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Abstract

In most programming language implementations, thecom-
piler has detailed knowledge of the representations of and

operations on primitive data types and data-type construc-
tors. In SCHEMEXEROX, this knowledge is almost entirely

external to the compiler, in ordinary, procedural user code.
The primitive representations and operations are embodied

in first-class “representation types” that are constructed and
implemented in an abstract and high-level fashion. Despite

this abstractness, a few generally-useful optimizing transfor-

mations are sufficient to allow the SCRE~XEROX compiler
to generate efficient code for the primitive operations, es-
sentially as good as could be achieved using more contorted,
traditional techniques.

1 Introduction and Motivation

Typically, the compiler for a given programming language

embodies detailed knowledge of the syntax and semantics
of that language’s data-type specifications. This knowl-
edge includes, for example, algorithms for bit-level layout of

data-type instances, the object-code implementations of the

primitive access, modification, and allocation operations,
and (in languages with run-time type checking) the runtime

system’s protocols for type testing and new type creation.
Putting all of this knowledge into the compiler allows it to
more easily generate efficient object code for manipulating
values.

There are, however, a number of drawbacks to placing
the type representation knowledge in the compiler.

First, code in the compiler must necessarily be ‘rneta-
code’, in the sense that it does not directly perform the

operations in question but rather generates code that will
perform the operations. This level of conceptual indirection

can make such code more difficult to write, to understand,
and to test.

Second, when the knowledge is embedded in the com-
piler, it is difficult or impossible for users to experiment with

variations of that knowledge, such as new styles of data rep-
resentation or layout.

Finally, in languages like Scheme, it can be very difficult
for compilers to discover sufficient information to generate
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good code; the problem is that user-defined data types are
created by procedural manipulation of first-class ‘type’ val-
ues rather than by static program syntax [1, 2]. The usual
solution is to give the compiler detailed knowledge of the
built-in types and operations (e.g., cons, pair?, car, and
act-car ! in Scheme) and to let all of the implementation
of user-defined types take place in essentially unoptimized

run-time code. In such systems, operations on user-defined
types can be significantly less efficient than thoee on built-in

types.

In SCHEMEXEROX, we’ve taken a new approach in which
we place even more of the data representation knowledge in
procedural user code. In fact, essentially all of the support

for data representation, including that for all of the built-in
types except procedures, is implemented in normal run-time

code. New types are defined by composing first-class ‘type’
and ‘layout’ values procedurally and then extracting, from
these first-class ‘types’, procedures for allocating and ma-

nipulating instances of the new types. We then rely only
upon the compiler’s general-purpose transformations and
optimizations to make uses of the type system efficient.

Because there is a great deal of regularity to the con-
struction of new types and the extraction of the type-specific

procedures, SCHEMEXEROX provides a concise syntactic ex-

tension for the purpose. Most programmers will use the type

system through this synt attic extension, rather than proce-
dural interface introduced later. As examples demonstrating
most of its features, here are the SCHEME XEROX definitions
of three standard Scheme data types:l

(define-type pair

(field car (accesaor car)
(modifier act-car ! ) )

(field cdr (acceaaor cdr)

(modifier aet-cdr!))
(constructor (cons car cdr))

(tag 2))

(define-type string
(sequence data

(field elt (type char)

(acceasor string-ref)
(modifier string-set!))

(length atring-length) ))

lFor brevity, these definitions are slightly simplified from the ones
used in our system; for example, the latter include clauses defining
the specialized value-printing procedure8 for the types.

end/or specific permission.
ACM-SlGPLAN-PLDl-6 /93/Albuquerque, N.M.
~ 1993 ACM 0-89791-598-419310006101 39...$1.50

139

http://crossmark.crossref.org/dialog/?doi=10.1145%2F155090.155103&domain=pdf&date_stamp=1993-06-01


(define-type char
(field tag (type (unsigned 15))

(constant ttx4FF))
(field code (type (unsigned 16))

(accessor char->integer))
(constructor (integer->char code))
(immediate))

In SCHEMEXEROX, pairs are represented by tagged pointers
to two-word cells, strings are tagged pointers to atypecode
word followed by a length word and some number of8-bit

character codes (there is no (tag . . . ) clause in the def-
inition because all ‘coded’ types share a single tag), and

characters are tagged words containing an 8- or 16-bit code.
Even though this syntax is declarative, the reader should

keep in mind that it is not perceived as such by the SCHEME-
XEROX compfier; uses of define-type are simply expanded
into a series of definitions invoking the procedural interface.

