
Interprocedural Modification Side Effect Analysis

With Pointer Aliasing’

William Landi Barbara G. Ryder

Sean Zhang

Siemens Corporate Researching Department of Computer Science

755 College Rd. East Rutgers University, New Brunswick, NJ 08903
Princeton-, NJ 08540

blsndi~scr. sie~ens .com

Abstract

We present anew interprocedural modification sideef-

fects algorithm for C programs, that can discern side

effects through general-purpose pointer usage. Ours is

the first complete design and implementation ofsuch

an algorithm. Preliminary performance findings sup-

port the practicality of the technique, which is based

on our previous approximation algorithm for pointer

aliases [LR92]. Each indirect store through a pointer

variable is found, on average, to correspond to a store
into 1.2 locations. This indicates that our program-

point-specific pointer aliaaing information is quite pre-

cise when used to determine the effects of these stores,

1 Introduction

Accurate compile-time calculation of possible interpro-

cedural side effects is crucial for aggressive compiler

optimization [ASU86], practical dependence analysis in

programs with procedure calls [Ban88, BC86, W0189],

data-flow based testing [RW82, OW91], incremental se-

mantic change analysis of software [Ryd89], interpro-

cedural clef-use relations [PRL91, PLR92] and effective

static interprocedural program slicing [HRB88, 0084,

Ven91, Wei84]. These are key problems in parallel and

sequential programming environments; the utility of

*The research reported here was support ed, in part, by

Siemens Corporate Research and NSF grants CISE-CCR-92-
08632 and CCR-9023628 2/5.

Permission to oopy without fee all or part of this material is
granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinary. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-S lGPLAN-PLDl-6/93 /Albuquerque, N.M.

o 1993 ACM 0-89791 -598 -4/93 /0006 /0056 . ..$1 .50

rydertics. rutgers. edu
xxzhsngOcs .rutgers. edu

tools to solve these problems is directly dependent on

the accuracy of the data flow information available to

them. We need an eficient method to report program-

point-specific data flow information for these applica-

tions. Existing techniques for FORTRAN cannot sup-

ply this information; they only handle call-by-reference

induced aliasing and are insufficient for languages with

general-purpose pointer usage.

Interprocedural modification side effects were first

handled by Allen for acyclic call multigraphs [A1174,

Spi71]. Later, Barth explored the use of relations

to capture side effects in recursive programs [Bar78].

Banning [Ban79] first noted the decomposition of the

problem for FORTRAN (and other languages where

aliasing is imposed only by call-by-reference parameter

passing); he separated out two flow insensitive cal-

culations on the call Multigraph: one for side effects

and a separate one for aliases. Cooper and Kennedy

[CO085, CK84, CK87] further decomposed the problem

into side effects on global variables and side effects ac-

complished through parameter passing. Burke showed

that these two subproblems on globals and formals can

be solved by a similar problem decomposition [Bur90].

Chbi, Burke, and Carini mention a modification side

effects algorithm for languages with pointers based on

1we SaY~ inkewrocedm~ data flow problem is flow sen-

sitive if it requires propagation of information across calls and

through paths in the procedures being called. An interproce.

dural problem is jfow insensitive if it can be solved solely by

propagation on call graphs, using summary information for each

procedure[Ca188, Bur90].

56

http://crossmark.crossref.org/dialog/?doi=10.1145%2F173262.155096&domain=pdf&date_stamp=1993-06-01

their pointer aliasing calculation [CBC93]; it is diffi-

cult to compare our work to theirs, because they give

no description of their algorithm.

In this paper, we present the first design and im-

plementation of an interprocedural modification side

effects algorithm for languages with general-purpose

pointers (e.g., C); this is the first such algorithm to

use program-point-specific aliasing information. our

algorithm reports program-point-specific possible mod-

ification side effects (i.e., MOD); our results are more

precise than information derivable using the same alias

summary for all statements of a procedure. Our algo-

rithm is based on an initial interprocedural pass that

computes a flow sensitive approximation of prograLm-

point-specific pointer-induced aliases [LR92]. These

are used to gather procedure summary modification

information, with 8ubsequent flow insensitive propags

tion of modifications through the program call Multi-

graph. Finally, call site modification information is cal-

culated using the results of the procedure side effects

summary.

We have implemented our MOD algorithm as a ba,ck-

end analysis on our pointer aliasing implementation

[LR92]. Initial experiments have been run with eleven

of the programs which appeared in [LR92] and one

more. Measurements of average and maximum num-

ber of side effects found per assignment through deref-

erence (i.e., *p=), per procedure and per call site have

been made, as well as calculations of analysis times and

the relative extra cost imposed by using our conditional

analysis technique [LR91, LR92].

Most importantly, our results over the twelve pro-

grams show that on average 1.2 locations are assigned

values per assignment statement through a derefer-

enced pointer variable (e.g., *p=), indicating that

often there is only one alias for such a variable at a pro-

gram point. Also, on average, less than 8% of all the

visible variables at each such assignment are assigned

values; this result indicates that our pointer aliaaing

is very precise, because we are not overestimating the

effects of the assignments by reporting many spurious

aliases.

This paper is organized as follows. Section 2 dis-

cusses our pointer aliasing algorithm and presents our

decomposition of the modification side effects problem.

Section 3 reports our empirical results in detail. Sec-

tion 4 summarizes the contributions of this work. Ap-

pendix A presents a comparison of our MOD decompo-

sition for C to that for FORTRAN. Appendix B gives

an example of our analysis.

