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ABSTRACT

We present the design and implementation of a toolkit for process-

ing large-scale XML datasets that utilizes the capabilities for par-

allelism that are available in the emerging multi-core architectures.

Multi-core processors are expected to be widely available in re-

search clusters and scientific desktops, and it is critical to harness

the opportunities for parallelism in the middleware, instead of pass-

ing on the task to application programmers. An emerging trend is

the use of XML as the data format for many distributed/grid ap-

plications, with the size of these documents ranging from tens of

megabytes to hundreds of megabytes. Our earlier benchmarking

results revealed that most of the widely available XML processing

toolkits do not scale well for large sized XML data. A significant

transformation is necessary in the design of XML processing for

distributed applications so that the overall application turn-around

time is not negatively affected by XML processing. We discuss

XML processing using PiXiMaL, a parallel processing library for

large-scale XML datasets. The parallelization approach is to build

a DFA-based parser that recognizes a useful subset of the XML

specification, and convert the DFA into an NFA that can be applied

to an arbitrary subset of the input. Speculative NFAs are scheduled

on available cores in a node to effectively utilize the processing ca-

pabilities and achieve overall performance gains. We evaluate the

efficacy of this approach in terms of potential speedup that can be

achieved for representative XML datasets. We also evaluate the

effect of two different memory allocation libraries to quantify the

memory-bottleneck as different cores access shared data structures.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Parallel Programming;

F.1.2 [Modes of Computation]: Parallelism and concurrency
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1. INTRODUCTION
XML is now widely used as an application data format. The

use of XML as a data-format for distributed applications is due

to its support for extensibility, namespace qualification, and data-

binding to many programming languages. Scalable processing of

XML datasets is an immediate concern as the size of XML data

used by applications has steadily increased over the years in both

scientific and business applications. For example, recognizing the

increasing role of XML in representation and storage of scientific

data, XDF, the eXtensible Data Format for Scientific Data, is be-

ing developed at GSFC’s Astronomical Data Center (ADC), to de-

scribe an XML mark-up language for documents containing major

classes of scientific data. This effort is expected to define a generic

XML representation to accommodate the diverse needs of various

scientific applications. The MetaData Catalog Service (MCS) [17]

provides access via a Web service interface to store and retrieve de-

scriptive information (metadata) on millions of data items. While

the Web service approach of MCS provides interoperability, it also

hurts the performance when compared to use of a standard database

for storage and retrieval. Scientific applications such as Mesoscale

meteorology [6] depend on the orchestration of several workflows,

defined in XML format. The international HapMap project aims to

develop a haplotype of the human genome. The schemas used to

describe the common patterns in human DNA sequence variation

can have tens of thousands of elements. The XML files in the pro-

tein sequence database are close to a gigabyte in size. The eBay

Web service specification has a few thousand elements and a few

hundred complex type definitions. Communication with eBay via

the SOAP protocol requires processing of large XML documents.

The emergence of Chip Multi Processors (CMPs), also called

multi-core processors, provides both opportunities and challenges

for designing an XML processing toolkit tailored for large-size

XML datasets. Compared to classic symmetric multi-processing

systems (SMPs) of independent chips, the communication costs of

on-chip shared secondary cache in CMPs is considerably less, pro-

viding opportunities for performance gains in fine-grained multi-

threaded parallel code. CMPs provide special advantages due to

locality. The individual cores are more closely connected together

than in an SMP system. Multiple cores on the same chip can possi-

bly share various caches, including the translation look-aside buffer

(TLB), and the bus. An important design consideration is that off-
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chip memory access and latency can be the choking point in CMP

processors.

Our earlier work on benchmarking XML processing showed that

for most XML toolkits scalability is adversely affected as the size

of the XML datasets increase [10, 11]. These toolkits are typically

designed to process small-sized XML datasets. The recent trends

and announcements from major vendors indicate that the number

of cores per chip will steadily increase in the near future. The per-

formance limitation of existing XML toolkits will likely be exac-

erbated on multi-core processors because performance gains need

to be mainly achieved by adding more parallelism rather than serial

processing speed. Additionally, scalable processing of XML data is

now of critical importance in scientific applications where the size

of XML can exceed hundreds of megabytes. As a result, our focus

is on harnessing the benefits of fine grained parallelism, exploiting

SMP programming techniques to process large-scale XML-based

application documents, and design of algorithms that scale well

with increase in number of processing cores.

