
Extracting Polyvariant Binding Time Analysis

from Polyvariant Specialize

Mikhail A. Bulyonkov *

Institute of Injormatics Systems

Russian Academy of Sciences, Siberian Division

Russia

e-mail: mike(lisi.itfs. nsk.su

Abstract

Polyvariant binding time analysis allows a program to be
transformed for improving propagation and usage of static

information. It could be a useful instrument for better spe-
ciatizability. We show that the process of such a transforma-

tion is of the same nature as the whole specialization pro-
cess. Moreover, we present a practical method for realizing

polyvariant binding time analysis based on the double appli-

cation of a polyvariant specialize. The proposed technique

is restricted to first order programs with strict semantics.

1 Introduction

The problem of the binding time anatysis (hereinafter re-

ferred as BTA) is crucial for the design of partial evahra-
tors. This analysis is to find out what part of computa-

tion becomes possible when binding times of program argu-

ments are known. There exist two approaches to the im-

plementation of BTA. The first approach is known aa an

on-line BTA and mesumes that accessible data rxocessirw. “

is combined with evaluation of binding times of program

fragments. When the second approach is used BTA is per-

formed as a separate phase prior to specialization. This is
called an off-line BTA. Each of these two approaches has its
advantages.

The main advantage of an on-line BTA is that it could be
more precise. There are two reasons for that. First, it could
take into account particular values of variables. For exam-

ple, it may happen that the test clause of some conditional
always evaluates to true when some program arguments are

fixed, and hence the binding time of the whole conditional

is determined by the binding time of the then-clause. The

other reason is that one and the same program fragment can
have different binding times during specialization.

In such situations a traditional monovariant binding time
analysis has to use widening since it can not have access to
particular values and only one binding time value should be
associated with each program fragment: static or dynamic,

preferring dynamic in case of ambiguity, However, most of

●This work was partially supported by the grant No. 2-15-2-43
from the Mmwtry of Science, Education and Technmal Pohcy

Permission to copy without fee all or part of ttis meterial is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-PEPM’93-6/93 /Copenhagen, DK

@ 1993 ACM 0-89791 -594- 11931000610059... $ 1.50

the existing partial evaluators exploit an off-line BTA ap-
proach because it proved it can simplify the main course of
specialization. It is (claimed also that an off-line BTA is cru-

cial for successful self-application of partial evaluator. This
claim was undermined by the appearance of self-applicable

partial evaluators with an on-line BTA but still it is evident

that compilers produced by self-application of such partiat

evaluators are huge and slow and do not lead to marked

improvement of object code [Bon90].

However, the results of such a comparison can be easily

exdained. A comrder obtained from a Dartial evaluator. .
with an on-line BT,A can perform constant propagation in
the program being compiled, This is the justification for
its size: it must contain a significant part of the original
interpreter. When an off-line BTA is used any operation

potentially emergin,g in object code must be classified as
dvnamic. The Daraclox of rrartial evaluation with an off-line

B-T.A is that it- prevents c~nstant propagation in produced

compilers while being itself destined to perform constant

propagation in a broad sense. As for improvement of object

code, the comparison was done on source programs without

large constant parts.

Partialty this problem is solved by so-called polyvariant

BTA [RG92] which allowed a program fragment to be an-
notated with several binding times. From another point of
view a polyvariant BTA copies program points in order to
obtain finer annotation to each copy.

Nevertheless the off-line BTA has one undisputable merit.
It allows us not to repeat the same evacuation over binding

times domain. Actnalty, when the static/dynamic division
of program arguments is fixed, it becomes possible to deter-

mine annotations (at least for some fragments) statically. It

would be especially useful if we are going to specialize the

program many times with one and the same division. But

these reasons correspond exactly to those for specialization
as the whole. We will try to use this observation for justifi-

cation and realizaticm of a polyvariant BTA on the basis of
a polyvariaut partial evaluator.

