defined as: 

List = Null + Cona(Car:Numb;Cdr:Liat) 

This algebraic formulation states that objects of type 
List are either of type Null or of type Cons. The data 
type Cons is a record containing a Car (which is a 
Numb) and a Cdr (which is a List). Null and Numb are 
referred to as the generators of the C-algebra, and 
done is its only operation. This corresponds to the 
notion of a list embodied as an s-expression in Lisp. 

Omega also permits the specification of existen- 
tially and universally quantified relationships 
between examples. Translating a first-order expres- 
sion into a structure diagram is a problem reducible 
to selecting a norma form; this is not the case with 
second-order descriptions. Second-order descriptions 
are capable of describing the transitive closure of a 
relation. The structure diagram used in PHD is not 
inherently capable of describing such a relationship. 
Consequently, forms in PHD rely on a highly textual 
notation inside of structure diagrams. 

Remarkably, it appears that although PHD pro- 
vides greater expressive power, it lacks the expres- 
siveness of QBE because it is heavily reliant on tex- 
tual notations within a form to depict its relation- 
ships. Under the operative assumption that diagram- 
matic properties are important to expressiveness, 
PI-ID is problematic. PHD provides no mechanisms 
with which to represent second-order expressions in a 
structure diagram. The structure diagrams in 

Omega permit the definition of all first-order 

structures, i.e. all classes of trees. There is no func- 
tion in PHD for mapping second order clauses into a 
structure diagram. Providing such a mapping 
appears to be an open research question. 

Examples in these systems are facilely 
represented as variables within a collection of terms 
or clauses. Tables and structure diagrams contain 
mappings between clauses and visualizations, 
although representationally, second order clauses are 
problematic. Type information provides for diversity 
in visualizations; On the other hand a simple clausal 
approach for type characterization precludes opera- 
tor overloading. The integrity constraints used to 
maintain acyclic graphs are quite possibly more res- 
trictive than necessary. Evaluation of the terms 
within another model of computation may relax these 
restrictions. 

2.2. Instances aa Examples in Sketchpad, 
ThingLab and SmallStar 

SketchPadI and ThingLabls are the seminal 
pieces of work in the domain of graphics-based pro- 
gramming. The programming language abstraction 
for an example, shared in common with SmallStar - 
a programming by example system designed for the 
same domain as QBE - is an object-oriented one: An 
example in these systems is an instance of a class. 
The Sketchpad prototype was completed before hhe 
introduction of Simula-67; ThingLab and SmallStar 
are written in Smalltalk. ThingLab heavily 
influenced later revisions of the Smalltalk language. 
The classfinstance metaphor for an example is a 
powerful but general radicalization of records as 
expressed in Algol-derivative languages. We explore 
the properties of a class/instance of each system. 

Objects in Sketchpad are picture definitions used 
to model a hierarchy of graphical objects. Picture 
definitions could be combined with other picture 
definitions to compose new picture definitions. 
Several primitive types were also available for 
defining the fundamental elements in a structure. 
These types were purely graphical: points, lines, and 
circle arc6. Two kinds of relationships could be esta- 
blished in Sketchpad among picture definitions: 
master/instance, or copy. A masterfrnstance rela- 
tionship maintained the same picture definition. An 
instance had the same shape, but could be 
translated, rotated, and scaled. The private parts of 
a picture description were designated attachers - 
each instance contained its own values for a particu- 
lar attacher. If a picture definition for a master was 
modified, all instances of the master were also 
modified. A copy of a master no longer held a rela- 
tionship to the master. A copy was simply a new 
master whose hierarchical description is identical 
only initially to the originals. Revisions to the 
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hierarchy of the copy are not reflected in the origi- 
nal. Hierarchical descriptions could be embedded 
within other hierarchical descriptions. This provides 
sufficient to model arbitrary tree structures. 

Within the context of programming by example, 
picture definitions are structure diagrams with 
geometrical constraints. A master generalizes or 
encapsulates a specific set constraints germane to an 
example; instances are examples of masters with 
specific values for the attachers. 