Many parallel compilation ideas have been discussed in the lit-

erature years [2, 5, 8, 12], studying both compilers that generate

parallel code as well as those that divide work across multiple pro-

cessors. With the popularization of multi-core processors and the

disparity between processor and memory speed, we expect that

substantial benefits can be uncovered by utilizing more cores dur-

ing XML document processing. In this paper we use the PIXIMAL

toolkit to evaluate the best parallelization strategies for various data

structures used in distributed applications. We also compare and

contrast the effect of memory allocation libraries on synchroniza-

tion and management costs as multiple-threads compete for access

to the main memory.

The specific contributions of our work include:

• We present a multi-threaded parallelization technique to pro-

cess large-scale XML data.

• We present a framework that helps evaluate how the size and

data-types in an XML document affects the distribution of

the data to various threads in a multi-core environment.

• We compare the use of GNU libc 2.7 and Google’s thread

caching malloc libraries for use in a multi-core environment

where use of shared data structures can invoke expensive

synchronization algorithms, affecting overall application per-

formance.

• We present the scalability of PIXIMAL in terms of speedup

achieved as the size of the XML input data and processing

threads are increased.

• We study the usage of various states in the processing au-

tomaton to provide insights on why the performance varies

for differently shaped input data files.

2. RELATED WORK
A wide range of implementations of XML parsers is available,

including Xerces (DOM and SAX) [22], gSOAP [20], Piccolo [14],

Libxml [21], VTD-XML [23], Qt4 [18], and Expat [4]. XML pri-

marily uses UTF-8 as the representation format for data and var-

ious studies have shown that this representation format can hin-

der the overall application performance. Sending commonly used

data structures via standard implementations of XML based pro-

tocols, such as SOAP, incurs severe performance overheads, mak-

ing it difficult for applications to adopt Web services based dis-

tributed middleware [11]. Several novel efforts to analyze the bot-

tlenecks and address the performance at various stages of a Web

services call stack have been discussed in the literature [1, 3, 7,

20]. These optimizations, which are tailored just for the uni-core

case, include: (1) the gSOAP parser [20] uses look-aside buffers to

efficiently parse frequently encountered XML constructs; (2) pars-

ing of XML schemas has been improved with the use of schema-

specific parsing along with trie data structures so that frequently

used XML tags are parsed only once [3, 19]; (3) gSOAP uses a

performance aware compiler to efficiently parse XML constructs

that map to C/C++ types. It uses a single-pass schema-specific

recursive-descent parser for XML decoding and dual pass encoding

of the application’s object graphs in XML [20]; and (4) VTD-XML

parser achieves performance improvement via incremental update,

hardware acceleration, and native XML indexing.

Recent work by Zhang et al [24] has demonstrated that it is pos-

sible to achieve high performance serialized parsing. They have

developed a table driven parser that combines the parsing and vali-

dating an XML document in a very efficient way. While this tech-

nique works well for serial processing, it is not tailored for process-

ing on multi-core nodes, especially for very large document sizes.

In our previous work in this area, we focused just on the memory

bandwidth in multi-core architectures when multiple threads oper-

ate concurrently to read large input files [9].

A related project, MetaDFA [13, 15] toolkit, presents a paral-

lelization approach that chiefly uses a two-stage DOM parser. It

conducts pre-parsing to find the tag structure of the input before, or

possibly pipelined with, a parallelized DOM builder run on its out-

put (a list of document offsets of start and end tags). Our toolkit,

PIXIMAL, however, generates SAX events and thus serves a dif-

ferent class of applications than MetaDFA. Additionally, PIXIMAL

conducts parsing work dynamically, and generates as output a se-

quence of SAX events. This results in larger number of DFA states,

and more opportunities for optimizations for different class of ap-

plication data files.

2.1 Memory Bandwidth and State-Scalability
PIXIMAL can also be used to determine the effective memory

bandwidth in reading large-scale application documents, and the

effect of the complexity of the XML specification on performance.