2 Grounds for pol:yvariant BTA

The necessity of an c)ff-line BTA for successful self-application
is usually explained by the fact that otherwise it is impossi-
ble to determine binding times in a program considered as

specializer’s accessible data. So in realization of Futamura’s
second projection

cormp = spec(spec, zrtf)

59

http://crossmark.crossref.org/dialog/?doi=10.1145%2F154630.154637&domain=pdf&date_stamp=1993-08-01

we do not know what will be accessible in the interpreter

int. This difficulty disappears if it is presumed that the first

argument of a speciaJizer is a program annotated by BTA:

spec(specann, intann)

We suggest another approach to the problem which consists

in making the binding time information an explicit argument

of the specialize

spec:Px Divx D+P

where Div denotes a set of program dzvistoras in the sense of
[Jon88]. Recall that program division is a triple of functions

v = (c, 8, ~), where u extracts static part of a program state,

8 extracts dynamic part, and n reconstitutes the whole state

from static and dynamic parts (see [Jon88] for details). Then
we can formulate that if

then

p~@ (~ D) ‘P D

Here p~a~) denotes projection of the program p on the static

part of data D with respect to program division p.
Note that with such an approach a specialize has three

instead of two arguments. Hence we have to revise Futa-

mura’s projections. Let MO = (uo, 80, TO), ,LL1 = (aI, 51, irl),

where

Uo(z, y, z) = (zjy) U](z, y) = z

&3(z,y,z) = z 151(z,y) = ~

Futamura’s second projection wilf take the form

comp = spec(spec, PO, (int, PI, *)) = spec~nt,P1)

since

we$%t,ul)(p, *) = Swc(int, m, (P, *)) = in$’

Two other projections can be reformulated analogously. Of

course we consider only reasonable divisions, So it will not
make sense to specify division fo~ a program unknown or to
specify data when the division is not given.

Since BTA here is embedded in a specialize it would be
natural to attempt to extract it by self-application when a
program p and a division p = (u, 6, r) are given. So we have

$Pec~;,W) d = sPec(p, ,LL,d) = P~8 d)

Actually, what is obtained here is not an analogue of an
annotated program but a generating extension. What we

really want to achieve is to transform a program as data

from the source representation to some other one, and then
pass it together with static data to the residual specialize.
This can be done by exploiting the technique of data spe-

cialization [Bu19 I]. In the above notation data specialization
can be defined as a couple of mappings

Dmix ;Px Div~D +D
Pmix ;Px Div *P

such that if

Dmix(p, p, d) = [a d];

Pmix(p, p) = pv

Here [a d]$ denotes a “specialized version of static part of

data d with respect to division p“ which are to be used by

intermediate program pp. The symmetry of this notation to
that for projection emphasizes the fact that a source pro-

gram and its static data have exchanged places — results
of specialization are concentrated in data rather than in a

residual program.
Instantiation p = spec, p = .UO, d = (wg, tip,g, data)

implies

Note that here we obtained a processor spec~” which does

not depend on the source program and realizes the same

function as the specialize spec when the source program
and the division are fixed. The first argument ~rg, pprg]$$~~
of the spec~ contains all necessary information about the

source program and the division and so it can be considered

as an analogue of the annotated program — the result of
BTA. Now the BTA processor can be defined as BTA =

Dmix~~~e=,PO) because

Notice that we do not assume anything about the processor

Dmix: it might have either an on-line or an off-line BTA.

Actually, a polyvariant Dmix with an off-line monovariant
BTA is sufficient for obtaining a polyvariant BTA.

3 Practical approach

Though the above reasoning can serve as a ground for a poly-

variant BTA it gives no straightforward way to implemen-
t ation. There are several stumble points. First, we suppose

the existence of a specialize with an on-line BTA. Second,

the technique of data specialization (at least as described

in [Bu191]) leads to circular data structures as intermediate
representation which can not be processed by the existing

specializes.
We propose another approach which is much more real-

istic and allows the effect of a polyvariant BTA to be ob-
tained mostly by the existing tools. Actually we need a

specialize with an on-line BTA because it naturally joins
binding time and static data processing. We can reach the

same by attaching to a source program some additional frag-
ments which evaluate binding times and still do not change
the result of the program. We will illustrate our method on

programs in the strict statically scoped functional language
Scheme [Dyb87].