In the remainder of this paper, we briefly describe some
salient Scheme language extensions in SCHEMEXEROX, dis-
cuss the procedural interface to the first-class types imple-

mentation, and explain how the SCHEMEXEROX compiler’s
general-purpose code transformations are sufficient to gen-
erate highly-efficient code for uses of that interface.

2 Some Extensions to Scheme in SCHEMEXEROX

The SCHEmXEROX programming language includes a num-
ber of extensions to standard Scheme, two of which are rel-
evant here.

Very much in the style of languages like Modula, ML,
Ada, or Cedar/Mesa, SCErEMEXEROX programs are struc-

tured into lexically-isolated modules that export implemen-
t ations of variables described in textually-separate :nter-

faces. Curtis and Rauen describe the module system in
detail [3], but for the purposes of this paper it is enough

to know two facts. All inter-module references are made
via qualified names like at ack#push !, in which stack is the

name of an interface and push! is the name of a variable
described in that interface and implemented in some un-

specified other module. Within a module, standard Scheme

definition syntax is used to define variables that are local

to the module and inaccessible from without; exported vari-
ables are defined with a similar syntax, but using the key-

word public instead of define,

In standard Scheme, procedures that accept a variable
number of arguments are defined using a ‘rest’ parameter
after all of the parameters corresponding to required argu-

ments; that parameter is bound on invocation to a list of
any ‘extra’ arguments to the call. As an alternative to this,
SCFIEMEXEROX offers a lambda syntax in which two special
parameters are specified after the keyword “others”; the
first is bound to a function mapping a non-negative ‘argu-
ment index’ into the corresponding extra argument, and the
second is bound to a natural number specifying how many
extra arguments were provided. This procedural style is
frequently more convenient for the programmer and almost
always more easily optimized by the compiler.

3 The Procedural Interface to Type Definition

Uses of the define-type form shown in the introduction
expand into code that creates and uses first-class values that
describe the types’ representations. For example,

(define pair-type
(type#make-tagged 2

(layout#make-product
(layout #make-value ‘car)

(layout#make-value ‘cdr)))

(define pair? (type#predicate pair-type))

(define car (typet$accessor pair-type ‘car))

This code defines pair-type to be a Type. A Type is

a first-class value that describes a representation. From
a Type, one can extract a basic constructor, a printer, a
membership predicate, and accessor, modifier, and address-
taking functions for fields.

The description of representations is organized into four
levels ofabstraction, cded Bits, Structure, Layout, and Type

(in increasing order).

I Type: SCHEMEXEROX conventions ‘“1

I Layout: naming, converting eltreps, curried access “1

!

Structure: hierarchical structure, indexed by integers

1

Bits: read and write memory I
Each level of abstraction is object-oriented, and centers on
one object type; there is a SCHEMEXEROX interface for each

level. The Type and Layout provide the public interface to
the type system; the Structure and Bits are internal to the
implement ation.

A Bits object stands for a sequence of bits. A Struc-
ture object stands for anode in a hierarchical structure im-
posed on a bit sequence, d la Queinnec [5, 6]. A Layout
object also stands for a node in a hierarchical structure; a

Layout object differs from a Structure object in: (l) intro-

ducing naming, (2) converting element representations, and

(3) organizing the access of atomic elements into one name-

oriented and one subscript-oriented step. A Type object

stands for a primitive Scheme data type and its representa-
tion in SCHEMEXEROX; a Type initiates and terminates the
recursions involving Layouts and Structures, and specifies

the details of how memory is allocated and how SCHEME-
XEROX organizes the space of representations. To define a
new representation, one first constructs a Layout for the in-
ternal structure, and then a Type from that Layout. Then
the methods of the Type are invoked to produce the predi-
cate, the accessor functions, and so on.

In the interest of brevity, the following presentation omits
some details concerned with error-handling and advanced
features; the omitted details introduce no new concepts.