A thorough description and analysis of the effective memory band-

width of the PIXIMAL approach is presented in another venue [9].

In this section, we present a summary of research findings on these

two topics.

The memory bandwidth and state scalability tests were run on

1U nodes configured with 2× quad core (2.33 Ghz Intel Xeon

E5345 CPUs). Each node has 8 gigabytes of RAM and run a 64 bit

distribution of Debian 4.0, using Linux kernel 2.6.18. The filesys-

tem in use in the test directory here is xfs.

As an N-way parallel parser would concurrently be reading us-

ing N different threads, we conducted tests to check whether the

memory subsystem can provide substantial bandwidth when se-

quentially reading from a very large input. This test has two param-

eters: split_percent and thread count. The split_percent is partic-

ular to the PIXIMAL approach: it denotes the percent of input that

is directed at the DFA thread. The number of threads defines the

number of concurrent automata: 1 DFA and number_of_threads−1

NFAs. The balance of the input (input_size (1− split_percent/100))
is divided evenly among the NFA threads. In the case that num-

ber_of_threads = 1, split_percent is overridden to be 100% in order

to ensure that the entire input is read.

The results of these tests demonstrated that there was plenty of

memory bandwidth to effectively read the input concurrently from

as many as six cores of an eight core machine.

The speculative threads in a parser built using NFAs will have

substantially more work than the DFA thread. This test models

an aspect of that extra workload – the number of states that the



NFA must initially consider – to examine the affect of language

complexity on the efficacy of this approach.

This test has one more parameter than the memory bandwidth

test: the size (number of states) of the DFA. Here, the PIXIMAL

DFA is modeled as a thread that has a state_number which is ini-

tialized to 0 and takes values between 0 and d f a_size− 1 . The

next state_number is calculated for each byte of input by looking

up the current state_number and current byte in a two dimensional

array. The NFAs are modeled by threads that start with an array of

d f a_size− 1 start values, each initialized to a number between 1

and d f a_size− 1. An NFA will never start in the state designated

by 0, because that is a start state that is only valid before the DFA

begins reading. The NFA recalculates each entry of the state array

for each byte of input using the same rule as the DFA.

The results of this test showed that the number of states in the

DFA is inversely proportional with maximal speedup. Further, the

curve between these two variables has a very steep portion around

DFA sizes of between 6-8. DFAs with fewer states demonstrated

similar performance, with a tight grouping around 4.5 times speedup

with 8 threads on an 8-core machine. DFAs with more states had

a similar grouping at a much lower speedup around 2. The 6 state

DFA performed between the two groupings, with speedup around

3.5 with 8 threads. The more complex the DFA, the more work it

can do (i.e., it can recognize a language of greater complexity). It

is desirable for the DFA to do as much work as possible because

in the table-driven implementation, it has a very low per-byte pro-

cessing cost. On the other hand, more states in the DFA leads to

a greater number of paths through the NFA, which limits the ben-

efit of this parallelization approach. This test aids in quantifying

just how much extra work is done by the NFA and how that affects

overall performance.

3. PARALLEL XML DATA PROCESSING
A deterministic finite automata (DFA)-based lexical scanner is

generally used to tokenize the input characters of the file (or string,

as in the case of XML) into syntactic tokens that are used later in

the parse phase. The DFA based lexical scanner is sometimes hand-

coded, and frequently generated by a tool such as flex. Every time

the scanner recognizes a token, it must perform some action to store

the token or pass it to a higher level part of the parser. The various

token types and keywords of XML, used in distributed applications,

can be defined as regular expressions. A DFA-based scanner can be

custom-designed to process the subset of XML specification used

in defining large-scale data files in applications. The DFA model

for processing is efficient: each character in the input XML docu-

ment is read only once, minimizing the overhead on a per-character

basis.

The DFA approach does not directly lend itself to parallelism. It

is required to start at the beginning of the input and process all the

characters sequentially. As there is no way to determine in which

state the DFA will be in after processing a certain section of the

input, it is not possible to simply split the input in two (or more

sections) and process the different sections independently. Due to

this reason, all the widely used XML parsers are limited to a serial-

ized indivisible scanner. This approach has thus far been acceptable

for small files and desktop-style mass storage devices, because the

scanner is fast for small input files. Additionally, this approach

blends well with desktop mass storage access algorithms that work

well reading from a single stream from disk.