2 Flow Sensitive

Interprocedural Analysis

2.1 Realizable Interprocedural Paths. Iterative

data flow analysis is a fixed point calculation for re-

cursive equations defined on a graph representing a

program, that safely approximates the meet over all

paths solution [Hec77] for the graph. For interprocedu-

ral data flow, not all paths in the obvious graph rep-

resentation correspond to real program executions. A

realizable path is a path on which every procedure re-

turns to the call site which invoked it [LR92]. Paths on

which a procedure does not return to the call site which

invoked it, are unrealizable and can never happen in an

actual execution2. A fundamental problem of interpro-

cedural analysis is how to restrict the propagation of

data flow information to realizable paths.

Jones and Muchnick[JM82] give a general approach

for handling this problem. They associate with each

data flow fact, an abstraction of the run-time stack on

paths on which the fact is created. This abstraction,

created by a call, is associated with data flow facts in

the called procedure; it is used at procedure exit to

determine to which call site(s), the data flow informa-

tion should be propagated. Our condiiiomzl aliasing

approach [LR91, LR92] can be seen as an application

of this idea. The data flow fact that z and y are aliased

2We do not allow setjump or longjump in programs analyzed.

--

at program point nis represented by an unordered pair

(x,y)atn. Ourencoding of therun-time stack is the

set of reaching aliases3 (RAs) that exists at entry of

procedure p containing n when p is invoked. The RAs

can be used to determine to which call sites, aliases at

the exit of a called procedure should be propagated. In

[LR92], we safely restricted the size of the reaching alias

sets to one, yielding a compact and effective encoding

of the run-time stack. Use of this encoding yields a pre-

cise solution for aliasing in the presence of one level of

dereferencing; for multiple levels of dereferencing, this

yields a safe approximate solution for aliasing [LR9 I].

Choi et. al. use the last call site encountered as their

encoding of the run-time stack in their flow sensitive

aliasing algorithm [C BC93, CB]. They also describe an

algorithm variant that uses alias sets of unrestricted

size, called source alias sets, aa its encoding. We are

jointly studying the precision and complexity effects

of our two approaches and hope to compare algorithm

performance in practice [MLR+93].

2.2 Pointer-induced Aliasing. Our MOD solu-

tion procedure requires the results of our pointer alias-

ing approximation algorithm. Therefore, in what fol-

lows, we give a brief overview of the algorithm, de-

scribed in detail in [LR92].

Intraprocedurally, aliases induced by a reaching alias

at a procedure entry, are associated with that reach-

ing alias. Aliases that are created regardless of any

reaching aliases, could legitimately be associated with

any reaching alias, but for practicality, we only as-

sociate them with a special reaching alias, ~. We

use Caiias(n, RA) to represent the set of aliases at

program point n under the condition that the alias

RA reaches the entry of the procedure containing n

[LR92]4. The intraprocedural propagation of aliases

through pointer assignment statements is conceptually

3Reaching aliases were referred to by the term assumed aliases
in [LR92].

4We used may-holds to represent conditional aliasing infor-

mation in [LR92].

Culias(n, RA) = {PA I ma~-holds(n, RA, PA)}.

similar to the single level pointer aliasing algorithm in

Chapter 10 of [ASU86] with extensions to handle mul-

tiple level pointers.

Interprocedurally, a call to procedure Q, CU~zQ, cre-

ates reaching aliases at the entry of Q. We use

Reach(caliQ, RA) to denote the set of reaching aliases
,

induced by both the parameter bindings and the

aliases associated with RA at the call (i.e., aliases

in cdkJ(Cd?Q, RA)). The special reaching alias #

and reaching aliases created solely by the parameter

bindings are included in the set Reach(ca~~Q, ~). At

the exit of Q, aliases associated with reaching alias

RA’, are propagated to any call site CdlQ, where

RA’ E Reach(caliQ, RA), and, thereafter are asso-

ciated with RA in the procedure containing that call

site. The actual algorithm includes details of name

space mappings between the calling and called proce-

dures [LR92]; for brevity, we omit them here.

2.3 Decomposition of the MOD problem.

We are solving for modification side effects to fixed-

locations at program points. Fixed-locations are ei-

ther user-defined variables or heap storage creation site

names/field accesses. For example, in C syntax x and

x.f are tied-locations whereas *p and p–>f are not.

We have named each dynamic allocation site, similar to

[RM88]. Each dynamically allocated fixed-location is

identified by the site that created it. Therefore, while

we cannot distinguish between two fied-locations cre-

st ed at the same site, we can distinguish those cre-

ated at different sites. The side effects reported are

differentiated by fixed-location type: global, local,

dynamically-created, and non-visible (within that pro-

cedure). The non.visibles are local variables of other

procedures or an earlier instantiation of the current

procedure [LR92].

In solving for modification side effects, we decom-

pose the MOD problem into subproblems that are in-

dividually easier to solve than the monolithic prob-

lem. We first solve the conditional aliasing problem

58

(i.e., AHAS). Given the results of this alias analy-

sis, we calculate the two related problems (i.) PM(2D,

a procedure-level summary of conditional modification

side effects which can occur, given a specific reaching

alias condition at procedure entry, and (ii.) CMOD,

a set of conditionally modified locations at each pro-

gram point corresponding to a specific reaching alias.

CMOD solutions can then be used to derive MOD in-

formation for program points, while PMOD solutions

can be used to derive a procedure-level summary of

modification side effects.

