
TDM MAC Protocol Design and Implementation
for Wireless Mesh Networks

Dimitrios Koutsonikolas1, Theodoros Salonidis2, Henrik Lundgren2,
Pascal LeGuyadec2, Y. Charlie Hu1, Irfan Sheriff3

1Purdue University, 2Thomson, 3UC Santa Barbara

ABSTRACT
We present the design, implementation, and evaluation of a
Time Division Multiplex (TDM) MAC protocol for multi-
hop wireless mesh networks using a programmable wireless
platform. Extensive research has been devoted to optimal
scheduling algorithms for multi-hop wireless networks as-
suming a perfect TDM MAC protocol. However, the prob-
lem of designing and implementing such a protocol has not
received due attention. We introduce a design framework
that addresses the three main challenges that comprise this
problem: (i) How to calibrate and optimize the TDM MAC
protocol parameters given a wireless platform, (ii) how to
achieve network-wide synchronization with high accuracy,
minimal overhead, and most importantly, bounded delay, and
(iii) how to integrate the synchronization algorithm with the
TDM MAC protocol state machine using minimal hardware
resources. We apply our design framework to our platform
and evaluate the resulting TDM MAC protocol through con-
trolled experiments in a wireless mesh testbed. The results
demonstrate the protocol’s ability to provide fairness and
graceful performance degradation under packet losses and
multi-hop traffic patterns that arise in mesh network deploy-
ments.

1. INTRODUCTION
Mesh networks aim to provide high-speed/low-cost Inter-

net access through 802.11-based multi-hop wireless back-
bones. Despite their rapid world-wide adoption, initial de-
ployment experiences report various performance problems
related to the 802.11 CSMA MAC protocol. Indeed, CSMA
MAC protocols react poorly to the heavy traffic load encoun-
tered in the mesh backbone and to the losses or inconsis-
tent channel state induced by the multi-hop wireless envi-
ronment. In addition, due to their distributed nature, 802.11
CSMA MAC protocols make it notoriously hard to model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2008, December 10-12, 2008, Madrid, SPAIN
Copyright 2008 ACM 978-1-60558-210-8/08/0012 ...$5.00.

the network’s capacity and throughput even given the net-
work topology and traffic pattern.

The alternative TDM MAC presents an almost opposite
scenario to the CSMA MAC. On one hand, it assumes global
knowledge of the multihop network, and hence a centralized
scheduling can compute optimal or close-to-optimal sched-
ules of transmissions for all nodes in the network. On the
other hand, it poses three significant challenges to the design
of an operational mesh network: First, the backbone mesh
routers need to be tightly synchronized so they can perform
local packet transmissions that follow the global transmis-
sion schedule. Second, the backbone routers need to agree
upon and follow a time slot that is small but takes into ac-
count not only the synchronization error but also delays of
incoming and outgoing packets while they traverse various
stages of the network stack. Third, the integration of the
TDM parameters with the synchronization algorithm, while
also minimizing the hardware resource usage, is non-trivial.

In this paper, we systematically address the above three
challenges and present the design, implementation, and eval-
uation of a Time Division Multiplex (TDM) MAC protocol
for multi-hop wireless mesh networks using a programmable
802.11 wireless platform. Our contributions are as follows.

First, we identify the bottlenecks that govern the operation
of a TDM MAC protocol. These bottlenecks are visible only
at the lowest layers of the protocol stack and introduce de-
lays in the form of clock drifts, slot processing and transmis-
sion/reception (Tx-Rx) overhead. These bottlenecks must be
measured and taken into account in TDM MAC design to
achieve correct and efficient protocol operation. We intro-
duce a design framework that includes a set of experimental
methods and design constraints. The experimental methods
are used to measure platform communication bottlenecks.
The design constraints relate these bottlenecks to the TDM
MAC protocol parameters and allow to compute the optimal
parameters for correct and efficient protocol operation. We
then introduce a design procedure to apply our design frame-
work. This procedure takes as input a mesh network topol-
ogy, a programmable platform and a set of requirements and
uses measurements and design constraints to yield optimized
protocol parameters.

Second, we design and implement a novel in-band multi-
hop clock synchronization algorithm to maintain the node
clocks synchronized to a common time reference provided
by the mesh gateway nodes. The algorithm addresses the
TDM MAC requirements for network-wide synchronization,

bounded delay execution and high clock accuracy (at the
microsecond level). It utilizes the TDM protocol’s slotted
structure to quickly broadcast the reference clock, minimiz-
ing execution time and synchronization overhead. Accurate
clock synchronization can be achieved if nodes are synchro-
nized to an external global clock using GPS devices [17].
However, GPS devices only work in outdoor settings with a
clear sky view. Existing in-band clock synchronization algo-
rithms for multi-hop wireless networks are focused on high
accuracy and do not minimize execution time or communi-
cation overhead, a critical factor in a TDM system.

Third, we present an integration scheme that integrates
the fundamental TDM parameters with the clock synchro-
nization algorithm in the design of the slotted mechanism of
any TDM protocol. We provide a general state machine for
the implementation of this mechanism. Our implementation
makes minimal hardware resource usage, by utilizing only
two timers to handle the problem of imperfect clocks and
the need for periodic re-synchronization.

Finally, we prototype a version of our TDM MAC proto-
col and evaluate it on a wireless testbed, in traffic scenarios
that arise in gateway-centric mesh network applications. Our
results show that our TDM MAC protocol achieves inter-
flow fairness and graceful throughput to packet loss condi-
tions typically encountered in mesh networks [2].

2. RELATED WORK

2.1 TDM MAC implementations
Recent work has leveraged off-the-shelf 802.11 hardware

to design TDM MAC protocols for multi-hop wireless net-
works.

Overlay MAC Layer (OML) [13] provides an overlay TDM
solution on top of 802.11 CSMA, in which time is loosely di-
vided in slots. It focuses on slot allocation to nodes accord-
ing to a WFQ policy to improve the fairness of 802.11 as
opposed to issues in a native design of TDM protocols. As
such, OML uses a relative large slot size equal to the time
required to transmit 10 packets of maximum packet size to
tolerate course-grained clock synchronization.

SoftMAC [9] and MadMAC [16] are two platforms that
can be used to build experimental MAC protocols on top
of the 802.11 PHY layer. As a demo, the authors in both
cases showed how to implement a simple TDM protocol,
and tested it for 2 nodes.

Similar to our work, RT-Link [15] also studies the design
issues of a TDM protocol, but for energy constrained sen-
sor networks. RT-Link resorts to an out-of-band, hardware-
based synchronization, using either an AM transmitter-receiver
module or a WWVB atomic clock broadcast. In contrast, our
work focuses on a TDM design that uses in-band synchro-
nization.

WiFi Based Long Distance (WiLD) networks [12, 10] faced
similar issues as in a TDM MAC protocol design. These
networks comprise of point-to-point wireless links that use
high-gain directional antennas. Instead of network-wide syn-
chronization, the major synchronization issue is to locally
synchronize all interfaces of the same node to either receive
or transmit at a given time, and to synchronize among neigh-
bor nodes so they can transmit or receive together.

Finally, most of the above implementations are at the driver

level using off-the-shelf 802.11 wireless cards. Our work
presents the first comprehensive study of the challenges faced
by multi-hop TDM MAC protocol design at firmware level.
The design needs to take into account delays introduced as
incoming and outgoing packets traverse the network stack
and due to hardware and low-level software constraints, in
addition to synchronization error.