A Bits object stands for a sequence of bits, either a con-
stant word-long sequence (a direct Bits) or a sequence of

mutable bits starting at some memory address (an Mirect
Bits). There aretwoways to create a Bits:

make–direct: (v: Uord) -+B
make-indirect: (addr:Addr, fl:Int) +B
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The first takes a machhe word;z the second takes a starting
address (in the machine’s native format) and an offset (ns a

Scheme integer) to subtract from the starting address.

Each Bits has methods to read and write subsequences

of those bits. The following operations are available on a

Bits:

read (b: B, 8: Int, length: Int, signed: Int) ~ Uord
write: (b: B, 6: Int, length: Int, data: Word) - B
is-direct? (B) + Bool

The read operation takes a Bits and three more arguments:
(1) an offset 6 where the subsequence begins, (2) the length
of the subsequence, and (3) an indication of whether to sign-
extend the subsequence. The read operation returns the
indicated subsequence of bits in the low-order position of
the result word. The m-it e operation takes an offset and

length indicating a subsequence, and a word carrying mew
bits for the indicated subsequence. A direct Bits returns
a new direct Bits that differs by the indicated alteration;
an indirect bits makes the indicated alteration as a side-

effect, and ret urns an uninteresting value. Because the read
and writ e operations use machine words to carry the su~bse-

quences read or written, such subsequences cannot be longer
than a machine word.

A Structure object stands for a node in a hierarchical
structure imposed on a bit sequence, d la Queinnec [5, 6].

Each Structure is either atomic or composed of a number
of other Structures, indexed by integers starting with O.

We currently implement composite Structures for records
and fixed- and variable-length arrays; variant-record struc-
ture could be added easily within the existing framework.

The following constant and operations are used to construct
Structures:

empty S
rnake-atoix (width: Int, signed. Bool) + S
make-product: (sl: S, .92:S) + S

rnake-powe~ (base: S, counti Int) + S
raake-sequence (ba.$e: S) + S

Hake-atonr makes atomic Structures, make-product makes

composite Structures with two components, andrnake-power

and make-sequence make fixed- and variable-length array
Structures, respectively.

Each Structure supports the following operations:

Some

skip. (tr:S, &B,6:Int)+ Int

constant-size?(S) +Bool

init:(s: S, bl:B,8: Int, is: Int*)+ (b2:B, is’: Int~f)
allot-siz= (s: S, lengths: Int*)

+ (size: Int, /engths’: 1A*)

of the operations on a Structure oDerate on an actual. ,.
instance of such a structure, passed ss the Structure plus a
Bits and an offset into that Bits where the instance begins.
skip is such a method, and returns the number of bits oc-

cupied by the instance. Structures are classified as either
constant-size or variable-size. All instances of a constant-
size Structure have the same size; variable-size Structures
have no such guarantee. For example, a fixed-length a,llay

21n our system, a11Scheme values are represented by a single ma-
chine word (wbich may, of course, encode an address of wheretbe rep-
resentation continues). Each procedure argument or result is passed
as a single word. In the lower levels of the type representation sys-
tem, we sometimes pass words as arguments or results that are not
interpreted as Scheme values, but es machine words.

of constant-size elements is itself constant-size; a variable-
length array (called a sequence) is variable-size. When a

variable-size structure is first instantiated, it may need to

be initialized this involves setting some of its bits a cer-

tain way (e.g., storing the length of a sequence). Constant-

size Structures need not be initialized. The init method

is present in every Structure; it takes an instance and a se-

quence of integers3 called an instance speci$cation. Init
consumes some (possibly empty) prefix of the sequence in
the course of initializing the instance; this includes recur-
sively initializing all the components of the instance. Init
returns two values: (1) either the newly-initialized Bits, if
direct, or an uninteresting value, if the Bits is indirect, and
(2) the unconsumed tail of the instance specification. The
allot-s ize method takes an inst ante specification, but no
instance, and returns the number of bits that would be oc-

cupied by such an instance, plus the un-consumed tail of the
instance specification. Some Structures also support some
of the following operations:

read (s: S, b: B, 6: Int) + Herd
write: (s: S, b: B, 6: Int, data: Word) + B

count: (s: S, b: B, 6: Int) + Int

offset: (s: S, b: B, 6: Int, index: Int) + Int

An atomic Structure can be read and written. A sequence

also can be read; the result is the (machine representation

of) the length of the sequence. A composite Structure can
count its components. A non-empty composite Structure
can compute the offset where the component with a given