ThingLab extended the expressive power of 
these language features in several significant ways. 
Objects contained in ThingLab are not constrained 
to geometric forms - ThingLab uses Smalltalk’sl’ 
more general class-instance structure where instances 
contain internal variables that can hold any instance 
state. ThingLab also introduces constraints on 
objects. A constraint specifies a relation that must 
be maintained. Constraints provide a mechanism for 
describing relationships in a part-whole hierarchy. 
Constraints are also integrated in the description of 
inheritance hierarchies. (Multiple inheritance was 
introduced in ThingLab before it was introduced in 
Smalltalk.) Multiple inheritance provides the expres- 
sive power to model asymmetric transitive relations 
between classes. 

In SmaliStar, examples are referred to as data 
descriptions. SmallStar data descriptions are 
instances of a class. Every example in SmallStar is a 
member of a predefined class. All objects in a class 
have the same properties. All instances of data 
descriptions in a class contain the same property list. 
The values for properties of a particular instance 
may differ from those of another instance. Unfor- 
tunately, SmallStar data descriptions are closed enti- 
ties. It is not possible to dynamically add or delete 
properties of a class. The property sheets are not 
computationally complete. For example, the class 
Folder contains a method for choosing the first or last 
Document, but not the nth Document. No facility is 
included for adding nth to the property sheet. 
Though the nth document may be computed using 
iteration, this is a liability from an expressiveness 
point of view. 

The class Container is the superclass in SmallStar 
where aggregation of objects is possible. The class 
Container in SmallStar appears to be inherited only 
by Folder and Filedrawer. Container appears not to per- 
mit the aggregation of Containers; as a consequence it 
cannot be used to model all classes of trees. For 
example, can Folders be inserted in Folders? Can they 
be inserted in FileDrawers? Can Filedrawers be inserted 
in Filedrawers? In no example in SmallStar is this 
capability found. A major increase in expressive 
power could be gained with the inclusion of such a 
minimal data structure. 

The emphasis in the design of SmallStar was 
placed clearly on expressiveness. Experimental 

studies accompanied expressiveness considerations in 
the design of the user-interface. The data- 
descriptions in SmallStar are depicted using structure 
diagrams that supports various levels of abstraction. 
Data descriptions are depicted using the property 
sheet metaphor established for the Star workstation. 
The property sheets for classes are organized 
hierarchically; information is encapsulated within a 
property sheets’ according to the hierarchy esta- 
blished for the class. It appears that given more con- 
sideration to expressive power, SmallStar data 
descriptions can embody within a completely 
different framework computational expressiveness 
and power equivalent to QBE. 

The importance of master-instance and class- 
instance language mechanisms to programming-by- 
example cannot be understated. Semantically the 
class-instance relationship is well prescribed. An 
instance corresponds closely to our intuition of an 
example. Hierarchy, inheritance, multiple- 
inheritance, and constraints permit the definition of 
both symmetric and asymmetric transitive relation- 
ships. Multiple-inheritance, in particular, lends itself 
to reuse of object classes. Distinguishing between 
classes in ThingLab corresponds to creating an 
instance (copy) of a class and specifying a new set of 
constraints. Creating a new class definition involves 
the addition of new asymmetric transitive relation- 
ships. New classes can be programmed by example 
by copying relationships and constraints belonging to 
instances of other classes. 

3. Demonstrations and Control of Evaluation 

In a programming by example system, a user 
manipulates examples to demonstrate a desired pat- 
tern of evaluation. The demonstrations correspond 
to the language constructs for evaluation and control 
in the underlying system. This section analyzes the 
expressive power and the expressiveness of these 
language constructs. Figure 3 provides a table of 
these control structures. 

What language constructs are embedded within 
a demonstration? In some systems, a demonstration 
is the establishment of an additional relationship 
between examples. Often, this corresponds to the 
introduction of an additional clause or a conditional. 
In that case, the demonstration differs little from the 
characterization of an example, as discussed above. 
Yet another form of demonstration incorporates 
iteration. Demonstrations are also a form of pro- 
cedure invocation. For example, grouping two 
objects may correspond to the invocation of an 
append operation. The different models of procedure 
invocation provide equivalent computational power. 
The expressiveness associated with the underlying 
model of computation gives a significantly different 
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feel to the user interface. 