2.2 Synchronization algorithms
Clock synchronization mechanisms are broadly classified

as out-of-band and in-band. Out-of-band mechanisms like
GPS clocks can provide a global time reference with nano-
second level accuracy and incur zero overhead but only work
in outdoor environments with clear sky view. In-band mech-
anisms synchronize nodes through beacon transmissions and
are used in existing single-hop wireless TDM systems like
cellular and IEEE 802.16. In these systems, clock synchro-
nization is easily achieved since the base station can reach all
client stations with a single broadcast transmission. How-
ever, in multi-hop wireless TDM networks, in-band clock
synchronization is a challenging task.

Standard Internet synchronization algorithms such as NTP [8]
yield low accuracy (milli-second scale) when applied to multi-
hop wireless environments. Consequently, several in-band
multi-hop synchronization algorithms have been designed,
especially for sensor network applications [14]. From these
algorithms, [4, 5, 7] aim at global time reference and have
been implemented on sensor network platforms. These al-
gorithms can achieve high accuracy (tens of µs) but have not
been designed for TDM MAC protocols. Instead, they oper-
ate on top of CSMA MAC protocols which do not allow for
bounded execution time.

The IEEE 802.16j relay task group has extended the IEEE
802.16 standard to multi-hop TDM networks of tree struc-
ture, where children nodes recursively synchronize to pream-
bles transmitted by their parent nodes. This approach is spe-
cific to a tree topology structure and is not a complete syn-
chronization algorithm. Chebrolu et al. [3] build a sensor
network for a bridge monitoring application and use a syn-
chronization mechanism where beacons are transmitted over
lossless links of a routing tree. In Section 4, we show that
synchronization over a tree may not be the best approach for
the high-loss mesh network environment.

The ECMA standard [1] is based on UWB PHY and TDMA
MAC and defines a distributed in-band clock synchroniza-
tion mechanism during each TDM frame where each node
synchronizes its clock to the clock value of its slowest one-
hop neighbor. While in a single-hop network the slowest
clock can be propagated to all nodes within a single TDM
frame, in a multi-hop network it would require an unbounded
number of TDM frames.

In contrast to previous work, our in-band synchronization
algorithm is designed for a multi-hop TDM MAC protocol
and uses an optimized transmission schedule to broadcast
a synchronization beacon, within a single TDM frame and
in bounded delay, from a set of gateway nodes to the mesh
network. Furthermore, in Section 6 we show that the algo-
rithm’s simplicity allows efficient integration with the TDM
MAC state machine.

3. TDM PROTOCOL ARCHITECTURE
A wireless mesh network consists of Internet Gateways

(GWs) and mesh access points (MAPs). Both GWs and
MAPs are equipped with wireless interfaces to route traf-
fic within the mesh backbone and serve client devices. The
GWs are equipped with additional Ethernet interfaces to con-
nect to the Internet.

We consider a TDM MAC protocol for the wireless mesh
backbone where the participating nodes are GWs and MAPs.1
Fig. 1 depicts the protocol’s structure. The GWs and MAPs
are synchronized under a common time reference. Trans-
missions occur periodically through a sequence of multi-slot
frames. Each frame consists of a synchronization control
sub-frame (SCS) followed by a sequence of data sub-frames
(DS). Both SCS and DS are of fixed duration and span sev-
eral slots. During each DS slot, a set of GWs and MAPs
transmit conflict-free according to a schedule that has been
computed by a central entity. The GWs provide a natural lo-
cation for such an entity. The basic parameters of a mesh

DS
...

...

Tsynch

...

...

TF

TP TGD

S

...

TP TG
DSCS

SSCS

1 K1 P

SCS SCS

Slot

SCS slot

Figure 1: TDM MAC protocol slotted structure of the
multi-hop wireless mesh backbone.

TDM MAC protocol are as follows.
Slot duration S. The minimum TDM MAC protocol

communication time unit. During a slot a node must be able
to successfully transmit (Tx) or receive (Rx) packets from
its neighbors. The slot duration S should be minimized to
enable provision of delay guarantees.

Slot packet duration D. The maximum MAC packet du-
ration. It is determined by the minimum required data trans-
mission rate and a range of required packet sizes. It should
also enable full utilization of the useful part of each slot (slot
duration minus overhead) with one or more packet transmis-
sions.

Slot guard time TG. Idle time appended at the end of
each slot to enable correct protocol operation during Tx or
Rx activity. It provides a time cushion for hardware-related
communication delays and slot misalignments due to clock
drifts. Guard time is a per-slot overhead, hence critical to
minimize for efficient protocol operation.

SCS duration TSCS . The execution time of the synchro-
nization algorithm. It should be constant and known to all
nodes during TDM MAC protocol operation. It should also
be minimized to avoid disruption of delay-sensitive trans-
missions and minimize synchronization overhead.

Synchronization period Tsynch. This parameter deter-
mines frequency of synchronization algorithm execution. It
1The clients are connected to the backbone through a different
wireless interface and protocol.

should be maximized to minimize the synchronization over-
head and depends on losses and clock drifts.

The TDM MAC protocol parameters depend on applica-
tion requirements, the hardware platform and the synchro-
nization algorithm and also depend on each other. For ex-
ample, a very large TG can effectively mask all hardware
bottlenecks and clock drifts but would also increase syn-
chronization and slot overhead. It also presents challenges
to the multi-hop synchronization algorithm to maintain low
synchronization overhead and meet the TSCS delay bounds.
Increasing S reduces protocol overhead but also reduces the
protocol ability to provide delay guarantees. In the next sec-
tion we introduce a design framework to capture such depen-
dencies and address the wireless mesh TDM MAC design
problem.

4. DESIGN FRAMEWORK
Our TDM MAC protocol design framework consists of

design constraints that relate measured bottlenecks of a pro-
grammable wireless platform to the protocol parameters. We
distinguish between platform design constraints and synchro-
nization design constraints. Platform design constraints en-
sure correct and efficient protocol operation for transmis-
sions during both SCS and DS. They determine guard time,
packet duration and slot duration as a function of the plat-
form bottlenecks. Synchronization design constraints ensure
correct and efficient operation of the synchronization algo-
rithm during the SCS. They determine the synchronization
period and SCS duration as a function of guard time, clock
drift rate and synchronization failures due to packet losses.

We first identify the platform bottlenecks and then intro-
duce the design constraints. We conclude with a design
procedure that takes as input a programmable platform, a
mesh network topology and a set of requirements, and uses
measurements and the design constraints to yield optimized
TDM MAC protocol parameters.

4.1 Platform bottlenecks
The platform bottlenecks that impact TDM MAC protocol

design are (i) clock drift rate, (ii) packet preparation over-
head, (iii) slot processing overhead, and (iv) communication
turnaround overheads (RxRx, TxRx, RxTx, and TxTx). Bot-
tlenecks (ii)-(iv) include hardware and low-level software
processing delays that are not directly visible and cannot
be controlled at the level where MAC design is performed.
These bottlenecks can only be determined by measurements
and should be defined and measured at the level where MAC
design is performed.

Clock drift rate rd. Clock drift rate rd is the speed a
MAP node clock deviates with respect to a reference clock.
The drift rate of clocks based typical crystal oscillators can
range from 1-100µs per second.