index begins.
A Lavout obiect also stands for a node in a hierarchi-

cal struc~ure. Ii fact, the Layout hierarchy has the same
structure as the Structure hierarchy. A Layout object dif-

fers from a Structure object in: (1) introducing naming, (2)
converting element representations, and (3) organizing the

access of atomic elements (called fields) into two steps: first
one that is based on naming and normally involves literals

at compile time, and then one that is based on subscripting
and normally manipulates variables whose values are not

known until run time.
The following constant and operations are used to con-

struct Layouts:

empty L

make-f ielct (name: Sym, width: Int, signed: Bool,
insert: (Val) + Word,

extract: (Uord) ~ Val) - L
make-value (name: Sym) ~ L

make-boole& (name: Sym) + L
. . .
make-product (1I: L, 12: L) + L

make-~ower (base: L; cou~t: Int) + L

make-sequence (base: L, name: Sym) + L

make-f ield t akes a name (represented by a Scheme symbol),
the atomic Structure parameters (width, signed), and a pair
of functions (insert and extract) used to convert between

the SCHEMEXEROX representation for an element and the
representation used for that element in the Layout. Layouts

can thus use compact representations in their storage. For
example, a string could use a Layout that is a sequence of
8-bit fields.

3The sequence is actually passed as two arguments: a length and
a fetch-function.
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There are several functions, make-value, nake-boolean,
,.. , that are specializations of nake-f ield, fixing the values
for width, signed, insert, and extract; these specializations
are usually used in place of make-field. Make-product,
make-pouer, andrnake-sequence are analogous tothe Struc-
ture operators of the same names.

A Layout object supports the following operations:

structure-of:(L) + S
accesso~ (1: L, name: Sym)

+ [(h B, 6: Int, is: Int*) + Val]
modifier (J: L, name: Sym)

+ [(lx B, 6: Int, isu: Int*Val) + B]

fields: (/: L, consume: (name: Syrn) + Bool) + Bool

The structure-of a Layout is the corresponding Structure.
Each field, and each sequence, has a name. No two fields

or sequences in a Layout have the same name. Thus, each
field or sequence can be identified by one name and a series

of integer subscripts, one for each level of power or sequence
structure above the field or sequence in question.

The access or method takes a field or sequence name
and returns either #f or an accessor function. An acces-

sor function takes a Layout/Structure instance (i.e., a Bits
and an offset into that Bits) and a sequence of subscripts (as
Scheme integers), and returns the value of the field, or length
of the sequence, identified by that name and subscripts. The
modifier method maps a name to either #f or a modifier
function. A modifier function takes a Layout/Structure in-
stance and a sequence consisting of the subscripts followed
by the new value for some field, and sets the identified field

to the new value. The fields method is used to check the
uniqueness of names in a Layout; it enumerates the names

in a Layout by calling back its argument consume once for
each symbol, stopping if and when consume returns a true

value.
A Type object stands for a SCHEMEXEROX data type and

its representation. There are three kinds of Types: immedi-
ate, tagged, and coded. They correspond to the three levels
of organization that SCHEMEXEROX imposes on the space
of represent at ions of Scheme values. An immediate Type’s

representation fits entirely within a word, and uses a di-
rect Bits in the lower levels of this system. A tagged Type’s

representation consists of a tagged address of the “real” rep-
resentation, and uses an indirect Bits. A coded Type is a

special case of a tagged type, where the “real” representa-

tion starts with a typecode. The following operations are
used to create Types:

make-immediate: (1: L) + T
make-tagged (tag: Int, i: L, @z: Pred, ix: Ini.t]) + T
make-coded (1: L) + T

All three Type-creation procedures take a Layout argument.

make-tagged also takes the tag as an argument; make-coded
doesn’t take a tag argument because all coded types share
one particular tag. make-t agged also takes two optional ar-
guments that can (1) further specialize the Type’s mem-
bership predicate, and (2) extend the initialization step.
make-t agged uses these optional arguments to implement
coded types as a special case of tagged types.