3.1 informal description of the method

Let us take as an example the program from [RG92]

(clef ine (main a b)
(list (test a b) (test b a)))

(define (test x y)
(+ (* x x) (* y y)))

Here parameters of the procedure test have different bind-
ing times in different calls (henceforth we assume a to be

static and b to be dynamic). A monovariant BTA will clas-
sify both of these parameters as dynamic and consequently

60

will do so for both multiplications. So the residual program

for a = 3 will be the following:

(DEFINE (MAIN-O B.0)
(LIST (+ (*3 3) (* B-.o B-.0))

(+ (* B-oB-0) (* 3 3))))

Let us now extend the original program in the following way.

For each procedure parameter, say a, a new parameter bt -a
is introduced with the intention to hold binding times of the

original parameter a. So in a procedure call the expression
for additional parameters must simulate the evaluation of
binding time of the original actual parameter expression.

For the above program such an extension will look like:

(define (main bt-aabt-bb)

(list (test bt-aabt-bb)
(test bt-bb bt-a a)))

(define (test bt-xxbt-yy)
(+ (*xx) (* yy)))

Note that this program is equivalent to the original one.
Note also that one can regard this program as a specification
of the correctness of a monovariant BTA: a variable, say x,

can be classified as static if only bt-xinvariantly equals to

‘static.
Now we specialize this program with bt-a = ‘static,

bt-b = ‘dynamic and get the following residual

(DEFINE (MAIN-O LOB_l)
(LIST (+ (* A-O A-O) (* B-1 B-1))

(+ (*B_l B-I) (* A_o A_o))))

Obviously this program is also equivalent to the original one,
but its specirdization Ieadsto

(DEFINE (MAIN-O-O B-l_O)
(LIST (+ 9 (* B-i_OB-i_O))

(+ (* B-l-O B-l-O) 9))))

More interesting is thecaae when the source program is
non-linear, i.e. when a procedure call appears in an actual
parameter expression. Consider for example the program

(define (mainab)

(list (gab) (gba)))
(define (g x y)

(if (zero? x)

Y
(g (-x 1) (g (-x 1) x))))

Here both parameters of the procedure g will be declared by
amonovariant BTAaa dynamic, because ofthesamereasons

as in the previous example. Straightforward specialization

will simply instantiate ainthebody of main. Inordertoap-

plythesame idea we have to construct an expression which
evaluates binding times of the expression (g (- x 1) x),

if the additional parameter bt-x of the procedure g refers
to the binding time of x. We will do it by constructing an
auxiliary procedure bt-g which evaluates binding time of
g’s result when given binding times of g’s arguments. The

semantics ofbt-g can be specified as

G = lfp (A p . Azy . (z u vUP(Z, P(Z, Z)))

lResidUal ~rogram~ are typed in capital Ietter$ ss the unchanged

output of S8rn?bz autoprojector [Bon90]

where I-Istands fortheIeaat upper bound operation on bind-

ing times: S ~D, Thelesst fixed point (1-fp) exists because
all of the operation in the right hand side are monotone.

Since the arguments of G range through the finite do-

main, we can define Gas the table

#

SD

G = SSD

DD

Nownsing this talde we can properly define the procedure

bt-g

(define (bt-g x y’)

(if (eq? x ‘static)
(if (eq? y ‘static) ‘static ‘dynamic)

(if (eq? y ‘dynamic) ‘dynamic ‘dynamic)))

anduse this definition intheextension of the source program

(define (rnainbt-a abt-bb)
(list (g bt-aabt-bb) (g bt-bbbt-a a)))

(define (g bt-xxbt-yy)
(if (zero? x)

Y
(g bt-x

(-x 1)
(bt-gbt-x bt-x)
(gbt-x (-X 1) bt-x x))))

Notice that since the procedure bt-g is defined in a tabu-

lar manner, the specialize will not have to repeat the static
computation for finding the least fixed point each time it

meets a call to bt-g. The result of specialization of the
extended program is the following:

(DEFINE (MAIN-O A-0 B-i)

(LIST
(IF (ZEMJ? LO)