Slot processing TP . Each slot involves processing the
following actions before any Rx or Tx activity can begin:
(i) schedule the next slot time instant (typically through a
timer) (ii) determine the current slot type (Rx or Tx), and
(iii) in case of Tx slot, prepare the hardware for transmission.
Although hardware transmission preparation does not occur
for Rx slots, TP must take this action into account since slot
duration is independent of slot type. We therefore define slot
processing TP as the duration from the start of a slot until the

first bit is in the air.
RxRx turnaround TRxRx. Consecutive Rx slots require

no change in hardware state. Therefore, no additional slot
overhead is incurred by two or more consecutive Rx slots.
We thus safely omit TRxRx in further analysis.

TxRx turnaround TTxRx. We define this turnaround time
as the time from the last bit sent in the air until the time an
incoming frame can be received.

RxTx turnaround TRxTx. We define this bottleneck as
the time from the reception of the last bit until the first bit
of the outgoing frame is transmitted in the air. In addition
to the delay for the hardware to change state from receive
mode to transmit mode (turn on power amplifier, etc.), the
RxTx turnaround includes the same hardware Tx preparation
delay as in TP .

Data packet preparation time TDpp. Each platform has
a maximum rate at which incoming packets from higher lay-
ers can be prepared to enter the MAC protocol queue. This
rate is typically controlled by lower level software processes
and needs to be measured. This rate determines the packet
preparation time TDpp, which is the minimum time for con-
secutive packet arrivals at the MAC queue.

TxTx turnaround TTxTx. We define this bottleneck as
the time from the last bit in the air for an outgoing packet
until the first bit in the air of the next packet. This delay in-
cludes the delay from programming the hardware for trans-
mission until the packet is transmitted in the air (part of TP).
It also depends on the platform’s ability to continuously feed
the MAC queue with prepared packets, i.e., it depends on
TDpp.

4.2 Platform Design Constraints
We make the following assumptions for the turnaround

overheads: (i) changing state from Rx to Tx (or vice versa)
includes a small hardware-related delay to change the hard-
ware state, (ii) Tx slots include delay to prepare and pro-
gram the hardware for transmission, and for Tx slots which
are preceded by a Rx slot, the delay of (i) is added. This
leads to the following relationships for the turnaround over-
heads: TRxRx < TTxRx < TRxTx. Furthermore, since
an Rx activity is assumed to finish within its slot, the TRxTx

delay starts at latest at the slot boundary. This implies that
TRxTx ≤ TP .

We thus use the remaining turnaround bottlenecks TP and
TTxTx, and TDpp to derive the platform design constraints.

The slot processing overhead TP is unavoidable at the
start of each slot. This provides a design constraint that re-
lates TP to S, D and TG:

S = TP + D + TG (1)

We now derive a constraint for the TDM MAC protocol
ability to transmit a stream of packets in consecutive TX
slots. Incoming packets from higher layers are queued at a
packet preparation module that has service time TDpp. Pre-
pared packets enter the TDM MAC protocol queue. For con-
secutive Tx slots, the TDM MAC protocol generates trans-
mission requests every S seconds. The first prepared packet
in the MAC queue (if any) begins transmission after a delay
equal to the slot processing overhead TP . Given a stream of
incoming packets to the packet preparation queue, the ser-
vice rate of the MAC queue should be at least equal to the

service rate of the packet preparation queue:

S ≥ TDpp (2)

If this constraint is satisfied, the MAC protocol is always
able to serve packets incoming to the packet preparation queue
at each Tx slot. In this case, the MAC queue will be full
and each prepared packet will be transmitted after TP , as ex-
pected. However, if this condition is not satisfied, the proto-
col cannot operate correctly for consecutive Tx slots. Its be-
havior depends on whether the implementation allows trans-
missions of prepared packets that arrive at the MAC queue
after the beginning of a slot or waits for the next Tx slot. In
the first case, packets may exceed the slot boundaries result-
ing in incorrect operation. In the second case, Tx slots are
wasted resulting in performance degradation.

If constraint (2) is satisfied, consecutive prepared packet
transmissions are separated by TDpp or higher depending on
the packet duration D. For D less than TDpp − TP , TTxTx

equals TDpp−D; otherwise it equals TP . Since TTxTx only
depends on TDpp, D and TP , it does not need to be measured
or be explicitly taken into account in the platform design
constraints.

Using Eq. (1) and (2) we reach a platform design con-
straint for guard time TG:

TG ≥ max(TDpp − TP −D, 0) (3)

The max() operation covers the case D > TDpp−TP , where
the platform can continuously prepare packets for transmis-
sion within the duration of slot processing and packet dura-
tion. In this case, the guard time due to platform bottlenecks
can be set to zero. Otherwise, the guard time should be such
that the TDpp minimum packet separation is satisfied. The
constraints on TG due to the clock drift rate rd are captured
by the synchronization design constraints described next.

4.3 Synchronization Design Constraints
We determine the design constraints for the synchroniza-

tion parameters TSCS and Tsynch. Our analysis is indepen-
dent of the mechanics of a particular synchronization algo-
rithm. The algorithm uses beacons to synchronize all MAP
clocks to a common time reference clock provided by the
GWs. It is executed during P slots of the SCS and execu-
tions occur every Tsynch slots. During each execution, some
MAPs may not receive a synchronization beacon and need
to wait until the next execution. We say that the network
de-synchronizes if the clock drift between at least one node
pair (MAP-MAP or MAP-GW) exceeds the guard time TG.
Let rdmax be the maximum clock drift rate in the network.
Then, after TG/rdmax the clock offset of the node pair with
maximum drift rate will exceed TG and the network will de-
synchronize. We now derive the constraints for each param-
eter that ensure the synchronization algorithm operates cor-
rectly, synchronization overhead is minimized and the net-
work does not de-synchronize.

SCS duration TSCS . The synchronization algorithm is
executed during the SCS. Therefore, TSCS is determined by
P and the duration of each SCS slot:

TSCS = P (TP + DSCS + TG) (4)

For real-time applications like video and voice, TSCS should
not exceed a delay bound Tmax

SCS . Also, since synchroniza-

tion beacons are transmitted during the SCS, the node clock
offsets should not exceed TG during the algorithm execu-
tion. Therefore, TSCS should be less than TG/rdmax for
correct algorithm operation. However, TSCS is by definition
less than Tsynch, which should also be less than TG/rdmax.
Therefore, the main constraint for TSCS is the delay con-
straint Tmax

SCS .

TSCS < Tmax
SCS (5)

Synchronization period Tsynch. From Fig. 1, Tsynch

should be greater than TSCS plus the duration of at least one
DS.

Tsynch > TSCS + Tmax
F (6)

where Tmax
F is an upper bound on delay of the DS.

To avoid network de-synchronization Tsynch should be
less than TG/rdmax. To minimize synchronization over-
head, Tsynch should be maximized. However, executing the
synchronization algorithm every TG/rdmax would only ap-
ply to a lossless network. In the practical case where losses
exist, not all nodes will receive a beacon in a single algo-
rithm execution. To capture the effect of losses, we assume
that each synchronization algorithm execution has a constant
failure probability p that is independent of previous execu-
tions. The execution fails if at least one node does not re-
ceive a beacon. Under this assumption, the probability of
network de-synchronization Pdesynch is:

Pdesynch = p
bTG/rdmax

Tsynch
c

(7)

Given a reliability upper bound ε on Pdesynch, (7) yields an
upper bound for Tsynch that takes losses into account.

Tsynch <
TG

rdmax

log p

log ε
(8)

Combining Eqs. (6) and (8), we reach the design constraints
for the synchronization period.