Our decomposition of the MOD problem is pictured

in Figure 1, where P is a procedure, RA is a reaching

alias and n is a program point. ALIAS is our solution

to the conditional aliasing problem. DIRMOD(n) is the

left hand side of the assignment at program point n.

At an assignment n, CondLMOD widens DIRMOD(n)

to include the effects of aliasing. CondIMOD(P, HA)

summarizes CondLMOD information for each reach-

ing alias RA over all assignment statements in proce-

dure P. PMOD for P is formed from local CondIMOD

information and PMOD information propagated from

procedures called by P, thus calculating both direct

and indirect side effects of P. CMOD at a call site

is constructed from PMOD of the called procedure,

and at an assignment, from CondLMOD of that state-

ment. Finally, MOD at a statement is constructed

from CMOD by summarizing over all reaching aliases.

A comparison of our MOD decomposition for C to that

for FORTRAN is given in Appendix A.

2.4 Data Flow Equations. In these discussions,

we make several assumptions:

●

●

●

assignment is synonymous with value-setting

statemen$ Thus, scanf is considered an assign-

ment.
all variable names are unique; This allows us to

ignore the issue of name hiding which can easily be

accommodated by appending variable names with

the function and file in which they are defined<

call-by-value parameter passing as in C is used;

Call-by-reference parameter passing can be trans-

formed into call-by-value by adding an additional

level of indirection[LRZ93].

MOD(n)

MOD(P) CMOD(n, RA)

~/

PMOD(P, RA)

I

COW?IMOD(P, &i)

CondLMOD(n, RA)

/\

ALA4s DIRMOD(n)

Figure 1: Decomposition of the MOD problem

on bottom data flow information is computed (i.e.,

information at a statement incorporates the effects

of that statement).

our modification side effects sets are associated

with our encoding of the run-time stack, reach-

ing aliases, to restrict our attention to realizable

paths; however, our MOD algorithm is indepen-

dent of the choice of run-time stack abstraction.

P~edecessom(n) represents the set of predecessors

of n in the program,

trivial, reflexive aliases (e.g., < *p,*p>) are as-

sociated with the special reaching alias # at all

programs points; This assumption simplifies the

equation for CondLMOD. In the actual implemen-

tation, we do not store these trivial aliases.

DIRMOD(n) was defined above as visible, direct

side effects at a statement; therefore, it requires no

data flow equation. CondLMOD(n,RA) is the set of

fixed-locations modified by the assignment at n be-

cause of aliases that occur at any of the predecessors

of n when RA reaches the entry of the procedure con-

taining n. CondLMOD is specified by equation (1) in

Figure 2. If DIRMOD(n) is a fixed-location, it is in

CondLMOD(n,g5) because reflexive aliases are associ-

ated with the special reaching alias 4.

For a procedure P and each reaching alias RA,

CondIMOD(P,RA) contains the fixed-locations mod-

ified by assignments in procedure P.

CondIMOD(P, RA) = U CondLMOD(n, RA)

n an assign-

ment in P

59

{

obj2 = DIRMOD (n) and

CondLMOD(n, RA) = u objl (objl, obj2) E Calias(pred, RA)

}

(1)

pred E Predecessors and objl is a fixed-location

PMOD(P, RA) = CondIMOD(P, RA) U (J @caHQ(pMoD(Q,RA’)))

dlQ in P and

RA’ E Reach(callQ, RA)

if n is an assignment

{

CondLMOD(n, RA)

CMOD(n, RA) =
U b.(PMOD(Q, RA’)) if n is a call of Q

RA’ G Reach(n,RA)

otherwise

Figure 2: Data Flow Equations for CondLMOD, PMOD and CMOD

(2)

(3)

PMOD(P,RA) is the set of fixed-locations modified

by procedure P, including the effects of calls from

within P, considering only aliases conditional on reach-

ing alias RA. The PMOD sets for a procedure summa-

rize its modification side effects for a given reaching

alias. They are specified by equation (2) in Figure 2,

which can be solved iteratively. In the equation, ca~[Q

is a call site in P at which P calls Q. Reach(caizQ, RA)

represents the set of reaching aliases at the entry of

Q induced by the parameter bindings at the call and

aliases in Cd~Us(ca/~Q, RA). The function bcallQ, sPe-

cific to Cfd/Q, maps names from the called procedure

(Q) to the calling procedure (P) according to scoping

rules [CK87] and only returns fixed-locations. Specif-

ically, bcalrq factors out all local variables of Q (in-

cluding formal parameters of Q), maps global fixed-

locations (global variables and dynamic storage loca-

tions) to themselves, and maps non-visibles in Q to

their corresponding fixed-locations in P, which are ei-

ther locals of P or non.visibles in P [LR92].

With the PMOD solutions, the modification side ef-

fects for calls and assignments are specified by equa-

tion (3) in Figure 2. Finally, MOD(n) summarizes

the effects over all executions of n in procedure P and

MOD(P) summarizes the effects over all calls of P.

Both are obtained by considering all reaching aliases

for P.

MOD(n) = u CMOD(n, RA)

reaching alias RA for P

MOD(P) = u PMOD (P, RA)

reaching aliaa RA for P

In Appendix B, we show PMOD and CMOD solu-

tions for an example program.

2.5 Precision and Safety. The precision and

safety of our MOD calculation depends upon the pre-

cision and safety of the underlying alias analysis. We

address the issue of safety in [LRZ93], and address the

issue of empirically measured precision in Section 3.