3.1 Speculative NFA Execution in Piximal
Our parallelization tool, PIXIMAL, is designed for data-sets of

applications running on cluster-class hardware, which are much

more amenable to parallelization. In these target application cases,

data sets defined in XML can be several hundreds of megabytes.

Unlike the desktop case, in such applications mass storage is more

likely to be arranged in higher performance configurations (e.g.,

RAID, NAS, SAN) which can more efficiently feed multiple data

streams to concurrent threads. Our parallelization approach can be

readily applied to these cases.

The speculative execution approach of PIXIMAL is to divide the

input XML document, P, into N substrings, P1,P2, ...PN . The pro-

cessing on substring P1 is carried out using the standard DFA-based

lexical analyzer, as a DFA can only be run at the starting state using

the first character of an input string. This DFA instance is termed

the “initial DFA.” The other processing units in a multi-core proces-

sor are utilized by concurrently executing N− 1 speculative scan-

ners on the remaining substrings P2,P3, ...PN . The processing is

speculative as it is not possible to determine the start state for the

LDFA, except for P1. As a result, we have added a transformation

module to the PIXIMAL framework that can be applied to create a

scanner, which can be applied to any of the substrings.

The DFA above is transformed into an NFA, LNFA containing

precisely the same state nodes, transitions, and final states as LDFA.

One significant change is made: each state node, with the excep-

tion of the error state, is marked as a start state. The parser built

around this NFA reads each character of input, traversing along all

execution paths, one for each state Si. If a given transition triggers

an action (such as triggering a StartElement SAX event in the user

code), that action is stored into an action list ASi
for that execution

path, since it cannot be triggered immediately.

There is a single correct execution path which is the path started

in state Sk, the state that the LDFA would have been in had it parsed

the input up to the beginning of this input substring. Sk will be

known when the DFA or NFA running on the input behind it is

complete and, if it is an NFA, knows its own correct execution

path. Once Sk is known, the actions in action list ASk
can be trig-

gered, after some minor fix-up to merge the parser state from the

previous automaton and the first action in this automaton’s action

list. This is necessary because the NFA may have started in the

middle of a token, or more complexly, in the middle of an XML

tag, which contains several tokens: a tag name and zero or more at-

tribute name/value pairs. This fix-up is minor and a function to the

number of automata used, as opposed to the size of the input, so can

be viewed as a O(1) cost once the number of available computing

cores is set.

4. SERIAL NFA TESTS AND TESTING EN-

VIRONMENT
The tests presented here examine the fundamental hypothesis of

this work: the extra work required by using an NFA is offset by

dividing processing work across multiple threads. We run each

component (automaton) of the PIXIMAL processor for a given con-

figuration (split percent and thread count) independently on its el-

ement of the input partition, and examine the time each component

takes to complete its processing sub-task. We run the test on sev-

eral classes of homogeneously configured systems and average the

results for equivalent cases. Equivalent cases here are those that

are taken from the same class of computer systems running the

same configuration and occur on the same subsequence of input.

For each configuration, we calculate the maximum time over all

automaton runs. The maximum time here represents the minimal

time the complete parser would take to process the full input when

running those automata concurrently on independent processors,

minus the fixup time which is small. Each component performs all



0: Initial State

1: Enter Tag State

2: Start Tag State

3: Attribute Name State

4: Attribute EQ State

5: Attribute Value State

6: Attribute Interstitial State

7: Content State

8: End Tag State

9: End Tag Rest State

10: End Tag Interstitial State

Figure 1: Symbolic names of each DFA state, for reference

when examining figures 5 and 9.

the work it must do in a multi-threaded PIXIMAL run, from read-

ing input, to traversing the state table, to storing actions for each

live execution path. However, the work is all done sequentially, in

a single thread, to isolate each NFA in its own execution environ-

ment and obtain the best possible timing in the absence of other

processes.

We present these results as potential speedup, which is calculated

using the usual calculation for speedup by dividing the baseline

time by the maximum time found above ( T1

TN
). We call these tests

the serial NFA tests, as they measure the best potential speedup,

using measurements taken from the serialized form of the parser.