This section examines the expressiveness and the 
expressive power of programming by example con- 
structs for iteration, procedure invocation, and condi- 
tionals. Expressive power is a measure of the compu- 
tations possible in a given language. The use of com- 
plexity metrics in analyzing practical programming 
environments provides insights on the fundamental 
nature of the computation. An oft cited example is 
that the clean theoretical semantics of the relational 
model underlying QBE are insufficient for expressing 
the transitive closure of a relation. This computa- 
tional difficulty is overcome by the introduction of 
practical language constructs. A language containing 
bounded loops, generic variables, and equalityI is 
sufficient for computing the primitive recursive junc- 
tions. (Virtually all functions of practical value are 
primitive recursive.) On the other hand, decision 
problems associated with a language may still 
remain. Where relevant, we discuss these considera- 
tions. 

Whereas expressive power is a hard computa- 
tional metric, criteria for the expressiveness language 
structures for evaluation and control remains a 
metric with properties that are difficult to define. 
Expressiveness, is intended as a measure of both gen- 
eral applicability - e.g. modularity - and represen- 
tativeness. As a metric for representational proper- 
ties, the criteria for evaluating examples established 
in section 2 are applicable. Iteration in a flow chart, 
and recursion in a dataflow diagram may in some 
ways be viewed as of equivalent expressiveness. Both 
contain functions providing mappings to particular 
implementations of a structure diagram. On the 
other hand, a construct incorporating iteration and a 
conditional is equivalent in expressive power to a 
construct for recursion, and yet by the representation 
metric, may also be said to be equivalent in expres- 
siveness. The definitional properties associated with 
constructs for recursion fulfill the language require- 
ments for encapsulation, modularity, and scope; 
Iteration constructs often do not contain these 
features. In the following discussion, we distinguish 
between demonstrations embedding procedure invo- 
cation, and demonstrations embedding iteration and 
conditionals. 

3.1. Demonstrations Embedding Operators, 
Conditionals, and Iteration 

In PHD, a user selects a form representing an 
example, and then creates a homomorphism that 
operates over the example. The homomorphism 
primitive embeds an operator, conditionals, and 
iteration in a single control structure. (The 
homomorphism primitive has its origins in theoretical 
work done by Burstall and Landin.)lg In the PHD 
system, an operator is applied to a list using the map 

primitive. The algebraic properties of the operator, 
as well as those of the list (including conditional pro- 
perties associated with the list) are embedded within 
the homomorphism. Map is an iteration construct 
that applies an operator to a list of arbitrary length. 
The semantics of a homomorphism (in Lisp notation) 
as specified by Aeillo20 is provided in Figure 4. The 
computational power of a homomorphism can express 
at least all of the primitive recursive functions. 

The homomorphism is particularly expressive 
when used with a general-purpose operator (e.g. sum- 
mation, see Figure 5). Two algebraic properties are 
requisite in the design of operators incorporated 
within map: operators must contain an identity func- 
tion, and operators must accept as input a list of any 
arbitrary size. The identity property permits the 
determination of the type of the result where fields 
have not been completely specified. The requirement 
that an operator accept an arbitrary number of ele- 
ments implies that functions composing the example 
and the operator must specifically handle structures 
with no elements, structures with one element, and 
structures with many elements. (An equivalent alge- 
braic viewpoint has been implemented by Goguen et 
al.21 in the language OBJ and its variants.) 

The algebraic regime for operators seems to 
increase the expressiveness of the language. Cer- 
tainly the algebraic definition provides a precise 
characterization of the corresponding language 
notions of applicability and generalizability. It is in 
this light, however, that we note the absence of a 
facility for defining the algebraic properties of new 
operators. It appears that only operators defined 
within the system meet the algebraic criteria and 
new operators do not. The design of a facility for 
the demonstration of the algebraic properties of 
operators is an open research problem. The 
homomorphism primitive is closed under composition. 
From an expressiveness point of view, a composition 
facility adds a mechanism for encapsulation. This 
increases the expressiveness of a language by 
encouraging modularity and reusability. 

Apply is a control structure formulated for use 
with ThinkPad. Like a homomorphism, the control 
structure derives its expressiveness by providing a 
facility for embedding examples (in clausal form), 
conditionals, and, iteration.22 The apply control 
structure is derived from the “universa1”6 control 
structure 

for tuple t in relation R do <statement> 
where <statement> may modify relation R. Intui- 
tively, it is designed to traverse a well-defined route 
over a two-dimensional data structure while opera- 
tions are executed at each point along the route. 
The route itself may be modified by the result of an 
operation. 