2.6 Worst-case complexity. We give a detailed

analysis of the worst-case complexity of our MOD al-

gorithm in [LRZ93]. In brief, given the following defi-

nitions:

● lVaJia$ is the total number of conditional aliases in

the program.

● ~o~~ign is the number of assignments in the pro-

gram.

. lVfjzed is the number of fixed-locations.

● NICFG is number of nodes in our representation of

the program. This is roughly equivalent to number

of program points.

● Nproc is the number of procedures in the program.

60

e

●

●

●

Cunion is the cost Of the union operation over sets
of fixed-locations [~(~fixed)].

Afc.lr is the maximum number of calls for any one

procedure.

h!fPred is the maximum number of predecessors of

any assignment.

it4RA is the maximum number of reaching aliases

at the entry of any procedure.

the worst-case time complexity for our MOD calcula-

tion is:

~... * M.a~t * MiA * N~ized+N0(Na8.+gn * MRA * Mpred * Cunion+
Nalia8 + NICFG * MRA * C.nio.)

As for most static analyses, the worst-case time has

little correlation with the observed behavior of the al-

gorithm in practice. In the next section, we give some

empirical timing results.

3 Empirical Results

We have implemented our MOD decomposition and

have empirical results for eleven of the programs ana-

lyzed in [LR92] plus compile~, a compiler for a subset

of Pascal. Our implementation is written in C and

analyzes a reduced version of C that excludes: union

types, castings, pointers to functions, exception han-

dling, setjump and longjump. The first two of these

omissions are not theoretically difficult to handle, but

complicate the implementation and must be addressed

before we can study a broader base of programs. We al-

low arrays and pointer arithmetic; however, we simply

treat arrays as aggregates.

The programs we have analyzed and their sizes i~re

in Figure 3. In this, and all subsequent figures, the

programs are sorted by size in lines of code. We have

separated out the assignments that are through a deref-

erence (t hru-deref), meaning the location assigned is

determined by a pointer (e.g., the assignment *p =

5;). We have done this because these assignments have

non-trivial MOD solutions, whereas other assignments

5The only casting we

malloco.

handle is simple casting for p =

(e.g., i = O;) have trivial solutions. In Figure 3, we

also present the time required on a Sun Sparcstation

10 for the MOD calculation, the alias calculation, and

a simple compile with no optimizations enabled. The

reported MOD times do not include the alias times, so

the total analysis time is the sum of these two columns.

In all cases, the MOD times are less than that for a

compile and, in most cases, are orders of magnitude

smaller than the alias times. The total analysis time

for the smaller programs is about the time of a com-

pile, but for larger programs it is not. These results

are encouraging, but we need to improve the efficiency

of our alias analysis on larger programs.

In Figure 4, we give summary statistics for the MOD

solution for t hru-deref assignment statements. These

statistics are subdivided with respect to the type of

fixed-locations being modified. There are five types:

●

b

●

●

●

glo: MOD information for global variables.

dyn: MOD information for dynamic storage loca-

tions.

10C: MOD information for local variables of the

enclosing procedure.

nv: (nonvisible) MOD information for local vari-

ables of other procedures or of an earlier recur-

sive instantiation of the enclosing procedure. In

our implementation [LR92], for efficiency we use

one placeholder to represent all non-visible fixed-

locations within a procedure.

tot: MOD information for all fixed-locations.

We give three different summary statistics. Aver-

age/assign (Maximum/assign) is the average (max-

imum) number of fixed-locations modified by assign-

ment statements. Average percent /assign is more

complicated. We define the number of fixed-locations

potentially modified by an assignment as the sum OE

● number of globals in the program

● number of dynamic allocation sites

● number of locals in the enclosing procedure

c number of locals of other procedures6accessible

through globals and formals at the entry of the

enclosing procedure

‘plus locals of earlier recursive instontiations of this procedure

61

lines number number number of assigns MOD aliaa compile

program of of of time time time

code procedures calls all thru-deref (see) (see) (see)