In addition to “black box” performance tests, we examine the

state usage for various inputs. Comparing state usage information

is helpful in understanding why the performance varies for differ-

ently shaped input.

Some tests presented here use a collection of SOAP request doc-

uments, each of these encodes an array of certain type and length

to demonstrate performance with respect to varying input size. The

documents encode arrays of integers, strings, and “mesh interface

objects” (MIOs – a complex type combining two integer values

with a floating point value, often used in scientific computing). The

array lengths range from 10 elements up to 50,000 elements. This

allows us to examine documents ranging in size from a few hun-

dred bytes to tens of megabytes. The integer and MIO arrays sim-

ply encode a variety of numbers. The string array encodes strings

which are many times longer than the representations of the inte-

gers. This tests a hypothesis that if a document has substantially

more PCDATA (character data between tags) than tags, then the

NFAs’ states will quickly collapse upon detection of the open angle

bracket (<) which invalidates a large number of potential execution

paths.

Another potential bottleneck of the PIXIMAL approach is the re-

quirement that each NFA needs to frequently allocate memory to

store actions along all live execution paths. malloc(3), unless it is

specially written, may be a hidden synchronization point, in order

to protect access to the shared heap resource, that reduces concur-

rency. In addition to the serial tests described above, we tested

PIXIMAL itself, with multiple NFAs running in concurrent threads,

in the presence of the default GNU libc 2.7 malloc implementa-

tion as well as Google’s Thread Caching malloc implementation to

quantify the memory bottleneck in multi-core systems.

4.1 Experimental Environment
The serial NFA tests were run on a variety of system architec-

tures, from older SMP machines to newer multi-core systems. Be-

cause the tests are serial and do not take advantage of any hardware

concurrency, once the results were normalized by calculating the
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Figure 2: Potential scalability for XML input encoding an ar-

ray of 10,000 integer values. The number of threads available is

the independent variable here. A slight speedup is possible by

adding more threads for this class of input.

potential speedup, there was little detectable difference. Therefore,

the data for the test results presented were collected by running the

test on a ten nodes of a cluster of machines with dual-quad-core

Intel Xeon E5345 chips clocked at 2.33GHz running Debian etch

with Linux kernel 2.6.18. The input is read from local disk, though

is expected (by pre-reading the input file before each test) to be in

the system cache to eliminate I/O disturbances.

The malloc tests were run on a separate machine with a single

quad-core Intel Xeon E5320 clocked at 1.86GHz, running Ubuntu

8.04LTS with Linux kernel 2.6.24. The input for this test is also

pre-read to avoid noise from the I/O subsystem.

Performance analysis was performed and plots were created us-

ing R [16].

5. SERIAL NFA RESULTS
Figure 1 presents the symbolic names used in figures 5 and 9.

The DFA we have built has eleven functional states and one (unla-

beled) error state.

Figures 2, 3, and 5 present results for a representative input case:

a SOAP-encoded array of 10,000 integers. Figure 2 presents poten-

tial speedup (the time it takes for a DFA to parse the input divided

by the maximal time of each NFA component to parse its subse-

quence of the input) on this file. The “Max Speedup” line repre-

sents the potential speedup from the best possible selection of split

percent, of those given in the range of test values, for each thread

count. Similarly, the “Min Speedup” represents the speedup asso-

ciated with the worst possible selection of split percent for each

thread count. Of interest here is that there is a potential speedup

available in all cases. The best potential speedup achieved on this

input over the range of split percents and thread counts tests was

2.04 times the DFA baseline, splitting 34% of the input for the

initial DFA and dividing the rest of the input evenly between the

remaining 7 NFAs. Using four threads, there is a maximal speedup

of 1.59 times the baseline, with 60% of the input being processed

by the initial DFA, with the 3 NFAs each processing approximately

13%. It is particularly important to note that many split percent

selections will lead to negative performance: input splitting greatly

affects the performance. Figure 3 presents the same data as figure

2 along a different axis, tracking split percent rather than thread
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speedup of varying the split percent parameter when process-

ing an encoded array of 10,000 integers. Maximal and mini-

mal speedups for each selection of split percent are shown. The

range of values comes from varying the number of threads.
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Figure 4: The “exploded” view of the data presented in figures

2 and 3 (arrays of 10,000 integers). All points in the parameter

space are presented to give a better view of the space.

count. Here the shape of the data is quite different. Some of the

same high points are present here: the split percent of 34% is nat-

urally still the global maximum, and the speedup at 60% is high

here, too. Not all split percents have an associated thread count

that provides any speedup. This again indicates that the partition-

ing of the input is critical to achieve performance gains with this

approach.