A Pred is a procedure of signature

(read: Reader) + BOO1

used to further specialize the predicate of a type. The pred-
icate of a tagged type first tests the tag, and if that passes

then calls pz (if given) to make further tests. pz uses its
argument read, which has the signature

(name: Syra, il, . . . . in: Int) + Val

to read fields by name and subscripts,
An Init is a procedure that extends the initialization of

new values; if ix is given, it is applied to the new instance
after the Structure-level initialization.

A Type supports the following operations:

constructor (t: T) + (is: Int*) + Val[t]

predicate (t: T) + (Val) + Bool
accessor (t: T, name: Sym)

+ (v: Val(t), is: Int*) + Val

modifier (t: T, name: Sym)
+ (v: Val(t), iw: Int*Val) + Val[t]

where “Val[t]” denotes a Scheme value known to be of Type
t, and “Val(t)” denotes a Scheme value that should be of

type t (an exception is raised if it is not).
The construct or of a Type creates and initializes an

instance according to the given instance specification; the
result is a Scheme value of type t. The predicate of a

Type tests an arbitrary Scheme value for membership in the
Type. The accessor and modifier operations map a field

or sequence name to an accessor function and a modifier
function (respectively) for that field or sequence.

4 Optimizing Compilation in SCK-ENEXEROX

The type system’s generality and its modular implementa-
tion have the potential to make the data structure oper-

ations that it defines unacceptably slow. This can be ex-

plained with a closer look at the type system implementa-

tion.
The constructors at each level of abstraction in the type

system are implemented in a simple object-oriented style.
This excerpt from the implementation of layouts is repre-
sent ative:

(public (make-field my-name width signed

(clef ine
. . . )

(clef ine
. . . )

. . .

(clef ine
(case

encode decode) -

(fields consume) ; one method

(accessor name) ; another method

(self msg) ; the object definition
msg ,“ method lookup bu case

((f iel~s) fields)
. .

( (accessor) accessor)
. . .
))

self) ; return the object

To operate on a field, for example, we call the field object
with a single argument, the method selector. The object

returns a method, which we then call with the appropriate
arguments.

When pairs are defined using the type system, car per-
forms a number of obiect constructions and method invo-
cations. A rough trace of the execution of car on a value
purported to be a pair is as follows:
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Construct a direct Bits object out of the Scheme
value, and then call structure#read to fetch the

tag. Structure#read does a bits$tread, which

calls a utility function to extract a field from the

word in the Bits object. Compare the tag to
the expected tag for pairs. Assuming the test
succeeds, construct an indirect Bits object from
the Scheme value, and call a layout accessor that
has been stored in the type accessor. The lay-
out accessor calls structure#read which in turn

calls bits#read. Reading from an indirect Bits
calls a helper passing two closures. The helper

computes an address and calls one of the passed
closures. The called closure fetches a word from

memory at the computed address and then calls

a utilitv to extract a field from the word. The

layout level calls the encoder (in this case, the
identity) on the field and resulting value is re-

turned.

Bits#read and structure#read are small routines that serve

to hide the object protocol; they retrieve the appropriate
method from an object and invoke the method. Creating a
bits object constructs at least 3 closures.

In this sketch we can count 20 procedure calls and the
construction of 6 closures. Omitted from the sketch is the
work performed in constructing the accessor car itself the

type system computes the field’s offset in the record, ;and
the layout accessor that the type accessor will need.

To make the type system of practical use, the ScmIm-
XEROX compiler must turn all of this into a handful of in-
structions. Though of modest complexity at 75OO lines of
Scheme, the compiler succeeds in this task. It does so with

extensive cross-module inline substitution, Rabbit-style op

timizations [8], and a bit of help from a few language exten-
sions: the module system, the “others” extra arguments
facility, and programmer-supplied irdining declarations.

In addition to this, the type system is written in a style
which takes the compiler’s optimization strategy into ac-
count. In particular, the code contains no side effects, and

data structures are represented procedurally. The type sys-

tem implementor included declarations for procedure imdin-

ing, and was careful to avoid non-trivial recursion among
inlined procedures.