B-1

(G-O-2 (- A-O 1) (G-O-2 (- A-O 1) A-O)))
(IF (zERO?EI_I)

A-O

(G-O-4 (-B-1 1) (G-O-4 (-B-1 1) B-1)))))

(DEFINE (G-O-4 X-O Y-1)
(IF (ZERO? X-,0)

Y-1

(G-O-4 (-X_O 1) (G-O-4 (- X-O 1) X_O))))

(DEFINE (G-O-2 X-OY-1)
(IF (2ER0? x.,0)

Y-1
(G-O-2 (-.X-O 1) (G-O-2 (- X-O 1) X-O))))

It is easy to see that the monovariant BTA will classify
both parameters of the procedure G-O-2 as static and both

parameters of G-O-4 as dynamic. This solution is exact in
the sense that para,rneters are classified that way in each call
and no widening occurs here.

Specialization clfthe obtained program forA-O = 2yields

‘D~~~~ ~MAIN-@oB-I-0)

(IF (zEILo?B_I_o)
2
(G-()-4-O-2

(-B101)
(G-0~4~0-2 (- B-1-O 1) B-1-O)))))

61

(DEFINE (G-O-4-O-2 X-O_O Y-l_l)
(IF (ZERO? X.O.0)

Y_l_l
(G-O-4-O-2

(- Lo_o 1)
(G-O-4-O-2 (- X-O-O 1) X-O-O))))

In this final residual program the first component of the

result of MAIN-O-O has been reduced completely. The only

residual version G-O-4-O-2 of the original procedure g is
always called with dynamic arguments.

3.2 Formal description ofthe method

We restrict our consideration by the simple subset of Scheme.
Programs in this subset are sets of procedure definitions.
The syntactic classes are

F’rg EProgram
Def ~Procedure.Deftnitton

P ~ ProceduTeName

E Expression

Q E Basic Operator

c E Constants

v E Variable

Thesyntax of the language is the following

Prg ::= Def+
Def ::= (define (P V...) E)

E ::=CIVi (ifEEE) I (OE...) I (PE...)

Binding times form two points abstract domain BTval =
{S, D}z, where S ~ D. X UY denotes the least upper bound

of X and Y. We need two kinds of abstract environments.

The first one associates a binding time value with a variable:

pCVarAbs=Var%ab~e +BTvai

Anenvironment of thesecond kind associates abinding time

function with each procedure name

pEProcAbs =PTocedureName +BTval” +BTual

We assume that the function 0 associating a monotone

binding time function with each basic operator ispredefined

O: BasicOperator -+ BTval” --+ BTval

There aretwoabstract semantic functions: D for evaluating
functions and ~ for evaluating expressions in the domain

BTval
~: Procedure De ftnttaon+ +ProcAbs

‘D[(define (P V...) E)]=
= l~p(kp.[[P] * Ju.t[E]q[[V] w V,.. .],...]

E ; Expression --+ %ocAbs ~ VarAbs -+ BTval
EICIVP = s----
&[v]y?p = p[v]
~[(if El Ez E3)]PP = E[El]~PUf[EZ]~PUE[E3]~P

2[(0 E1...En)]Pp = OIO][f[EI]Pp,..., C[En]VP]

E[(P EI...En)]PP = PIP][~[EI]wP,..., ~[En]PP]

The abstract semantics defined this way directly corre-
sponds to the concrete semantic of the language.

2Bmdmg times domam could be more comphcated, but twopomts
domanr M sufficient for our purposes. we consider nontermmatmg
computations and dead code as static Though there would be no
problem to add the bmdmg time value X to represent side-effecting
evaluation hke In [Bon90]

Now for each procedure P of the original program an
associated procedure bt-P3 with the semantic D[P] should
be constructed. Let 13TDJ!2F[P] denote the definition of
the procedure bt-P. A straightforward definition based on

the above semantic equations will suffice, if only the spe-
cialize is able to process it statically. We can guarantee

that by using finiteness of the abstract domain which allows
bt-procedures be defined in a tabular manner asit was ex-

emplified in the previous section. This would significantly

simplify the process of the first specialization — expansion

of the source program. The same could be done to obtain
procedures realizing abstractions of basic operators. We as-
sume that the procedure bt-Ureahzes the least upper bound

operation L!.
The extension of a source program can be defined by

two functions: the function B constructs an expression for

evaluating binding times
B : Expression --+ Expression

B[c] = ‘static

f?[v] = bt– V

L?[(if EI Ez Es)] = (bt-U BIEI]