The apply function contains three components: 
a Route, an Operation, and Modijy. Evaluation of 
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the clauses representing the Route yields the univer- 
sal closure of the clause (whose binding may be 
deferred); this Route corresponds to R above. An 
Operation object iterates over each element in the 
route. The Operation component maps a predicate 
to each tuple in the Route. The modify component 
specifies the order in which clauses are to be con- 
sidered in the route. 

Apply is of expressive power capable of comput- 
ing polynomial, or primitive recursive functions. The 
expressiveness of this control structure is that all the 
components are explicitly available for manipulation. 
A route is specified via an example. The same exam- 
ple used for the route is subjected to the demonstra- 
tions associated with an operation - this may 
include specifying additional relationships, or incor- 
porating the clause within a predicate. Unlike a 
recursive definition of breadth-first search where the 
stack is an implicit structure the apply primitive 
forces the user to select the representation of the 
data structure for use as the route object. For 
example, the route may be a tree, a list, a stack, or 
an ordered or unordered set. When the route is 
explicitly defined as a stack, manipulations are per- 
mitted only via “pop” and “push” operations. 

SmallStar includes a set iteration construct. To 
add the primitive for set iteration an example is 
selected, and demonstrations applying operators to 
the example are recorded. (The transcription 
mechanism is described below.) After the demonstra- 
tions are recorded, the statement Repeat with every- 
thing matching is inserted into the prerecorded 
sequence of statements. The data description 
describing the “match” is simply the class that can 
be extracted from the example used in the demons- 
trations. Unfortunately, it appears that the only 
classes for which iteration can be defined consist of 
examples belonging to the class container or the class 
Table. 

In defining the SmallStar control structure, the 
emphasis was once again on the expressiveness of the 
structure. The SmallStar strategy for introducing 
iteration was the result of several prototyping and 
testing efforts. In the initial prototype a user began 
an iteration with a for each do statement and then 
proceeded to define the manipulations. It was felt 
that inserting iteration after the procedure was 
defined was more useful. The computational power 
is equivalent to a language containing bounded loops 
and equality. 

Homomorphism, apply, and to some extent, set 
iteration, are constructs designed from equivalent 
points of view. They are similar in many ways to the 
“generator” constructs in modern languages. The 
basis for their construction lies in their encapsulation 
of an aggregate to operate on individual members of 
the set in a constructive order. This in direct con- 
strast to the approach taken in QBE. QBE contains 

special purpose operators incorporating iteration and 
few langauge constructs for encapsaulating and 
parameterizing queries. Examples of such operators 
include average, sum, maximum. The homomor- 
phism, and apply constructs explicitly attempt to 
define a generalized control construct. 

3.2. Procedure Encapsulation and its Mechan- 
ics 

Procedures are a language mechanism used pri- 
marily to encapsulate a sequence of statements and 
as a vehicle for introducing recursion. Adding recur- 
sion to a language containing either apply, or a 
homomorphism, or for that matter, a construct 
embedding conditionals and iteration, provides an 
alternate approach to specifying fun&ions of 
equivalent computational power. In such cases it is a 
syntactic device used to encourage modularity. 

In this section we discuss the mechanics of how 
a procedure is encapsulated because of the semantic 
nature of the editing commands used for encapsula- 
tion. Some of editing commands are equivalent to 
procedure invocation, and are as such, explicit 
demonstrations. Other editing commands are simply 
a device for encapsulating a procedure, and are not 
particularly relevant. 

Procedure encapsulation appears to be an 
integral part of the (misguided) folklore surrounding 
programming-by-example. The actual mechanics of 
how examples are used to define a program are in 
some ways irrelevant to the power of the program, 
but can be interesting in their own right. They pro- 
vide a perspective on the synergy between a language 
and the editing technology used to prepare a pro- 
gram in that language. 