TSCS + Tmax
F < Tsynch <

TG

rdmax

log p

log ε
(9)

The ratio log p
log ε is a loss penalty because it restricts Tsynch

to be less than the lossless bound TG/rdmax. Fig. 2 plots
this ratio within the [1% − 99%] range of the algorithm ex-
ecution failure probability p, for ε = 10−6 and ε = 10−4.
Link packet losses in mesh networks are in the range 10%
and above [2]. This implies even higher p for a multi-hop
synchronization algorithm. For ε = 10−6, the range p >
10% corresponds to more than 85% reduction for TG

rdmax
.

Recall that our analysis assumes p is constant and inde-
pendent across algorithm executions. This assumption ap-
plies to a synchronization algorithm where the clock refer-
ence is propagated from a GW to all MAPs through a tree
structure. Since the beacon must reach all nodes in the tree,
p is determined by the maximum-loss path in the tree. This
leads to two observations. First, tree-based synchronization
approaches are not the best solution for the loss rates ob-
served in mesh networks. Second, the ratio log p

log ε yields a
conservative upper bound to tune Tsynch when designing a
clock synchronization algorithm. Our synchronization algo-
rithm in Section 5 is inspired by both observations.

10
−2

10
−1

10
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p

β=
lo

g(
p)

/lo
g(

ε)

ε=10−4

ε=10−6

Figure 2: Tsynch loss penalty as a function of synchro-
nization algorithm failure probability p.

4.4 Design Procedure
We now present a design procedure that takes as input a

hardware platform, a mesh network topology and a set of
application requirements and yields TDM MAC protocol pa-
rameters that minimize protocol overhead.

The application requirements consist of maximum SCS
duration Tmax

SCS , maximum DS duration Tmax
F , synchroniza-

tion reliability ε, and bounds on DS packet duration Dmin, Dmax

and SCS packet duration Dmin
SCS , Dmax

SCS . The platform may
support multiple data rates that correspond to different PHY
modulation schemes. The synchronization algorithm opera-
tion during the SCS is characterized by execution time of P
slots and a separate failure probability p for each data rate.

The design procedure determines the MAC protocol pa-
rameters TG, Tsynch, D, DSCS , S, TF which minimize pro-
tocol overhead, meet the above requirements and satisfy the
platform and synchronization design constraints. The design
procedure consists of the following steps.

Step 1. Perform bottleneck measurements on the platform
to determine TP , TDpp and rdmax.

Step 2. Determine TG, Tsynch, D and DSCS , that mini-
mize protocol overhead, by solving the following optimiza-
tion problem:

MIN OVERHEAD:

Minimize
P (TP + DSCS + TG)

Tsynch
+

TP + TG

TP + D + TG

Subject to:

max(0, TDpp − TP −D) ≤ TG <
Tmax

SCS − P (TP + DSCS)
P

Tmax
F + P (TP + DSCS + TG) < Tsynch <

TG · log p

rdmax · log ε

Dmin ≤ D ≤ Dmax

Dmin
SCS ≤ DSCS ≤ Dmax

SCS

Step 3. Compute S using TG, D, and TP in (1). Compute
TF as an integer multiple of S. Finally, adjust Tsynch as
TSCS plus an integer multiple of TF :

TF = SbT
max
F

S
c (10)

T final
synch = TSCS + TF bTsynch − TSCS

TF
c (11)

The design procedure is flexible and has low complex-
ity. It uses a few parameters to characterize the platform and
synchronization algorithm and incorporates multiple packet
sizes and multiple data rates. MIN OV ERHEAD uses
linear constraints and only a few variables (TG, Tsynch, D
and DSCS). Hence, it can be solved efficiently using a stan-
dard optimization solver like MATLAB or CPLEX. The im-
pact of different synchronization algorithms can be com-
pared by solving MIN OV ERHEAD for each parameter
pair (P ,p).

Before the design procedure can be applied to our system,
the synchronization algorithm that yields input parameters
(P, p) must be specified. We describe our synchronization
algorithm in the next section.

5. SYNCHRONIZATION ALGORITHM
In this section, we present an in-band synchronization al-

gorithm for TDM multi-hop wireless networks that main-
tains the clocks of all MAPs accurately synchronized to a
common time reference provided by the GWs. The GWs
are synchronized to this time reference through out-of-band
synchronization like GPS clocks. The algorithm is executed
during the SCS and utilizes the TDM slotted structure to
broadcast a synchronization beacon from the GWs to the
MAPs in bounded time. For simplicity, we present an al-
gorithm version that uses a single GW.

5.1 Algorithm Description
During the SCS, all nodes use a pre-computed schedule

of P slots. During each slot, a single node transmits and the
rest are in receive mode. The first slot is assigned to the GW.
Each node transmits at most once during the SCS. Fig. 3
shows the schedule that determines the node transmission
sequence during the SCS.

7

3

5 64

2

1 2 73 4 5 6

GW

1

...

Tsynch

... ...
SCS SCS

MAP

Figure 3: An example 7-slot SCS for a 12-node mesh net-
work (1 GW and 11 MAPs). Links denote ability to com-
municate (potentially with losses). Numbers in nodes de-
note their assigned Tx slot in the SCS.

The algorithm begins when the GW broadcasts a beacon
containing a timestamp of its current clock value at the first
slot of the SCS. Each node that receives the beacon, provided

it is the first beacon it has received in the current SCS, com-
putes an estimate of its clock offset to the GW clock and
determines the beginning of the next Data Subframe (DS)
based on the GW clock. It then re-broadcasts the beacon
(unmodified) during its assigned slot in the SCS. The node
discards other beacons it receives during the SCS. At the end
of the SCS all nodes update their clocks based on their up-
dated offset estimates.

We now describe in detail the offset computation at each
node upon reception of a beacon and the clock update ac-
tions performed by all nodes at the end of the SCS when the
algorithm terminates.

Offset computation. Suppose node n receives its first
beacon at SCS slot i from node i. Let Tn(L) be the local
clock value of node n when the beacon is received. Node
n first computes an estimate Ti(L) of the time when node i
sent the beacon:

Ti(L) = Tn(L)− δ (12)

where δ is an estimate of the total delay for a beacon trans-
mission from node i to node n. We measure δ offline using
an experimental method that emulates a sender-receiver syn-
chronization handshake protocol similar to [8]. The estima-
tion uncertainty of δ is minimal due to the following reasons.
First, we leverage our TDM implementation to remove non-
deterministic medium access delay. Second, we timestamp
the beacon at the MAC layer, bypassing uncertainties due
to higher layers of the network stack at the sender. Third,
propagation delay is negligible for distances encountered in
typical wireless mesh networks. For example, in our imple-
mentation over 802.11 hardware the clock granularity is 1µs
which equals the propagation delay at 300m.

Given Ti(L), node n computes its estimate Ts(L) of the
time when the GW node sent the beacon:

Ts(L) = Ti(L)− (i− 1)SSCS (13)

where SSCS is the SCS slot duration. Finally, node n uses
the beacon timestamp value Ts(R) to estimate its offset with
respect to the GW clock.

Offset = Ts(R)− Ts(L) (14)

Algorithm termination (clock updates). At the end of slot
P of the SCS, each node n updates its local clock based on
the newly computed offset. The reason for all nodes to si-
multaneously update their clocks at the end and not during
the SCS is to avoid de-synchronization due to nodes updat-
ing their clocks with new clock values before others.

5.2 SCS slot sequence computation
Our synchronization algorithm requires each node to trans-

mit at most once during the SCS. This property helps min-
imize the algorithm execution time. However, it introduces
the problem of computing a sequence of node transmissions
to disseminate the synchronization beacon to all nodes in
the most reliable manner. The problem is combinatorial. In
a mesh network of one GW and N MAPs, the optimal solu-
tion can be found by enumerating and testing N! sequences–
complexity becomes prohibitive as the network size increases.