allroots 188 8 20 96 33 0.01 0.23 0.79

diffh 268 16 51 117 19 0.09 0.78 1.54

fixoutput 458 8 14 133 90 0.05 0.39 0.79

U1 541 19 73 262 42 0.20 2.70 1.29

lex315 776 19 104 179 54 0.18 1.05 1.29

pokerd 1130 28 87 384 104 0.32 13.87 2.59

loader 1539 33 86 330 119 0.38 15.13 2.75

cliff 1782 45 166 764 232 0.86 12.74 8.48

football 2354 61 265 1070 267 0.88 3.78 8.92

compiler 2360 40 363 373 72 0.82 1.38 4.17

assembler 3361 55 256 691 290 1.72 84.54 5.63

simulator 4663 102 413 872 274 0.88 20.72 7.94

Figure 3: Program size and analysis time

Average/assign Average percent/assign Maximum/assign

program glo dyn Ioc nv tot glo dyn 10C nv tot glo dyn 10C nv tot

allroots 0.9 0.1 0.0 0.0 1.0 13% 9% o% o% 8% 1 1 1 0 1

difFh 0.7 0.2 0.2 0.0 1.1 4% 16% 3% o% 5% 1 1 1 0 2

fixoutput 0.8 0.1 0.1 0.0 1.0 6% 4% 3% o% 5% 1 2 1 0 2

U1 0.6 0.0 0.4 0.0 1.0 2% o% 11% o% 2% 1 0 1 0 1

lex315 0.8 0.3 0.0 0.0 1.1 6% 9% o% o% 6% 1 2 1 0 2

pokerd 0.5 0.2 0.2 0.2 1.1 2% 1% 4% 8% 2% 1 3 1 3 3

loader 0.6 0.2 0.0 0.5 1.4 3% 1% <1% 10% 3% 1 2 1 9 9

cliff 0.7 0.3 0.1 0.0 1.1 1% 1% 1% o% 1% 2 2 1 0 2

football 1.0 0.0 0.0 0.0 1!0 1% o% <1% <1% 1% 3 0 1 1 3

compiler 1.0 0.0 0.0 0!0 1.0 2% o% 1% o% 2% 1 0 1 0 1

assembler 0.6 0.2 0.1 0.6 1.4 2% <1% <1% 11% 2% 2 1 2 9 9

simulator 0.6 0.2 0.0 0.6 1.4 2% 1% <1% 15% 2% 1 2 1 13 13

Figure 4: MOD statistics for thru-deref assignment statements

Then percent /assign is simply the number of fixed-

locations modified, divided by the number of poten-

tially modified locations of the appropriate type per

assignment. The average percent /assign is the aver-

age of percent/assign over all assignments. For some

assignments the number of possible locals and the num-

ber of non.visibles are zero; in these cases, we use “O%”

as the percent/assign.

The results in Figure 4 are extremely encouraging.

Any executable assignment in a normally terminating

program will modify at least one fixed-location. Thus,

one is a lower bound of tot for average/assign. The

values in tot column of average/assign are all close to

one with a maximum value of 1.4. This indicates that

our algorithm is highly precise. In this Section 3.1,

we present additional empirical evidence on the preci-

sion of our calculation. Average percent/assign in-

dicates how much more precision is obtained from our

MOD calculation in comparison to using -the worst-case

assumption that all fixed-locations are modified, The

tot column runs from l% to 8% indicating that our

MOD calculation is yielding far more accuracy than

the worst-case assumption and therefore is worth per-

forming. Maximum/assign is interesting, but cannot

62

easily be used to justify the quality of our calculation.

We have investigated the high values in tot column of

maximum/assign for loader, assembler, and simula-

tor by hand checking the solutions at the assignment

that generated the maximum. Our algorithm found no

spurious modifications for these statements.

Figure 5 and Figure 6 have the same structure as l’ig-

ures 4 and are also encouraging; however, it is harder

to get a good lower bound on how many fixed-locations

are modified in these cases. We think the numbers re-

ported are surprisingly small. In Figure 5, modified

locals of the called procedure are not counted in the

totals for a call site as those locations do not exist be-

fore nor after the call. It seems likely that a procedure

would modify all of its locals and thus you would ex-

pect average percent/procedure for Ioc to be 100%

in Figure 6. We do not see this value because some pro-

cedures do not have any locals; these procedures intr-

oducea O% into the average calculation. The high values

in tot column of maximum/procedure in Figure 6

are expected because procedure main of each program

will directly or indirectly modify every location in the

program, except locals of other procedures.

3.1 Empirically Measured Precision. We have

empirically bounded the precision of our calculation

in a similar manner as we did in [LR92]. There we

explained the two sources of imprecision in the alias-

ing calculation: k-limiting, resulting from the necessity

for approximation to handle a priori unboundable dy-

namic data structures and control j?ow, resulting from

safe assumptions about the actual execution paths with

which aliases are associated. Our empirical measure-

ments give a worst-case estimate of the latter type of

approximation; there is no viable way of measuring the

former. All pointer aliasing algorithms must use some

k-limiting approximation.

We associate with each fixed-location in the MOD

solution either yes or maybe with the following inter-

pretation:

MAYBE at MAYBE at MAYBE at
program

assigns calls procs

allroots o% o% o%
difi o% o% o%

fixoutmlt o% o% o%

U1 o% o% o%

lex315 o% o% o%

pokerd <1% 2% 2%

loader <1% 2% 1%

cliff <1% <1% 1%
football o% o% o%

compiler o% o% o%

assembler 3% i 2% 3%

simulator 3% 1 15% 9%

Figure 7: Percent maylws in the MOD solutions

(a,yes) G MOD(X) implies that X definitely mod-

ifies a on some execution.

(a,maybe) c MOD(X) implies that X mayor may

not modify a, but for safety we assume X modifies

a.

The details of how to compute the MOD solutions

with this added requirement are in [LRZ93]. We give

the percentage of maylm in our MOD solutions in Fig-

ure 7. The percentage of fixed-locations spuriously re-

ported as modified due to control-flow approximations

for all assignments, calls, and procedures, can be at

most the percentage of maybes reported.

Finally, we have empirical evidence that by associ-

ating reaching aliases (RA) with CMOD and PMOD,

we are not incurring much unnecessary work in our

algorithm [L RZ93]. This would be possible, if some as-

signment (or call or procedure) modifies the same fixed-

location under many different reaching aliases. To solve

the MOD problem, we are only interested in which

fixed-locations are possibly modified, not in which con-

ditions lead to their possible modification. To verify

that our approach does not involve duplicate effort, we

computed the ratio of the CMOD and PMOD solution

size to the MOD solution size. For the twelve programs

in this paper, the maximum ratio is 1.04, which indi-

cates that little redundant work is being performed.