Pygmaliona pioneered the use of program tran- 
scription as a device for encapsulating procedures. 
To encapsulate a set of operations, a user begins a 
command such as Start Recording and proceeds to 
manipulate objects. Each manipulation is recorded 
in the transcript. Manipulations (i.e. demonstra- 
tions) include assignment, or calculation of arith- 
metic or boolean expressions. The set of manipula- . 
tions that appear in the transcript is defined by the 
language constructs or icons (procedures) available in 
the system. To close the encapsulation, a user gives 
the command Stop Recording. The commands 
entered in a transcript can now be reinvoked, or they 
can be modified. In Pygmalion, the transcript is 
stored within a particular icon for playback. 

Demonstrations in SmallStar and Pygmalion 
correspond to either establishing new boolean or 
arithmetic relationships between examples, or pro- 
cedure invocation. SmallStar contains a message- 
passing model of procedure invocation which is based 
on the object-oriented programming paradigm of 
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Smalltalk. Objects on the screen belong to a class 
named Icon. All members of the class Icon can 
evaluate a set of messages which are used for invok- 
ing methods that operate on the object. User mani- 
pulations are translated into specific messages. For 
example, the point mouseclick is translated into a 
SELECT message which is sent to the icon. Select- 
ing the Move button sends the MOVE message to the 
icon. This results in in replacing the cursor with the 
icon. A subsequent point mouseclick translates the 
command into the message INSERTA T:pt that is 
sent to the Desktop icon. 

SmallStar provides translation functions to 
increase “readability” of the transcript. A transcrip- 
tion was more than a transcript of the raw opera- 
tions. A user was exposed to a transcript that had 
been parsed and translated into a more readable 
form. While this had no effect on the expressive 
power of the system, it appears to be a useful tech- 
nique for increasing the expressiveness in the 
representation of a procedure. Transcription in Pyg- 
malion and SmallStar results in a sequential block of 
operations. 

The semantics of message passing coupled with 
the translation technique described above forms the 
basis for much of the well-emulated visual program- 
ming paradigms in place today. It is executed rather I 
elegantly in the SmallStar user interface. 

The Pygmalion model for program transcription 
appears to provide computational power equivalent 
to the power of a finite state automaton. Embedded 
at the nodes are sequences of operations. Arcs con- 
tain decision functions embedded within 07 then else 
expressions. Pygmalion transcripts can accept 
parameters, can be named, and can be invoked. It is 
certainly possible to define a recursive program tran- 
scription. This appears not to be possible in 
SmallStar even though virtually identical transcrip- 
tion mechanisms are used. Much along the same 
lines as Pygmalion, an experimental programming 
environment, Tinker,24 has been developed. Tinker 
examines the finite state transcription, and queries 
the user for transcriptions where additional transi- 
tion functions may be included. 

New messages cannot be synthesized in the 
SmallStar system. The SmallStar virtual machine is 
defined in terms of the predefined set of messages 
and is a closed system. Although SmallStar does 
have a procedure encapsulation mechanism, no 
mechanism for parameter passing is provided. Pro- 
cedures access data by the access conventions esta- 
blished for data descriptions and icons. 

PIPI uses a modified form of program tran- 
scription to define procedures. The language under- 
lying PIP is functional, and is based on a variant of 
Backus’s FP.25 The syntactic and semantic restric- 
tions of FP, i.e. no temporaries, carry through to the 
program transcription process. A function is initially 

defined as having several input and output types. 
Input types are composed with output types to form 
functional expressions. 

In PIP the notion of a transcript is inherently 
connected to that of a stack. A user initiates a tran- 
script by issuing the Connect command. To compose 
a set of objects, a user selects the set of input 
objects. Each object selected is then placed on a 
stack transcription, available for manipulations. The 
user may connect a set of inputs by selecting an 
object that represents an operator. Selecting an 
operator pushes the operator on the stack as well. 
Issuing a Done command pops the stack and com- 
pletes the transcription. 

Although the choice of transcription mechanism 
in PIP was dictated by the semantics of the underly- 
ing language, it is an interesting program construc- 
tion technique in its own right. It appears to provide 
the power of a pushdown-automaton in constructing 
a program. Finite-state-automata are of less expres- 
sive power than pushdown-automata. Stack-based 
transcription is more powerful than a finite-state 
transcription. While this discussion concerns the 
preparation of demonstrations for a program and not 
the expressive power of the program generated, it is 
possible that with greater computational power in 
the specification process, more examples may sys- 
tematically be addressed. This is an area ripe for 
future examination. 