4.1 Compiler Overview

SCHEMEXEROX is built on the Xerox Portable Common Run-
time [9]. PCR provides garbage collection, dynamic load-
ing, and threads. PCR’S conservative garbage collector per-

mits SCHEMEXEROX code to generate ill-formed Scheme ob-
jects as intermediate results without having to lock out the

garbage collector. ThM a convenience for the compiler (it
need not maintain non-pointer/point er distinction), ancl for
the type system (it is constructing Scheme values in user

code).
The SCHEMEXEROX compiler is similar in structure to

Orbit [4], though it is not as ambitious in closure analysis;
the compiler doesn’t even recognize simple loops. Unlike

many Lisp compilers, t bough, the SCHEME XEROX compiler

operates on whole modules by default. Since the module
system identifies what definitions escape from the module,
any other definitions are subject to the full force of the op
timizer. Non-escaping definitions may be substituted irdine,
or removed entirely when no longer referenced.

The front end of the compiler converts source into an
abstract syntax tree (AST), removes assignments to vari-

ables, and converts the AST to continuation passing style,

The simplifier then applies a number of transformations to

the code. After simplification, the ASTS of public items are
saved in the object file, lambdas are annotated with a list of
free variables, and C code is generated. Since the SC~~-
XEROX compiler generates C code, it does no register allo-
cation, instruction selection, or instruction scheduling.

A header file included in each generated C file defines a

number of C macros that expand into irdine assembly code.
These macros are used to implement mechanisms that would

be inefficient to implement in plain C. The compiler uses this
mechanism for arithmetic using tagged add and subtract

instructions, making tail recursive calls, and for receiving

multiple return values.

The remaining sections describe the simplifier in more
detail, and present sample output from the compiler.

4.2 The Simplifier Does the Work

The simplifier does its work with a tree walk. It collects
subsititutions to make as it walks down the tree, and makes
changes to the tree as it returns back up. Whenever the sim-
plifier makes a change in the tree, it resimplifies the subtree
rooted at the changed node. Among the conventional trans-
formations performed are beta reduction, constant folding,
boolean short-circuiting, and the elimination of dead code.

Simplifying modules individually will not yield adequate

performance for the type system. To address this, SC~~-

XEROX supports esposures [3], a mechanism that permits a
user to give the compiler access to interface implementations
in other modules. With the implementation of an imported

item exposed, the simplifier can exploit the context of each
use of the item to further simplify the code.

4.3 Exposures

Exposures provide a framework for sharing implementation-
level information between separately compiled parts of a

SCHEMEXEROX program. An exposure is a pledge that a
user makes to the compiler that certain assumptions will

hold true in the eventual runtime environment of the code

being compiled. The compiler can then use that information
to generate better code. The linker can verify the assump

tions that the compiler made are actually true when the

whole program is linked together. Though a wide variety
of kinds of exposures are possible, SCHEMEXEROX currently

supports just one kind: a user may expose the complete im-
plementation of public items of an already compiled module.

The compiler will use an item if its value is an eqv?-safe lit-
eral, or a procedure that was declared to be inlinable. (Dec-

larations about irdining are described below.)

During compilation of a module, the optimized abstract
syntax trees of public items are saved in a special section of
the object file. When compiling a client of such a module,
the user can direct the compiler to use those saved imple-
ment ations.

4.4 Inline Substitution and Declarations

The simplifier performs inline substitution for procedures in
a number of cases. For example, when the simplifier can
determine that a singly-referenced local variable is bound to
a lambda-expression, it will substitute the lambda for the
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variable, and remove the variable from the code. But, the
simplifier is not free to inline every use of a procedure for
which it has an imp1ementation4. Doing so could result in
a large incre= in the size of the code, or even an infinite
loop of irdines. Therefore, the simplifier uses user-supplied
declarations to control inlining when code size may be a

problem.
In these cases, a variety of user-supplied declarations can

control the three possible states a lambda-expression can
have with respect to irdining: inline, not inline and don’t
care. A lambda that is marked inline will be substituted
whenever a variable to which it is bound occurs in procedure

position of a call, or the test of an if. A lambda that is
marked don’t care will be substituted if there is only one

reference to the variable to which it is bound. A lambda that
is marked not inline will never be substituted. The simplifier
disregards an irdine mark on a self-recursive lambda.

Though the declaration facility allows the user fine con-
trol over which procedures in a module are inlinable, we

found we did not need this flexibility. The type system im-
plementation uses only one declaration in each module to
indicate that all lambdas in the source should be marked

inline.

4.5 Letrectification

One novel transformation important to the simplifier’s suc-

cess involves turning certain patterns of assignments into
bindings thus enabling future beta-reductions; we call this
transformation letrectijication.