(bt-U f3[E2] B[E3]))

B[(O EI . . . En)] = (bt-O BIE1]... B[IL])
f?[(P E] . . . En)] = (bt-P f3[E~Jj... BlIEn])

and the function T— joint evaluation

T : Expression * Expression

?Icn . c
7-[V] =V
T[(if EI E, Es)] = (if TIE1] T[E2] T[E3])
T[(O E, . . . En)] = (o TIEI]... T[EJ
‘Z_[(P E, . . . En)] = (p BIEIj 7[EI]

. . f?[En] T[En])

Finally the extended program can reobtained byreplac-

ingeach procedure definition (define (P V...) E) of the

source program by the couple of definitions:

(define (P bt-V V . ..) T[E])

BTDEF[P]

4 Correctness and termination

Proving correctness of our methods for the polyvariant BTA

relies mostly on the correctness of a specialize being used.
Note that an extended program realizes the same compu-

tation as an original one because all attached evaluations

are terminating and do not infer the result. So even if at-
tached evaluations are not properly related with BTA used
by a specialize the worst that might happen is that bind-

ing time properties of an intermediate residual program will

not be improved. But still it will be equivalent to the origi-
nal program. Since the basic operations over finite domain

BTval are monotone the least fixed point process used for
definition of binding time functions terminates. The first
specialization (~. e. of an extended program) terminates if
specialization of an original program terminates also when

~ arguments are dynamic: again due to the finiteness of
the BTvai only finite number of copies for each procedure

will be produced by a polyvariant specialize.
Unfortunately. this is not true for the second sDecializa-.,

tion, because unfoldings performed during the first special-

ization might change termination properties. Consider the
following program

twe use the prefix bt. for constructing new names assummg that

lt will not cause name clashes Actually, one can consider bt- as to
be anoperat?on on names

62

(define (main ab)

(list (g ab) (gba)))

(define (gxy)

(if (> xy)
(+ (g (subIx) (addl x))

(g (addly) (subl y)))

o))

Sirnilix terminates on this program and falls into infinite

specialization on the extended program, when infinite static
loop is not guarded by dynamic conditional But one must

admit that termination in the former case is rather occa-

sional.

5 Compatibility with specializer

Actually this method consists informing aspecirdizer toex-

pand a source program, although this expansion in general
will pessimize the program: several copies of equivalent pro-

cedure definitions can appear, while only evaluations on

binding times performed. However, a speciaFizer could be

clever enough to notice this “cheating”, and remove all un-

necessary computation from the expanded program, In fact,
Sirndiz does sotosorneextent when it transforms dynamic

conditional into lambda-abstractions. We can avoid this by
inserting in the beginning of each procedure a dummy oper-

ations (e.g. generalizein Snndiz) on all added parameters
and force a speciaFizer to regard them as dynamic.

On the other hand SirniJiz has motives of its own for
unfolding (especially performed during postprocessing) that

potentially change binding times. So for the program in
our first example we can reach the desired effect by double

specialization of the source program, when the first run is
for alF arguments being dynamic.

6 Partially static conditionals

Now we try to approach another case which causes widen-

ing: that is when alternatives of a conditional with static
test have different binding times. For example, the whole
conditional

(if (> x O) y 5)

is classified by a monovariant off-line BTA (static xand dy-

namic y) as dynamic even if xis always positive. Theprob-

lemis that this fact can rediscovered onlyon the basis of

particular data which are not accessible toanoff-line BTA.

In [RG92] it was stated that in this case it is impossible
to improve binding times by any copying of program frag-

ments, In the higher-order environment the eta-conversion
can be used for the purpose of binding time improvement

[Bon90], though no systematic procedure of applying the
transformation is known.