PIP permits the same function to be defined 
several times, each with a different specification of 
the input data-structure requirements. This facili- 
tates the definition of functions whose actions are 
determined by the structure of the input. Each 
instance of a multiply defined procedure is referred 
to as a junction variant. This may, for example, be 
particularly useful in defining tree manipulation algo- 
rithms that handle leaf nodes and internal nodes 
differently. Permitting a function to be multiply 
defined makes it easy to generate a procedure whose 
components are designed to use examples that are 
semantically unequivalent. 

The semantics of a function defined via several 
function variants are derived using a maximal match 
procedure. The specific function variant to be 
invoked is chosen from those attributes of the passed 
data structure that fit best with the various input 
descriptions. 

Unlike Pygmalion, SmallStar, and PIP, the 
encapsulation and demonstration of a procedure in 
ThinkPad is not based on a transcription mechanism. 
Procedures in ThinkPad are composed of four collec- 
tions: a Function collection, an Input collection, a 
Result collection, and a Demonstration collection. 
The Function collection represents a type 
specification of the inputs and the results. The Input 
collection contains examples conforming to the type 
specification. Parameter specifications in ThinkPad 
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are strongly typed, and may be part of a class- 
subclass hierarchy of relations. Most relevant, the 
Demonstration collection, contains groups of objects 
with explicit relations between the groups and 
between the objects in each group. These relations 
are established through use of demonstrations. 
Demonstrations in ThinkPad correspond to semantic 
actions of the commands in an editor. For example, 
the editing function group corresponds to either the 
lisp dot operator (cons), or the addition of a variable 
or a clause to a predicate. 

ThinkPad provides a translation algorithm that 
accepts these collections and generates Prolog code. 
Theoretically, it should be possible to specify opera- 
tions nondeterministically. However, the 
satisfiability of a clause or procedure set in Prolog is 
often dependent on the ordering of its clauses. Con- 
sequently, ThinkPad collections retain a left-to-right, 
top-down ordering. Functions are defined in Think- 
Pad using a mechanism that resembles syntactically 
the function variants used by PIP, but whose seman- 
tics radically differ. Functions may be multiply 
defined, with different constraints on the types of 
data accepted for each definition. The underlying 
semantics are the Prolog semantics of Horn-clause 
interpretation using resolution.26 The semantics pro- 
vides a mathematically clean approach to defining 
functions based on the individual examples. If data 
do not meet the requirements of the description, the 
predicate invocation will fail, and another function 
variant selected. 

Functions in PHD are forms (structure 
diagrams) containing a title, a set of input parame- 
ters and a field for a result. Forms increase the 
expressiveness of the language by providing a general 
purpose mechanism that encapsulates and modular- 
izes homomorphisms. The entries may contain predi- 
cates specifying relationships between pieces of data 
and type information. Forms are in this way, 
equivalent to function invariants. The result field is 
derived from a set of computations. Its description 
as a parameter consists only of a name. The invoca- 
tion of a procedure corresponds to the visual display 
of the form displaying the function name, its parame- 
ters (and attributes), and its result. Procedures have 
the additional property of embodying a homomor- 
phism. Homomorphisms are closed under composi- 
tion. Consequently, procedure invocation is 
equivalent to the explicit inclusion of a homomor- 
phism specification within another homomorphism. 

We have shown that many of the demonstra- 
tions performed in these systems may not be readily 
recognized as a form of procedure invocation. This is 
attributable to the underlying model used for invok- 
ing procedures. For example, the SmallStar and 
Pygmalion model rely on the message-passing model 
of procedure invocation. A click on an icon is 
translated into a specific message that is then passed 

to the icon. PIP and ThinkPad permit procedure 
invocations as well, although the semantics of a pro- 
cedure within each system differs significantly. 

Whereas the different models of procedure invc+ 
cation provide equivalent computational power, the 
properties associated with the expressiveness of these 
constructs differs qualitatively. Transcriptions pro- 
vide a modularized pattern of control. “Extended” 
transcripts are parameterized and reusable. Func- 
tion invariants tend to reduce the size of the demons- 
tration sequence by constraining the scope of appli- 
cable examples. If a particular data set is not 
relevant, a new specification based on a different set 
of examples is in order. Interestingly enough, the 
transcription tools are of different expressive power - 
however, the environment is of no impact on the 
expressive power on the generated programs, and 
only help to systematically organize the generation of 
examples. 