In this section we provide a heuristic to construct the SCS
slot sequence. The algorithm uses a set of measured packet

loss rates of all links in the mesh network. Such measure-
ments can be performed at O(N) complexity using broad-
cast packets [6, 11]. Our algorithm uses the link loss rates
pl to construct a tree rooted at the GW that yields a max-
imum reliability path (or minimum loss path) toward each
MAP. The reliability of each path s is the product of packet
success rates of its intermediate links l:

∏
l∈s(1− pl). Max-

imizing path reliability from GW to each MAP is equivalent
to maximizing log path reliability. Log path reliability re-
sults to addition of log success rates over the path. Hence,
the tree can be constructed by running N times Dijkstra’s
shortest path algorithm between the GW and each MAP. We
estimate the synchronization algorithm failure probability p
as 1−∏

l∈sm
(1− pl), where sm is the minimum-reliability

(maximum-loss) path in the tree.
The slots of the SCS sequence are assigned to nodes by

traversing the tree in a breadth-first manner. For each node’s
slot, this assignment ensures at least one neighbor node trans-
mitted a beacon at a previous slot. The leaf nodes do not
need to be assigned an SCS slot because they are covered
by the rest of the nodes. As an example, the SCS sequence
in Fig. 3 has been constructed assuming certain packet loss
rates on the links. We emphasize that the tree is constructed
only to determine the SCS slot sequence. During the algo-
rithm execution the beacon is disseminated through broad-
casting.

5.3 Discussion
The algorithm execution time P may vary from 1 slot

(when all MAPs are within range of the GW) to N slots
(when there is only a single path from GW to all MAPs). In
large networks execution time can be decreased by running
the synchronization algorithm in parallel at multiple network
regions, where each region has been assigned to a different
GW and channel. Further reduction in execution time can
be achieved by modifying the algorithm to exploit spatial re-
use. This would require a more sophisticated slot sequence
computation and an interference model that predicts packet
losses of links transmitting in parallel; such models can be
built and still use O(N) measurements [6, 11]. Finally, if
the delay bound on TSCS allows, the synchronization algo-
rithm reliability can also be increased by running multiple
copies of the SCS sequence within a single algorithm execu-
tion. We plan to investigate these optimizations in our future
work.

Our implementation on an 8-node wireless testbed demon-
strates that this algorithm synchronizes the network with a
very low execution time and negligible overhead (Section
8). Apart from low execution time, the algorithm simplic-
ity allows efficient integration and implementation with the
TDM MAC protocol state machine. We proceed to describe
this integration in the following section.

6. SYSTEM INTEGRATION
In this section, we integrate our synchronization algorithm

with the mesh TDM MAC protocol architecture of Section
3. We aim at a design of low-complexity, using a minimum
number of timers. We first describe the two timers we used
and then present the integrated protocol flow using a simpli-
fied flow diagram of the TDM MAC protocol state machine.

...

DS
CS

A D

receive beacon
set DS_TIMER

B C

Figure 4: Sequence of phases within a TDM frame.

SCS_TIMER

10

13

set
SLOT_TIMER

lookup

slot type

transmit
packet(s)

yes

compute
clock
offset

received
was first
beacon?

new clock

apply

TX

RX

5

4

31

12

11

2

SLOT_TIMER

stop

yes

no

yes

noSLOT_TIMER

expired

 expired
SCS_TIMER

 expired

wait for
SCS_TIMER
 to expire

no

process
incoming
packet

 active?
SCS_TIMER

was it
the last

SCS slot?

SCS_TIMER

set

timer expiration

packet interrupt
wait for

or

interrupt

received

packet

9

8

7

6

Figure 5: State diagram of the integrated TDM protocol
operations.

6.1 Protocol Timers
A system with perfect clocks could implement the TDM

protocol operation through synchronization using a single
slot timer. However, due to imperfect clocks, additional
mechanisms are needed to keep nodes synchronized. We
provide a simple design of the integrated system using only
two timers. The SLOT TIMER is the basic timer. It is set at
the start of each slot and its timeout is equal to the slot du-
ration. Since we need to periodically compute the clock off-
set and update the clocks, we use an additional timer called
SCS TIMER. This timer is set at beacon reception and ex-
pires at the end of the SCS according to the GW’s clock.
This timer ensures that all nodes are synchronized at the end
of the SCS.

6.2 Integrated protocol operation
During each SCS, each TDM node transitions through

four protocol phases, as illustrated in Figure 4.

• Phase A: Node is in SCS and it has not yet received a
beacon.

• Phase B: Node is in SCS and it has received a bea-
con. This phase might not exist in a cycle, if the node
receives no beacon due to low link quality.

• Phase C: Node is in the last slot of SCS.
• Phase D: Node is in a DS.

The MAC state diagram in Figure 5 illustrates the flow of
protocol transitions. We proceed to describe the flow of each
of the phases A-D. In all four phases, the node always starts
from state 1, waiting for a timer to expire.

Phase A. In this first phase, a node is in the SCS and it has
not yet received a synchronization beacon. For each SCS
slot until it receives a beacon, a node’s SLOT TIMER ex-
pires and the only node action is to set a new SLOT TIMER
to expire in the next SCS slot. A node thus follows the flow
[1, 2, 3, 4, 1] in Fig. 5. Upon the first beacon reception in the
SCS, the node performs the clock offset computation rela-
tive to the GW’s clock. It then uses this offset to set the
SCS TIMER to expire at the end of the last SCS slot. Note,
however, that for the rest of the SCS, the node will still use
its local (possibly drifted) clock. Since the SCS TIMER is
set using the new clock offset, it will expire simultaneously
at all nodes (see Phase C). The flow for the beacon reception
is [1, 2, 3, 4, 1, 6, 7, 8, 9, 1] in Fig. 5.

Phase B. In this second phase, a node is in an SCS slot
other than the last SCS slot and it has already received a
synchronization beacon. In all the remaining SCS Rx slots, a
node will simply ignore any additional synchronization bea-
cons it may receive (following the flow [1, 2, 3, 4, 1, 6, 7, 1]).
Upon its own SCS Tx slot, a node will re-broadcast the (first)
synchronization beacon (containing the GW’s timestamp)
that it received in a previous SCS slot. This corresponds
to the flow [1, 2, 3, 4, 5, 1] in Fig. 5.

Phase C. In this third phase, the SCS ends and all nodes
must apply the new clock and then simultaneously start the
first DS slot. At the beginning of the last SCS slot, the
SLOT TIMER timer is set to expire according to the node’s
local clock.

If the node had received a beacon during the SCS, the
SCS TIMER was set to expire in Phase A according to the
node’s old clock. If a node’s clock is faster than the GW
clock, the SLOT TIMER will expire before the SCS TIMER.
In this case, the node will wait for the SCS TIMER to ex-
pire and apply the new clock. If a node’s clock is slower
than the GW clock, the SCS TIMER expires first and the
node then immediately cancels the SLOT TIMER and ap-
plies the new clock. Applying the new clock based on the
SCS TIMER ensures that, regardless of the individual nodes’
clock drifts, all nodes are now synchronized and simultane-
ously start the DS. The two different flows described above
are [1, 2, 11, 12, 13, 3, ..., 1] and [1, 10, 13, 3, ..., 1] in Fig. 5,
respectively. After the application of the new clock, the first
DS slot starts. The handling of a DS slot is identical inde-
pendent of whether or not it is the first DS slot. We refer to
Phase D for a description of the flows in DS.