The idea that we are going to exploit is to extend a source
program by some actions which are performed by a hypo-

thetical on-line specialize and then to pass the extended
program to a real (monovariant) specirdizer. We wilF pre-
sume that the hypothetical on-line specialize works accord-
ing to the following strategy: when processing an expres-
sion it first checks if there is enough static information to

calculate the result of the expression. If the information is
sufficient it switches itself to completely static mode and em-
ulates the ordinary valuation function. Otherwise the spe-
cialize proceeds with subexpressions in “check-first” mode.

We can express this strategy by transforming a source ex-

pression E into cond itiomd

(if (eq? Q[E] ‘static) S[E] E)
where Q[E] is an expression constructed on the basis of E

and which evaluates binding time of E on particular data.

The generation of such an expression wiFl be much easier

if we presume that ii source program had been already an-

notated by a monovariant BTA. Nevertheless, the value of

fJ[E] might be different from the annotation assigned to E

by BTA. Obviously !~[E] itself is static. The expression S[E]

is essentially the same as E except that all dynamic variables
are replaced by an arbitrary constant. It is safe because the

evaluation of S [E] is guarded by the condition which guaran-
tees that this constant in fact wilF never be used. Naturally
there is no need to perform the transformation in its full
generality: e. g. if some expression is already annotated as

static we can leave it unchanged. Moreover, it is possible to

apply the transformation only at some specified points, e.g.
for procedure calls. So we can restrict our consideration by

dynamic expressions

Q?[c]
!J[V]
G?[(if El E, E,)]

L2[(0 E, . . . En)]

only and define transformation Q as
= ‘static
—— ‘dynamic
= (if (eq? QIE1] ‘static)

(if SUE,] Q[E2] Q[E3])
‘dynamic)

= (bt-O QIEI] . . . Q[En])

where bt -O is a bin cling time abstraction of a primitive op-

erator O.

To define the transformation for a procedure call we
should take care about procedure definitions. For a proce-

dure P which is not completely static (for the sake of nota-

tional simplicity, suppose that it has two arguments: static

a and dynamic b)

(define (1’ a b) E)
we construct two additional procedures of one parameter a:

the procedure dbt -F’ for evaluation of binding time and the

procedure static-P for static evaluation:
(clef ine (dbt-P a) Q~E])

(define (static-p a) S[E])
Note that the procedure dbt-P differs from bt-P de-

scribed earlier. Ah bough both of them result in binding
time domain the former is supplied with concrete data while
the latter works on abstract values.

Now we can define that

Q[(P E, E,)] = (dbt-p ~[&])

S[(P El E2)] = (static-P SIEI])

Let us demonstrate how this transformation works on a
typical example. Consider a fragment of an interpreter for

evaluating expressions:

(define (expr e env)
(cond

((isCst? e) (fetch-Cst e))
((isVar? e) (lookup (fetch-Var e) env))

((isOp? e) (apply-Op
(fetch-Op e)
(expr* (fetch-Args e) env)))))

(define (expr* e* env)

(if (null? e*)
‘()
(cons (expr (car e*) env)

(expr* (cdre*) env))))

Naturally eand e* are static, envis dynamic. Hence the
“dynamicity” of env propagates backward through lookup,
cond, expr, if, expr*, cons andapply-Op.

63

Specialization ofexpr with respect tothesourceexpres-

sion (x + 3) * (7 - 2) will produce a fragment of residual

program

(apply-Op ‘*

(cons
(apply-Op ‘+

(cons
(lookup ‘x env)

(con53 ‘())))
(cons

(apply-Op ‘-

(cons7 (cons2 ‘())))

‘())))

Here

(cons

(apply-Op ‘-

(cons7 (cons2 ‘())))

‘())

was not reduced because apply-Op and cons were classified

as dynamic.
Let us now apply the above transformation to each plo-

cedure call. So we have

(define (expr e env)
(cond

((isCst?e) (fetch-Cst e))
((isVar? e) (lookup (fetch-Vare) env))
((isOp? e)

(apply-Op
(fetch-Op e)
(if (eq? (dbt-expr* (fetch-Args e))

‘static)