3.3. Conditionals 

The semantics of an example in many of the 
systems for programming by example significantly 
reduces the need for explicit conditionals, Data 
descriptions in SmallStar serve to describe the attri- 
butes of a particular example. If the attributes are 
inadequate, they may either be modified, or an if 
then else conditional may be post-facto inserted in 
the transcripted procedure. In systems relying on 
clausal representations of data, the clauses them- 
selves and the function invariants make explicit i/ 
then else conditionals unnecessary. Function invari- 
ants are a form of implicit if then else, as are predi- 
cates within a function invariant. 

4. Conclusions 

For the most part, programming by example has 
been viewed as a user-interface problem. D-C. 
Smith, the designer of Pygmalion and the primary 
architect behind the Star user interface, has written 
about user interface design:27 

User-interface design is still an art, not a science. 
Many times during the Star design we were 
amazed at the depth and subtlety of user- 
interface issues, even such supposedly straightfor- 
ward issues as consistency and simplicity. Often 
there is no one “right” answer. Much of the time 
there is no scientific evidence to support one alter- 
native over another, just intuition. Almost al- 
ways there will be tradeoffs... 

Programming by example, like many concepts in 
mathematics, is to a large extent a methodology born 
of intuition. Al-Khowarizmi and his fellow Babyloni- 
ans were hampered not as much by the unavailabil- 
ity of a computing device as by lack of a conceptual 
and notational framework with which to express a 
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“variable”. At the h%art of programming-by-example 
lies a problem in a similar vein: precisely what con- 
stitutes an example, and its demonstrations? This 
question has been approached not as a problem of 
“user-interface design” but as an applied exercise in 
computability. 

By what principles can better systems be built? 
The strategy suggested here is to treat the system as 
a programming language. When programming by 

example fails to scale up, the cause may often be 
found in an examination of the expressive power vis 
a vis the expressiveness. The criteria of computa- 
tional power and computational expressiveness are 
useful metrics in examining the relationship between 
what are seemingly unrelated systems, Ultimately, it 
is both the expressive power and expressiveness of a 
language that defines its usefulness. Good language 
design, as underlies programming-by-example and 
good systems design, is part science, and part art. 
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Figures 

The sum of the length, width, and diagonal is 12 and 12 is the area. 
What are the corresponding length, width and diagonal? 
The quantities are unknown. 
12 times 12 is 2,24. 
12 times 2 is 24. 
Take 24 from 2,24 and 2 remains. 
2 times 30 is 1, 
By what should 12 be multiplied to obtain l? 
12 times 5 is 1, . 
5 is the diagonal. 
This is the procedure. 

Figure 1: Babylonian algorithm for the solution of linear equations. 
The procedure was originally analyzed by D. Knuth. 

The procedure in Figure 1 presents a Babylonian algorithm to solve a linear 
equation based on the formula 

d=+(l+w++ (l+y+d) , 

where 
A=lw 

is the area of the rectangle and 
d=w 

is the length of its diagonals. 
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Early Office General Purpose Graphical 
Mathematics Automation Programming ProgramminE 

Linear Equations QBE Pygmalion Sketchpad 
Al Khowarizmi-Algebra PHD PAD (?) ThingLab 

SmallStar PIP Juno 
ThinkPad 

Figure 2: Systems that utilize programming-by-example. 
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Figure 3: Control Structures used in Programming by Example Systems 
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(DE HOM 

(LAMBDA (FNCJLL FNUMB FCONS) 
(FUNCTION 

(LAMBDA (ARGS) 

(CON0 
((NULL ARGS) (FNULL) 

( T (FCONS (FNUMB (CAR ARGS)) 
((HOM FNULL FNUMB FCONS) 

(C’DR ARW)N)NN 

Figure 4: Semantics of a homomorphism 

(HOM 

(FUNCTION (LAMBDA () 0)) 
(FUNCTION (LAMBDA (X) X)) 

(FUNCTION PLUS)) 

Figure 5: Using the homomorphism primitive to define a summation operator. 

103 