Scheme requires that top level definitions have the se-
mantics of assignments, except that a new binding is pro-
vided for the variable around the entire program. For the

sake of consistency, definitions in SCHEMEXEROX modules
and internal definitions behave the same way. As a result,
what is conceptually a binding operation is actually repre-

sented w cell operations. Consider a module that exports
push to the stack interface, and has one definition internaJ
to the module:

(nrodule ((export stack))

(define (helper . . . ) . . . )
(public (push . . . )

( . . . (helper . ..) . ..)))

After module translation and assignment conversion we have:

(lambda ()
(let ( (helper-cell

(make-cell ‘#unspecified)))
(cell-set! helper-cell

(lambda (...) . ..))

(cell-set! stack#push
(lambda (x)

(...
((cell-ref helper-cell) . ..)
. ..))))

Inorder for the simplifier to beableto substitute the helper
function, it must first convert the cell operations into vari-
able bindings and variable references.

To do this, the simplifier looks for calls to Are-cell
where the resulting cell is assigned a meaningful value ex-
actly once, and that value is aliteralor a lambda. In the case

4Such an implementation may come either from a definition in the
module itself, or from an exposure

of a literal, a let is inserted in the tree at the point of the
make-cell, the assignment is removed, and any cell-refs

are converted to variable references. The transformation is
similar when the assigned value is a lambda-expression, but
it is legal only if the all variables free in the lambda are
in scope at the point in the tree where its corresponding
make-cell cal.l appears.

Actually, the transformation is a bit more complicated.

The simplifier looks for sequences of calls to make-cell, and
attempts to create a letrec containing all the assigned val-
ues. Moving the lambdas in a block increases the chance
that all the free variables will be in scope at the destination.

This transformation was originally performed in a sep-
arate pass before conversion to continuation passing style.

The transformation in that case is much simpler. Unfor-
tunately, cross-module inlining causes the same pattern to
arise in the course of simplification, so the simpler approach
was not adequate.

4.6 Example

Returning to the example of pairs, here is the C code gen-
erated for set-cdr!. This is not the compiler output ver-

batim. To improve readability we have expanded Cmacros,
renamed some variables, and removed redundant caats.

static SX-Value GJiteral-4;
extern SX-Global-Cell SX-G-type-err;

static SX-Value
G-pair-Tilde-set-cdr_Bang-O(self, nargs, v, i)
SX-Value self, v, i;

unsigned nargs;

{
SX-Value proc, r4, r3, r2, w2, rl, w1, a,

test, rO, wO;

if (nargs != 2) SX-Arity_Erroro;

Wo = (29 >= 32) ? O : (V << 29);

rO = (29 >= 32) ? O : (wO >> 29);
test = rO == 2;
if (test) {

a= v + 2;
WI = (* (unsigned *) a);

rl=wl&O;
W2 = i & OXFFFFFFFF;
r2=(O>=32) ?0 : (w2<<O);
r3 = r2 I ri;

(* (unsigned*) a) = r3;
return SX-UIJSPECIFIED;

else {
r4 = SX-G-type-err.value;
if (! SX-procedure-p(proc = r4))

SX-Procedure-Error(proc) ;
SX-For_Effect (

SX-Procedure-Code (proc)

(proc, 2, V, GJiteral-4));
return v;

1;
1

Compiling this code with GCC [7] yields the following
SPARC assembly code. Notice that GCC has converted two

shifts into an and and crop, and eliminated a useless AND,
OR, shift, and fetch.
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.G-pair.Tilde.set-cdr-Bang.0:

save %sp,-li2,%p “ GCCfunction prolag
call .--builtin.save~egs,0
nop
nov %iO,XoO
at Xii, ~Lfp+72]
mov %il,%ol
cmp %01,2 ; arity check
be L15
rnov zi2,Zi0

call -SX-Raise-Arity-Error,O

add %fp,76,%02
L15:

and li0,7,%o0 ; check for pair tag
cmp ZO0,2
bne L16 ; raise non-pair error
sethi %hi(-SX-G-type-err+4) pxo0 ; delay
at %i3,MiO+2] ; set the cdr!
b L19 ; branchto exit
mov 3327,1i0 ; return#!unspecified

L16:
. . . code to handle the type error. . .