If the node had not received a beacon during the SCS,
its SCS TIMER was not set in Phase A. Thus, the node will
trigger the end of SCS using the SLOT TIMER. This is flow
[1, 2, 11, 3, ..., 1] in Fig. 5. The node thus uses its local clock
until the next SCS when it receives a beacon.

Phase D. In this final phase a node is in a DS. In this
phase, each new slot is triggered by the expiration of the
SLOT TIMER. The node sets a new SLOT TIMER and then
determines whether the current slot is of Tx or Rx type.
Since nodes know their schedule in advance, a fast table
lookup for the current slot ID is enough to provide the re-
quired information about the current slot2. In case of a Tx
slot, the node transmits any data packets that are readily
available in its outgoing queue and can fit within the cur-

2The same lookup is performed during SCS in Phases A-C.

rent slot. In case of a Rx slot, the node processes any data
packet(s) received during the slot. The flows in this phase
are [1, 2, 3, 4, 5, 1] and [1, 2, 3, 4, 1, 6, 7, 1] in Fig. 5 for Tx
slots and Rx slots, respectively.

7. PROTOTYPE IMPLEMENTATION
In this section, we first overview the architecture of our

802.11 wireless programmable platform. We then highlight
the required modifications to its IEEE 802.11 CSMA MAC
implementation to realize our TDM MAC protocol on this
platform.

7.1 WiLD MAC Platform
WiLD MAC is a standard-compliant IEEE 802.11a/b/g

platform. Figure 6 gives an overview of the WiLD MAC
architecture. The MAC protocol is divided in Higher MAC
and Lower MAC. The Higher MAC handles low-priority
tasks such as configuration and management. The Lower
MAC is the part where we have implemented the TDM MAC
protocol and measured the platform bottlenecks.

The Lower MAC performs time critical tasks such as frame
transmission and reception. It primarily consists of the Packet
Processing (PP) and the Tx Rx Coordination (TRC) mod-
ules. The PP module receives packets from the network layer
and performs encryption/decryption, before delivering them
to the TRC. The TRC is the last step traversed by a data
packet in the data path before it is delivered to the PHY layer.
The TRC is also the last point where we can have access to a
packet. The TRC implements time-critical 802.11 functions
that typically require response time of a few microseconds.
It is interrupt-driven and communicates with the Burst Pro-
cessor (BuP) for packet transmission and reception.

Figure 6: WiLD MAC platform architecture.

The BuP is a dedicated processor for packet transmis-
sion and reception, realized in hardware. It implements the
most time-critical 802.11 functions (e.g., frame acknowl-
edgement), and contains registers for timers and counters
(e.g., backoff and NAV). The TRC decides the appropriate
values for these counters and timers, writes the registers and
then the BuP performs the countdown. The BuP signals
through an interrupt to the TRC when a value has reached
zero.

The WiLD MAC firmware is implemented in ANSI-C.
In contrast to existing off-the-shelf 802.11 wireless cards,
WiLD MAC platform provides access to the complete firmware
code. We proceed to describe our modification to the firmware
required to realize our protocol.

7.2 TDM MAC Protocol Implementation
In this section, we describe our modifications to the WiLD

MAC to realize the TDM MAC protocol in Section 6.
We disabled native 802.11 CSMA protocol functions such

as carrier sensing, NAV, backoff, and RTS/CTS. The carrier
sensing is disabled/enabled through manipulation of a hard-
ware register. With all the above functions disabled, data
packets can be transmitted at a given time instant that we
control through the TRC. We modify the TRC to program
the BuP to set a ”pending transmission flag” as soon as it
finished preparing a packet. Then, at the start of each Tx
slot the TRC checks this flag. If the flag is set, the TRC pro-
grams the BuP for transmission. The transmission will start
after the inter-frame spacing requirement has timed out. We
were not able to completely disable inter-frame spacing, but
we modified it to always take the minimal allowed value,
which in our case is equal to SIFS.

Both DS and SCS Tx slots are scheduled by setting hard-
ware timers in the BuP. The SLOT TIMER is set at the start
of each slot based on the local clock. The SCS TIMER is set
upon reception of a synchronization beacon, using the GW’s
clock in the beacon. Upon SCS TIMER expiration, the local
clocks are synchronized by adjusting their clock offset.

In addition to data packet transmissions and to cope with
the high loss rates encountered in mesh networks we imple-
mented an ACK-based retransmission mechanism similar to
802.11. The main difference is that our mechanism does not
perform exponential backoff when a packet fails. Depending
on the slot duration that we configure, it can retransmit the
packet in the same slot or in the next slot.

We proceed to measure our design and protocol parame-
ters and to evaluate our TDM MAC on a testbed.

8. DESIGN AND PERFORMANCE EVALU-
ATION ON A WIRELESS TESTBED

We design and evaluate our TDM MAC protocol on a
wireless testbed of 8 nodes deployed in an office building
of two floors and a mezzanine (Fig. 7). The first floor con-
tains cubicles with thin separations. The second floor con-
tains multiple rooms separated by both thin and thick walls.
Each node consists of a laptop connected via Ethernet to a
WiLD board, equipped with an integrated omni-directional
antenna. All boards are configured to operate in ad hoc mode
with transmission power set to 30mW.

We design our system in an environment where external
interference is mitigated. All experiments are performed in
channel 60 of 5GHz band (802.11a) during nights and week-
ends. As an extra measure, before each experiment we used
sniffers to ensure that no other 802.11a networks existed in
this channel.

8.1 Application of Design Framework
We apply our design framework in Section 4 to determine

the TDM MAC protocol parameters for our wireless plat-

1

2

3

4
5

6
7

8

First floor

Second floor

Mezzanine

56m

Figure 7: Wireless testbed.

form and testbed deployment. We follow the design pro-
cedure described in Section 4.4 to account for design con-
straints due to platform bottlenecks and synchronization al-
gorithm operation under packet losses.

8.1.1 Packet loss measurements and SCS sequence
computation

Figure 8 depicts measured packet loss rates for all links
in our testbed at 54 Mbps data rate. In each measurement
experiment, nodes were sequentially scheduled to continu-
ously transmit broadcast packets for 60 seconds each, while
all other nodes recorded the received packets. Each data
point is the average for each link across 10 experiments on
multiple days. This profile contains links with 0 or 1 packet
loss rate but also links of intermediate quality. Similar pro-
files have been observed in outdoor 802.11 mesh networks [2].
We used these measurements to seed the SCS construction

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Link index

P
ac

ke
t

lo
ss

 r
at

e

Figure 8: Average link packet loss rates at 54 Mbps in
our testbed.

algorithm in Section 5.2. Table 1 shows number of SCS
slots P and synchronization algorithm failure probability es-
timates p for all GW choices. We selected as GW node 5
which provides minimum P and relatively low p.

GW 1 2 3 4 5 6 7 8
P 3 3 3 2 2 4 3 3

p 0.23 0.43 0.33 0.41 0.30 0.62 0.51 0.42

Table 1: SCS construction algorithm number of slots P
and failure probability estimates p for all GW choices.

8.1.2 TDM MAC Protocol Parameter Determination
We now apply the procedure of Section 4.4 to design the

TDM protocol with the requirements of Table 2, which also
depicts the procedure steps and their outcomes. Below we
describe our measurement methodologies and findings dur-
ing each step of the design procedure.