The ratios for these programs appear in [LRZ93].

63

Average/call Average percent /call Maximum/call

program glo dyll 10C nv tot glo dyn 10C nv tot glo dyn 10C nv tot

allroots 0.9 0.2 0.0 0.0 1.2 14% 25% o% o% 11% 2 1 0 0 3

diflh 2.4 0.5 0.0 0.0 2.9 15% 47% o% o% 14% 9 1 0 0 10

fixoutput 6.1 2.5 0.0 0.0 8.6 43% 83% o% o% 46% 10 3 0 0 13

U1 2.5 0.0 0.0 0.0 2.5 6% o% o% o% 6% 31 0 0 0 31

lex315 3.4 1.7 0.0 0.0 5.1 22% 58% o% o% 28% 9 3 0 0 12

pokerd 1.6 0.6 0.2 0.0 2.4 5% 5% 2% o% 5% 23 13 1 0 36

loader 1.2 1.6 0.6 0.1 3.5 7% 8% 13% 4% 8% 11 19 3 1 30

cliff 2.3 1.3 0.0 0.0 3.6 3% 4% o% o% 3% 58 36 0 0 94

football 3.6 0.0 0.0 0.0 3.6 5% o% <1% o% 4% 67 0 1 0 67

compiler 12.8 0.0 0.0 0.0 12.8 25% o% o% o% 24% 45 0 0 0 45

assembler 2.6 2.1 0.3 0.2 5.2 8% 9% 6% 5% 8% 24 24 5 5 48

simulator 1.7 0.4 0.2 0.1 2.4 5% 3% 7% 5% 4% 24 16 2 3 40

Figure 5: MOD statistics for procedure calls

Average/procedure Average percent/procedure Maximum/procedure

program glo dyn 10C nv tot glo dyn 10C nv tot glo dyn 10C nv tot

allroots 2.2 0.6 2.8 0.0 5.6 32% 63% 75% o% 52% 7 1 6 0 8

diflh 3.6 0.5 1.8 0.0 5.9 23% 50% 50% o% 30% 16 1 7 0 17

fixoutput 7.0 2.4 0.8 0.0 10.2 50% 79% 25% o% 56% 14 3 4 0 17
U1 8.9 0.0 1.2 0.0 10.1 22% o% 42% o% 24% 40 0 5 0 40
lex315 4.6 1.7 1,5 0.0 7.9 31% 58% 26% o% 40% 15 3 16 0 18

pokerd 4.7 2.3 3.2 0.4 10.6 15% 18 % 79% 38% 22% 31 13 12 3 44
loader 2.7 3.7 2.5 1.0 9.9 16% 20% 58% 74% 23% 17 19 18 9 48
cliff 7.1 4.5 3.0 0.0 14.5 10% 12% 76% o% 13% 71 36 11 0 107
football 7.4 0.0 2.9 0.0 10.3 9% o% 69% 10% 12% 81 0 36 1 81
compiler 24.2 0.0 1.1 0.0 25.2 47% o% 63% o% 48% 52 0 4 (1 52

assembler 6.3 5.6 2.7 1.6 16.3 19% 23% 69% 48% 25% 33 24 13 15 60
simulator 3.6 1.4 1.9 0.8 7.7 10% 9% 79% 81% 14% 36 16 7 24 52

Figure6: MODstatistics for procedures

4 Conclusions

We have presented the design and implementation

of a new interprocedural side effects algorithm for

languages that allow general-purpose pointer usage

[e.g., C). Our algorithm is based on our condi-

tional analysis approach, that already has been used

successfully in the approximation of pointer-induced

aliases [LR92] and int erprocedural reaching definitions

[PRL91, PLR92]. Preliminary results from our pro-

totype implementation indicate that our algorithm is

practical, efficient and quite accurate. Future work in-

cludes broadening the class of C programs handled by

our prototype, making our algorithms incremental, and

scaling up to handle large C systems.

Acknowledgments We thank our colleagues at

Siemens Corporate Research for their help with the

front end, pit. We also thank Don Smith and the ref-

erees for insightful comments on this paper.

References

[Al174] F. E. Allen. Interprocedural data flow analysis. In

Proceedings of 1974 IFIP Congress, pages 398–402,

Amsterdam, Holland, 1974. Institute of Electrical

and Electronics Engineers, Inc., North Holland Pub.

Iishing Company.

[ASU86] A. V. Aho, R. Sethi, and J. D. Unman. Compilers:

Principles, Techniques, and Tools. Addison-Wesley,

1986.

[Ban79] J. Bannin g. An efficient way to find the side effects of

procedm-e calls and the aliases of variables. In Con.

ference Record of the Sixth Annual A CM Symposium

64

[Ban88]

[Bar78]

[BC86]

[Bur90]

[Cdaa]

[CB]

[CBC93]

[CK84]

[CK87]

[CO085]

[Hec77]

[HRB88]

[JM82]

[LR91]

[LR92]

on Principles of Programming Languages, pages 29–

41, January 1979.

Utpal Banerjee. Dependence Analysis for Supercom.

putkg. Kluwer Academic Publishers, Norwell, MA,

1988.

J. M. Barth. A practical interprocedural data fiow

analysis aIgorithm. Communications of the A C’M,

21(9):724–736, 1978.

M. Burke and R. Cytron. Interprocedural depen-

dence analysis and parallelization. In Proceedings of

the ACM SIGPLAN Symposium on Compiler Con-

struction, pages 162–175, June 1986. SIGPLAN No-

tices, Vol 21, No 6.