L19:

ret

restore

In code that checks argument types explicitly, the type

error code in the data structure operation may become un-
necessary, aa in the following example:

(public (zero-tail! x)

(cond ((pair#pair? x)
(pair#set-cdr! x O)
x)

(else #f)))

The GCC-generated assembly code looks like thw:

.G-simple.Tilde-zero-tail-Beng-0:
. . . GCCfunctionprolog and arity check.. .

and ~i0,7,%o0 “ tag check for pair9
cmp %00,2
bne,a L19
mov 1023,%i0 ; (delay) return false
st Xg0,UiO+2]

L19:
; set the cdr

ret
restore

GCC removed a redundant pair? test and type error

code. Our compiler removed the useless aritychecks for the

calls topair? and set-cdr!.

This code is about as good aa can be produced fc,r a
SPARC without using the addressing hardware toperforrn

some of the type checks. In such a scheme, one carefully
assigns pointer tags such that an access through an ill-typed
pointer causes an alignment trap. The trap handler can
inspect the offending instruction to determine the details

of the error. We chose not to include this complexity in
ScHEmXEItOx, though the type system could support it.

4.7 Practicalities

Four problems remain in the implementation: (1) thesim-
plifier is slow, (2) letrectification doesn’t always work, (3)

procedure eqv?-ness is not always maintained, and (4) error
cases are verbose.

The simplifier is slow. The simplifier currently does far

more work than is necessary, aa a result of the its simple-

minded control structure. For example, when the simplifier
inlines the definition for one of the type system objects,

it first fully optimizes all of the methods before it tries to
optimize the case expression that performs the method dis-

patch. When the case is eventually considered, thesimpli-
fier throws away the arduously optimized code for all but
one of the methods. This happens at each of the 4 levels of
abstraction. We believe this will be straightforward to fix.

Letrectification doesn’t aiways work. Our implementa-
tionofletrectification knot robust –wehave had to rewrite

some code in the type system to use binding constructs in-

stead of internal definesin order to get the desired output

from thesimplifier. This is partly due tothesimplifier’s sim-
ple control structure, and partly due to the transformation
itself not doing enough work.

Procedure eqv?-ness isnot always maintained. Insubsti-
tuting procedures, it is important to maintain eqv?-ness as
Scheme requires. There is one situation that arises during
simplification where the constraint may not be satisfied. If
the simplifier substitutes a procedure into argument position

ofaca.11 within the body ofan irdinable procedure P, then
P should no longer be considered inlinable by the simpli-

fier. Otherwise, P may itself be substituted multiple times,

possibly defeating theeqv?-ness constraints of the first sub-

stituted procedure. We believe that prohibiting procedures
from being substituted in argument position eliminates the

problem and produces the same output.
Error cases are verbose. The code to check for and re-

port type errors insufficiently verbose that we may not want

to irdine calls to commonly-used field accessors and modi-
fiers. In some cases, machine-dependent solutions such as
skipping tag checks and then trapping on any misaligned
memory references would solve the problem nicely, but a
general solution would still be needed.

5 Conclusions

Placing all knowledge of data-type representation in the
compiler requires that the author write more ‘meta-code’,
code that generates code to perform operations. Such code
is harder to write, understand, and test than ‘direct’ code.

Code in the compiler is a.lso difficult for users to experiment
with; external code allows them to try out new ideas for

representations. In a language like Scheme, in which new
data types are created procedurally instead of declaratively,

either the representation knowledge in the compiler must be
very complex or else user-defined types will get short shrift

and not be as efficiently compiled as built-in types.
The approach we’ve taken in SCHEMEXEROX istogoeven

further than what’s normal for Scheme implementations,
making more of thedata-type representation knowledge pro-
cedural; our data-type representations are themselves first-

claes values, manipulable in the usual way. Because all prim-
itive operations, from the bit-level up, are written in high-

level, modular Scheme code, we can be more sure of their
correctness; the code is easier to understand and maintain
than would be meta-level code in the compiler. Further,
users can experiment with new representation types (such
as various styles of variant records) either within the frame-
work used for most SCHEMEXEROX types or else in entirely

new styles. In all cases, straightforward compiler support
suffices to produce highly efficient object code.
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