Step 1. We first measure the platform bottlenecks rdmax,
TP , and TDpp on the WiLD boards, before the testbed de-
ployment. The measurement methodologies were implemented
at the Lower MAC (where the protocol is implemented) and
used high-accuracy timers and interrupts.

Clock drift rate, rdmax. We measured the clock drift rate
for each node pair A and B by periodically sending times-
tamped packets from A to B. For each received packet, B
computed and stored (i) its local clock (ii) the offset equal
to the difference of its local clock and the timestamp in the
packet. The clock drift rate of B with respect to A, was
computed offline as the slope of the offset evolution over
time. This procedure was performed at different locations
and times for each pair A and B. Fig. 9 depicts the mea-
sured average drift rates for all node pairs. For each node
pair, the drift rate has low variability over time and loca-
tions. Across node pairs the drift rate ranges from 0.1 to 5.5
µs/s. In our design, we use the maximum observed drift
rate rdmax = 5.5µs/s. .

0 1 5 10 15 20 25 29
0

1

2

3

4

5

6

Node pair index

D
ri

ft
 r

at
e

(µ
s/

s)

Figure 9: Drift rates for all node pairs AB in our testbed.
Only the positive drift rates rdAB are shown (the nega-
tive drift rates are rdBA = −rdAB)

Slot processing, TP . We measured TP on each board
as the difference between the SLOT TIMER interrupt sig-
naling the start of the TDM slot and the TtxStart interrupt
signaling the start of the transmission by the BuP. Exten-
sive measurements on each board and across boards, yielded
TP = 17± 1 µs.

Data packet preparation time, TDpp. We measured TDpp

through back-to-back transmissions of minimal-duration data
packets timstamped at sender A and stored by receiver B.
The time difference between consecutive timestamps included
the slot processing overhead TP plus packet duration D at
node A. Minimal packet duration D exposed the packet prepa-
ration bottleneck TDpp (the system operated under TDpp >
TP + D). Extensive measurements at each board and across
boards, yielded TDpp = 104± 1 µs.

Step 2. In our implementation, we use 802.11 beacons
(LSCS = 52 bytes) and the maximum 802.11 MAC packet
(1530 bytes) for each TDM slot. According to 802.11a OFDM
PHY, these sizes correspond to durations DSCS = 28µs and

D = 300 µs at 54Mbps data rate. These two values and the
values P = 2, p = 0.3 (corresponding to GW node 5 in
Table 1) were used in MIN OV ERHEAD optimization
problem to yield TG and Tsynch.

Step 3. Application of (1), (10) and (11) determined the
final values of S, Tsynch and TF as shown in Table 2.

Requirements T max
SCS T max

F ε Datarate
5000µs 5000µs 10−4 54 Mbps

Synchronization P LSCS p
algorithm 2 52 bytes 0.3

Step 1 rd TP TDpp

5.5 µs/s 17 µs 104 µs

Step 2 DSCS D
28 µs 300 µs

TG Tsynch TSCS

6 µs 95064µs 102 µs

Step 3 S TF Tsynch

323 µs 4845 µs 92157µs

Table 2: Design procedure steps and outcomes.

The resulting TDM MAC protocol is efficient. Its over-
head is 7.22%, consisting of slot overhead TP +TG

S = 7.12%
and negligible synchronization overhead TSCS

Tsynch
= 0.1%.

Furthermore, the algorithm execution time TSCS of 102 µs
is well below the Tmax

SCS delay bound of 5000 µs.

8.2 Synchronization Algorithm Validation
In this section, we validate our synchronization algorithm

and evaluate its accuracy in terms of maximum clock drift
over all node pairs. In these experiments only synchroniza-
tion beacons are transmitted (during the SCS) at 54Mbps ac-
cording to the designed synchronization period Tsynch. In-
stead of the designed protocol’s beacon slot duration we used
the larger data slot duration S = 323µs This provides a large
guard time to observe potentially high clock drifts without
de-synchronizing the network.

During each experiment all nodes store their gateway off-
set at the end of each synchronization period. The maximum
clock drift over all nodes that received a beacon at each bea-
con period is computed offline based on their offset differ-
ences, in a similar manner to our clock drift rate measure-
ment methodology. Fig. 10 depicts the cdf of 24000 clock
drift samples, spanning several 2-minute measurement inter-
vals across four days.

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Maximum clock error (µs)

Figure 10: CDF of maximum clock drift (error) for
Tsynch = 92157µs, across four days.

The maximum observed clock drift was 10µs and only
7 out of 24000 samples exceeded the designed guard time

TG = 6µs. This is the same order of magnitude as the re-
liability requirement ε = 10−4. The majority of the clock
drift samples do not exceed 4µs, which is less than the de-
signed guard time TG = 6µs. This overestimation is due to
the synchronization design constraints that use the conserva-
tive analysis of Section 4.3. We conclude that the synchro-
nization algorithm achieves high accuracy and uses a slightly
conservative guard time.

8.3 Performance evaluation
We focus on two aspects that have not yet been explored

in a mesh TDM MAC protocol implementation: the impact
of slot duration S and the impact of packet losses on the
operation of a mesh TDM MAC protocol. We use through-
put, mean delay, and delay variance (jitter) as performance
metrics. All experiments use the TDM MAC parameters in
Table 2. Each reported data point is the average of ten ex-
periments.

8.3.1 Impact of slot duration
Existing TDM MAC implementations operate with slot

duration S of tens to hundreds of milli-seconds. We inves-
tigate performance at smaller time scales, enabled by our
implementation. Our setup involves two bidirectional flows
between the GW and a MAP in our testbed, configured to
transmit in alternate slots. We have implemented and en-
abled multi-packet transmissions within a slot. To isolate
impact of slot duration, we selected a link with good quality
in both directions. We consider both TCP and backlogged
UDP traffic.

S Aggregate Throughput (Mbps) Delay (ms) Jitter (ms)
323µs 34.8 0.6 0.1
1ms 33.0 0.7 0.6
10ms 29.2 0.8 3.9

Table 3: Impact of slot duration: UDP results.

S Aggregate Throughput (Mbps) Delay (ms) Jitter (ms)
323µs 21.7 1.5 11.7
1ms 18.7 1.7 9.4
10ms 18.4 2.1 16.9

Table 4: Impact of slot duration: TCP results.

As expected, the UDP results in Table 3 show that S does
not affect a lot throughput and average delay. However, as S
increases, the jitter increases because at large slot durations
packets experience small delays within a slot but large delays
across slots, when the other side is transmitting.

The TCP results in Table 4 show throughput degradation
and increased jitter for large S. This is due to the TCP self-
clocking and backoff mechanisms. When S is large, the TCP
ACKs are delayed and this affects maximum TCP sending
rate. The increased jitter results from TCP erroneously ac-
tivating congestion control and backoff due to delayed TCP
ACKs instead of packet loss. Also note that, depending on
the TCP state, in some slots there might no TCP traffic or
only TCP ACKs to send. This further contributes to the TCP
throughput degradation.

We conclude that S should be minimized to the extent
possible. Note that these measurements were performed with

Loss rate (%) Aggregate Throughput (Mbps) Delay (ms) Jitter (ms)
0 27.8 0.8 0.8
20 23.5 1.0 2.0
60 4.3 5.2 12.0

Table 5: Impact of packet loss on 802.11 MAC UDP per-
formance.

Loss rate (%) Aggregate Throughput (Mbps) Delay (ms) Jitter (ms)
0 34.8 0.6 0.1
20 28.3 0.8 0.3
60 11.9 1.9 2.6

Table 6: Impact of packet loss on TDM MAC UDP per-
formance.

only two nodes. As the number of nodes sharing the TDM
frame increase, performance can further degrade.