M. Burke. An interval-based approach to exhaustive

and increment al int erproceduml data flow analysis.

ACM Transactions on Programming Languages and

Systems, 12(3):341-395, July 1990.

D. Callahan. The programs mnrnary graph and flow-

sensitive int erprocedural data flow analysis. In Pro-

ceedings of the SIGPLAN 788 Conference on F’ro-

gramming Language Design and Implementation,

pages 47–56, June 1988.

Jong-Deok Choi and Michael Burke. personal COD

munication.

Jong-Deok Choi, Michael Burke, and Paul Carini.

Efficient flow-sensitive interprocedural computation

of pointer-induced aliases and side effects. In Con.

ference Record of the Twentieth Annual A CM Sym.

posium on Principles of Programming Languages,

pages 232–245, January 1993.

K. Cooper and K. Kennedy. Efficient computation

of flow insensitive int erprocedurzl summary informa-

tion. In Proceedings of the ACM SIGPLAN Sym-

posium on Compiler Construction, pages 247–258,

June 1984. SIGPLAN Notices, Vol 19, No 6.

K. Cooper and K. Kennedy. Complexity of interpro-

cednral side-effect analysis. Computer Science De-
partment Technical Report TR87-61, Rice Univer.

sity, October 1987.

K. Cooper. Analyzing aliases of reference formal

parametem. In Conference Record of the Twelfth

Annual ACM Symposium on Principles of Program-

ming Languages, pages 281–290, January 1985,

M. S. He&t. Flow Analysis of Computer Programs.

Elsevier North-Holland, 1977.

Susan Horwitz, Thomas Reps, and David Binlkley.

InterProcedural slicing using dependence graphs. In

Proceedings of the SIGPLAN ’88 Conference on Pro-

gramming Language Design and Implementation,

pages 35–46, June 1988.

N. D. Jones and S. S. Muchnick. A flexible approach

to interprocedural data flow analysis aud programs

with recursive data structures. In Conference Record

of the Ninth Annual ACM Symposium on Principles

of Programming Languages, pages 66–74, January

1982.

W. Landi and B. G. Ryder. Pointer-induced aliasing:

A problem classification. In Conference Record of the

Eighteenth Annual ACM Symposium on Principles

of Programming Languages, pages 93–lo3, January

1991.

W. Landi and B. G. Ryder. A szfe approximation al-

gorithm for interprocedumd pointer aliasing. In Pro-

ceedings of the SIGPLAN ‘9.8 Conference on Pro-

gramming Language Design and Implementation,

pages 235–248, June 1992.

[LRZ93]

[MLR+93]

[0084]

[OW91]

[PLR92]

[PRL91]

[RM88]

[RW82]

[Ryd89]

[Spi71]

[Ven91]

[Wei84]

[W0189]

W. Landi, B. G. Ryder, and S. Zhrmg. Interproce-

dural modification side effect analysis with pointer

aliasing. Technical Report LCSRTR201, Labor&

tory for Computer Science Research Technical Re.

port, March 1993. This report supersedes LCSR

TR195 and is an expansion of our ACM SIGPLAN

PLDI’93 paper.

Thomas J. Marlowe, William Landi, Barbara G.

Ryder, Jong-Deok Choi, Michael Burke, and Paul

Carini. A cost-precision comparison of two flow sen-

sitive int erprocedural algorithms for pointer-induced

aliasing. Technical report, Laboratory for Computer

Science Research Technical Report, March 1993. in

preparation.

K. J. Ottenstein and L. M. Ottenstein. The pro-

gram dependence graph in a software development

environment. In Proceedings of the ACM SIG-

SOFT/SIGPLAN Software Engineering Symposium

on Practical Software Development Environments,

pages 177–184, May 1984.

T. J. Ostrand and E. Weyuker. Data flow based

test adequecy analysis for languages with pointers.

In Proceedings of the 1991 Symposium on Software

Testing, Analysis and Verification (TAV4), October

1991. Victoria, B. C., Canada.

H. D. Pande, W. Landi, and B. G. Ryder. InterPro.

cednral defuse associations in the presence of single

level pointers. Laboratory for Computer Science Re.

search Technical Report LCSIVTR-193, Department

of Computer Science, Rutgers University, 1992. be.

ing revised for journal publication.

H. Pande, B. G. Ryder, and W. Landi. InterPro.

cedural clef-use associations for C programs. In Pro-

ceedings of the ACM SIGSOFT Conference on Test-

ing, Analysis and Validation, pages 139-153, Octo-

ber 1991.

C. Ruggieri and T. Murtagh. Lifetime analysis of dy-

namically allocated objects. In Conference Record of

the Fifteenth Annual ACM Symposium on Principles

of Programming Languages, pages 285–293, January

1988.

S. Ftapps and E. Weyuker. Data flow analysis tech-

niques for program test data selection. In Proceedings

of the Sixth International Conference on Software

Engineering, pages 272–278, September 1982.

B. G. Ryder. Ismnx Incremental software mainte-

nance manager. In Proceedings of the IEEE Com-

puter Society Conference on Software Maintenance,

pages 142–164, October 1989.

T. Spilhnan. Exposing side effects in a PL-I optimiz.
ing compiler. In Proceedings of IFIPS Conference,

pages TA–3–56:TA–3-62, 1971.