(static-expr* (fetch-Args e))
(expr* (fetch-Argse) env))))))

(define (dbt-expr e)

(cond

((isCst? e) ‘static)

((isVar? e) ‘dynamic)
((isOp? e)

(bt-apply-Op

‘static

(dbt-expr* (fetch-Argue))))))
(define (static-expr e)

(cond
((isCst? e) (fetch-Cst e))
((k.Var7 e) (lookup (fetch-Vare) ‘***))
((isOp? e)

(apply-Op
(fetch-Op e)
(static-expr* (fetch-Argue))))))

(define (expr* e* env)

(if (null? e*)
‘()

(cons

(if (eq? (dbt-expr (car e*)) ‘static)
(static-expr (car e*))

(expr (car e*) env)
(if (eq? (dbt-expr* (cdr e*)) ‘static)

(static-expr* (cdr e*))
(expr* (cdr e*) env))))

(define (dbt-expr* e*)
(if (null? e*)

‘static

(bt-cons (dbt-expr (car e*))
(dbt-expr* (cdr e*)))))

(define (static-expr* e*)

(if (null? e*)
‘()

(cons (static-expr (car e*))
(static-expr* (cdr e*)))))

In the extended version wehavetwo variants ofapply-Op:
a dynamic variant in the procedure eval and a static one

in the procedure static-eval. So specialization of the ex-
tended version of eval with respect to the same expression

will yield a better object code

(apply-Op ‘*
(cons

(apply-Op ‘+

(cons
(lookup ‘x env)
‘(3)))

‘(5)))

7 Related works and conclusion

Polyvariant BTAfor partial evaluation appears in[Cons89].
Definition of abstract semantics for binding times domain,

very close to that given in the paper can be found, e.g., in

[Laun91]. Some ad hoc technique for a polyvariant BTA was

proposedin [RG92]as anextension ofamonovariant BTAin
the context ofthe Sirnilirpartial evaluator. Our approaches

not related to any particular partial evaluator and exploits
specialization for realization and justification of the program

expansion. In contrast to [RG92] we do not have to restart

BTA after each unfolding. But still the applicability of our
method need to be extended to higher order programs and
partially known data structures.

Reconsider as an advantage of our approach thatit is
(atleast relatively)independent of thespecializer. Moreover

it allows variations of characteristics of compilers produced

from interpreters: if we need a fast and small compiler an
original interpreter is used, otherwise, if the main objective

is the residual code quality then we exploit various exten-

sions of the interpreter.

8 Acknowledgments

I am grateful to Olivier Danvy and Anders Bondorf —the
authors of the Sirrdiza utoprojector —for their help in cop-
ing with the system and porting it to IBM PC that made it

possible to verify theidea by exciting experiments. It is my
pleasure tothank referees forcorrections and suggestions for
improvement.

References

[Bou90] A. Bondorf. Self-Applicable Partial Evaluation.

Ph.D. Thesis, University of Copenhagen, Den-
mark, 1991.

[Bu191] M. A. Bulyonkov. From Partial Evaluation to
Mixed Computation. In Images of Programming

(1991), D. Bj@rner, V. Kotov, Eds., North-
Holland, pp. 47-60.

64

[Cons89] Ch. Consul. Analyse deprogratnme., Evaluation
partielle et G&&ation de compilatew-s. Ph.D.

thesis, LITP, University of Paris 6, France, 1989.

[Dyb87] R. K. Dybvig. The SCHEME Programming Lan-

gzmge. Prentice-Hall, New-Jersey, 1987.

[Jon88] Automatic program specialization: a re-

examination from basic principles. In Partial
Evaluation and Mixed Computation (1988), D.
Bj@rner, A. Ershov and N. Jones, Eds., North-
Holland, pp. 225-282.

[Laun91] J. Launchbury. Projection ~actorisatioras in par-
tiedevaluation. Cambridge University Press,
1991.

[RG92] B. Rytz, M. Gengler. A Polyvariant Binding
Time Analysis. In Proceedings of the ACM SIG.

PLAN Workshop on Partia! Evaluation and

Setnantics-Based Program Manipulation, 1992,

65