8.3.2 Throughput comparison to 802.11 MAC
Fig. 11 depicts a scatterplot comparing throughput for sev-

eral one-hop and two-hop bi-directional flows in our testbed.
Each point corresponds to the throughput of each uni-directional
flow under TDM (y-axis) and 802.11 (x-axis). Points of
the same shape correspond to throughput of uni-directional
flows that belong to the same bi-directional flow. We ob-
serve that the TDM MAC provides higher throughput per-
direction (most points are above the y=x line). In addition,
the TDM MAC distributes throughput more fairly to the uni-
directional parts of each bi-directional flow: two points of
the same shape typically have much less vertical distance
than horizontal distance.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

16

18

801.11 Throughput (Mbps)

T
D

M
 t

h
ro

u
g

h
p

u
t

(M
b

p
s)

Figure 11: Throughput comparison of TDM MAC and
802.11 for one-hop (upper right region) and two-hop
(lower left region) bi-directional flows.

8.3.3 Impact of losses
In this section we study how packet loss impacts the per-

formance of the TDM protocol and how this performance
compares to 802.11 MAC. We investigate the impact of three
different link characteristics in our testbed (c.f. Fig. 8): low
loss, medium loss (average 20% loss) and high loss (average
60% loss) links.

Single link, multi-flow performance. We first examine
single-link bidirectional communication between different
node pairs in our testbed. Table 5 and Table 6 show the
UDP performance resulting from packet loss experiments

for 802.11 MAC and our TDM MAC, respectively. The
802.11 performance degrades rapidly with increased packet
loss. The main reason is that 802.11 MAC performs retrans-
missions using binary exponential backoff. Even if eventu-
ally a retransmission succeeds, a significant amount of time
has been lost. On the other hand, the TDM MAC performs
retransmissions at each assigned slot. According to Table 6
this results in graceful performance degradation for the TDM
protocol even in the high loss scenario.

Multi-hop, multi-flow performance. We consider a chain
topology of four nodes and evaluate the performance of three
UDP flows operating in parallel from the gateway node to
the three downstream nodes. Figures 12(a) and 12(b) show
the throughput performance of the three flows with different
packet loss behavior on the link from the gateway to the first
node on the chain. We observe that for all loss rates both pro-
tocols TDM achieves higher throughput than 802.11. Fur-
thermore, as loss increases, 802.11 performance degrades
rapidly due to binary exponential backoff while TDM ex-
periences graceful performance degradation.

0% 20% 60%
0

1

2

3

4

5

6

Packet loss

T
hr

ou
gh

pu
t (

M
bp

s)

1−hop flow
2−hop flow
3−hop flow

(a) TDM

0% 20% 60%
0

1

2

3

4

5

6

Packet loss

T
hr

ou
gh

pu
t (

M
bp

s)

1−hop flow
2−hop flow
3−hop flow

(b) 802.11

Figure 12: TDM and 802.11 downstream performances.

9. CONCLUSIONS
We presented the design, implementation, and evaluation

of a slotted TDM MAC protocol for multihop wireless mesh
networks using a programmable 802.11-based platform. We
introduced a design procedure that optimizes the protocol
parameters given platform communication bottlenecks and
synchronization constraints. We designed a novel multi-hop
clock synchronization algorithm that utilizes the protocol’s
slotted structure to achieve accurate micro-second level syn-
chronization with low overhead and bounded execution time.
We integrated this synchronization algorithm with the TDM
MAC protocol state machine, using minimal hardware re-
sources. We prototyped this protocol on our programmable
platform and applied our design framework to optimize its
operation. We experimentally validated its correct operation,
including the chosen protocol parameters and the synchro-
nization algorithm, and demonstrated its performance under
realistic network configurations and traffic patterns.

To the best of our knowledge, this is the first comprehen-
sive design and implementation of a mesh TDM MAC proto-
col at firmware level which enables communication and con-
trol at microsecond granularity. In summary, we believe that
the design guidelines presented in this paper along with their
experimental validation on a real platform make up the miss-
ing piece of the TDM MAC design and implementation as a
contender for high-performance MAC in mesh networks.

10. REFERENCES
[1] ECMA 368, High Rate Ultra Wideband PHY and

MAC standard, 2007.
[2] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and

R. Morris. Link-level Measurements from an 802.11b
Mesh Network. In Proc. ACM SIGCOMM, Portland,
OR, Aug. 2004.

[3] K. Chebrolu, B. Raman, N. Mishra, P. Valiveti, and
R. Kumar. Brimon: a sensor network system for
railway bridge monitoring. In Proc. ACM MobiSys,
Breckenridge, CO, USA, Jun. 2008.

[4] J .Elson. Time synchronization in wireless sensor
networks. PhD Thesis, UCLA, 2003.

[5] S. Ganeriwal, R. Kumar, and M. Srivastava.
Timing-sync Protocol for Sensor Networks. In Proc.
ACM SenSys, Los Angeles, CA, USA, Nov. 2003.

[6] A. Kashyap, S. Ganguly, and S. Das. A
Measurement-based Approach to Modeling Link
Capacity in 802.11-based Wireless networks. In Proc.
ACM MobiCom, Montreal, Canada, Oct. 2007.

[7] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The
Flooding Time Synchronization Protocol. In Proc.
ACM SenSys, Baltimore, MD, USA, Nov. 2004.

[8] D. Mills. Internet time synchronization: The network
time protocol. IEEE Transactions on
Communications, 39:1482–1493, 1991.

[9] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and
D. Grunwald. SoftMAC: - Flexible Wireless Research
Platform. In HotNets, College Park, MD, USA, Nov.
2005.

[10] R. Patra, S. Nedevschi, S. Surana, A. Sheth,
L. Subramanian, and E. Brewer. WiLDNet: Design
and Implementation of High Performance WiFi Based
Long Distance Networks. In Proc. NSDI, Cambridge,
MA, USA, Apr. 2007.

[11] L. Qiu, Y. Zhang, F. Wang, M. Han, and R. Mahajan.
A general model of wireless interference. In Proc.
ACM MobiCom, Montreal, Canada, Oct. 2007.

[12] B. Raman and K. Chebrolu. Design and Evaluation of
a New MAC Protocol for Long-Distance 802.11 Mesh
Networks. In Proc. ACM MobiCom, Cologne,
Germany, Aug. 2005.

[13] A. Rao and I. Stoica. An Overlay MAC Layer for
802.11 Networks. In Proc. ACM MobiSys, Seattle,
WA, USA, Jun. 2005.

[14] K. Romer, P. Blum, and L. Meier. Time
Synchronization and Calibration in Wireless Sensor
Networks. Book chp., Handbook of Wireless Sensor
Networks, Wiley Series on Parallel and Distributed
Computing, 2005.

[15] A. Rowe, R. Mangharan, and R. Rajkumar. Rt-link: A
Time-Synchronized Link Protocol for
Energy-Constrained Multi-hop Wireless Networks. In
Proc. IEEE SECON, San Diego, CA, USA, Jun. 2006.

[16] A. Sharma, M. Tiwari, and H. Zheng. MadMac:
Building a Reconfigurable Radio Testbed Using
Commodity 802.11 Hardware. In IEEE Workshop on
Networking Technologies for Software Defined Radio
(SDR) Networks, Portland, OR, USA, Nov. 2006.

[17] USCG Navigation Counter GPS page.
http://www.navcen.uscg.nil/gps/default.html.