G. A. Venkatesh. The semantic approach to pro-

gram slicing. In Proceedings of the SIGPLAN ‘9 I

Conference on Programming Language Design and

Implementation, pages 107-119, June 1991.

Mark Weiser. Program slicing. IEEE Transac.
tiom on Softwmc Engineering, SE-10(4) :352–357,

Jtiy 1984.

Michael Wolfe. Optimizing Supercompilers for Su.

percomputers. The MIT Press, Cambridge, MA,

1989.

65

MOD Decomposition

for FORTRAN[CK87]

s is a statement. P is a procedure.

LMOD(S) .,
the set of variables modified by an

execution of s, excludlng any

procedure calls in s

IMOD(P)
the set of variables modified by an

invocation of P, excluding any

procedure calls in P

IMOD+(P)

the set of variables either modified

directly in P or modified as reference

formals in procedures called in P

GMOD(P)

the set of variables modified by an
invocation of P, includlng procedure

calls in P and ignoring any fllases in P
DMOD(S)
the set of variables modified by an

execution of s, includlng procedure

calls in s and ignoring any aEases

in the procedure containing s

MOD(s)

the set of variables modified by an

an execution of s, considering all

fllases in the procedure containing s

MOD Decomposition for C

n is either an assignment or a call.

P is a procedure. RA is a reaching ahs.

CondLiUOD(n, RA)

n is an assignment.

the set of fixed-locations modified by an execution of

n considering abases that are associated with RA

and hold on entry n.

CondIMOD(P, RA)

the set of fixed-locations modified by an invocation of

P, considering only assignments in P and aliases
associated wi;h RA in P

Cond.IMOD+(P, RA)(see[LRZ93])

the set of fixed-locations either modified dhectly in

P or modified as non.visibles in procedures called by P,
considering only aliases associated with RA in P

PMOD (P, RA)

the set of fixed-locations modified by an invocation of

P, considering both assignments and procedure calls in P,

and aliases associated with RA in P

C’MOD (n, RA)
n is either an assignment or a call.

the set of fixed-locations modified by an execution of

n, considering aliases that are associated with RA
and hold on ;ntrv n. and Darameter bindinm if n is a call

MOD(n) “ ‘ ‘

n is either an assignment or a call.

the set of fixed-locations modified by an execution of

n, considering all possible alhses true on entry n

in the procedure containing n

Figure 8: Comparison of MOD decompositions for FORTRAN and C

A Comparison with the MOD

Decomposition for FORTRAN

Our decomposition of the MOD problem for C is

similar in structure to the original decomposition for

FORTRAN by Banning [Ban79], in the sense that both

calculate local side effects in each procedure first, and

then set up data flow equations on call graphs to com-

put e procedure-level side effects (i.e., a flow insensitive

interprocedural calculation).

The two decompositions are also similar in what is

included in the MOD sets. In FORTRAN programs,

variables are the only fixed-locations and therefore var-

ious MOD sets in the decomposition for FORTRAN

include just variable names. In C, pointer variables

and dynamic allocation are allowed. Although simple

variable names (e.g., p) still represent fixed-locations,

names with dereferences (e.g., *p) can potentially de-

note different locations during execution and thus are

not considered fixed-locations. lVe handle dynamic al-

locations by naming each site so that dynamically allo-

cated locations are identified by the sites creating them.

The MOD sets in our decomposition include variable

names and names for dynamic allocation sites.

The two decompositions differ in their treatment of

aliases. In the FORTRAN decomposition, aliases are

computed at procedure calls. This is possible because

for FORTRAN programs, only procedure calls can cre-

ate aliases and aliases created by a call hold throughout

execution of the procedure being called. In our MOD

decomposition for C, aliases are computed at pointer

assignments and procedure calls, because aliases vary

intraprocedurally. An alias at a program point is asso-

ciated with a reaching alias for the procedure contain-

ing that program point. These reaching aliases differ-
entiate side effects caused by different calls of the same

procedure.

In Figure 8, we compare various MOD sets defined

in our MOD decomposition for C and those in the de-

composition for FORTRAN as presented in [C K87].

B An Example

We show the results of our analysis for the example

66

Int x, y, k;

R(b)

int “b;

{
if (*b)

{ b= &k;

‘b=s o;}

“b++;

}

maino

{
R(&x);

R(&y);

}

Figure 9: An example program and its ICFG

Alias Solutions for R

‘:” “:” s: e

Reaching Alias PMOD Solutions for main

4 {x, k,y}

Reaching Alias PMOD Solutions for R
>

4 {k, b}

<*b,x> {x}

<*b,y> II {Y} J

Reaching CMOD Solutions for main

Alias nl nz ns nd ns n6 1

4 {x,’} {y,’} 1

Reaching CMOD Solutions for R

Alias nT ns ng nlo nll nlz

{b} {k} {k}

<*b,x> {x}

<*b,y> II I I I{yjl 1

Figure 10: Aliases, PMOD and CMOD solutions for the example program

program in Figure 9. The program is represented in an

intermediate form called ICFG [L R92]. Both main and

R are analyzed with reaching alias ~ at their entries.

The first call to R makes the alias <*b,x> reach

the entry of R. The second call to R creates the alias

<*b, y> at the entry. R is analyzed for each of these

aliases. There are no aliases in main, The alias solution

for R is shown in Figure 10. The PMOD and CMOD

solutions computed according to our decomposition are

also shown in the same figure. Empty entries in these

tables mean either no alias or no side effect.

67