Figure 5 depicts a histogram of the states used when parsing the

encoded array of 10,000 integers. This gives some indication of

why potential speedup caps out around 2.0 for this input. Most

characters in this input are in PCDATA (content) sections, DFA

state 7, which can be discerned by using figure 1. However, there

is a significant number of characters which trigger state 1, the enter

tag state. These represent open angle brackets in the input, and each

one leads to an action (either a Start Element or and End Element

SAX event). NFAs must store each one of these actions, so even in

the best case, there is a linear relation between the amount of work

the NFA must do and the number of times the DFA enters state 1.
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Figure 5: Histogram of DFA state usage when parsing the XML

encoded array of 10,000 integers. State 7 reprensents charac-

ters in PCDATA sections (text between tags). Other state names

are described in figure 1.

Figure 6 presents the potential speedup achievable on an input

SOAP-encoding of 10,000 strings in XML as a function of the num-

ber of threads scheduled. Compared with figure 2, the results reach

a much higher global maximum and has a much greater rate of in-

crease. The maximal performance achieved is found when process-

ing 26% of the input with the initial DFA and dividing the remain-

der of the input evenly across 7 NFAs. The potential speedup over

the baseline mean of DFA runs on the entire input is 3.17 times. It

is also noteworthy that even the mean speedup is greater than 1 for

many cases here.

Similarly to figure 3, figure 7 displays the potential speedup

when reading an array of 10,000 strings as a function of a pre-

determined split percent. The results are much smoother for strings

than for integers. Naturally, the high point here is the same as in

figure 6, 26% with 8 threads, with a clear trend of results sloping

up from both sides. This strongly indicates that 26% is nearly the

optimal split percent. Further, this indicates that on this input, the

NFA is doing roughly 26
74
7

≈ 2.5 times as much work as the DFA

when the work is divided well.

Figure 9 indicates why the performance is so much more regular.

The distribution of node usage is, by design, substantially different

from the integer case. Nearly all characters of input are in con-

tent sections. Further, the actual file is frequently punctuated by

tags. The input has long content sections and short elements, be-

cause it represents an array of lengthy strings. This means that the

NFA will, with greater probability, start on a character in a con-

tent section and will quickly be able to eliminate most of the in-

correct execution paths when the open angle bracket character is

read, which will happen in a short amount of time. Thus, it is easy

to “luck into” a good division of work due to the structure of the

document. In the integer case, where content sections are shorter,

there is a greater probability that the NFA will be started at some

point in a tag where it is not possible to determine, for example,

whether the correct execution path started in a content state or a tag

state, because the close angle bracket character may legally appear

in content sections. Thus, it does not lead to a contradiction in the

way that encountering an open angle bracket does. Performance

is similar for the MIO array input because its XML representation

more closely matches the representation of integer arrays.
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Figure 6: Potential speedup on input of an XML-encoded array

of 10,000 lengthy strings as a function of number of threads sim-

ulated. Compared to the integer array examined in figure 2, the

results here are smoother and exhibit greater overall speedup,

even in the worst case.
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Figure 7: Potential PIXIMAL speedup on arrays of 10,000

strings as a function of split point chosen. The contrast with

integer arrays (figure 3) is more stark here. The results are

much more regular, with a clear peak around 26%.
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Figure 8: The “exploded” view of the data presented in figures

6 and 7 (arrays of 10,000 strings). Compared with the integer

data presented in figure 4, the result space is much smoother

everywhere.

Figures 10, 11, and 12 examine the effect of increasing the input

size. Earlier figures examine the shape of performance for par-

ticular array sizes, breaking down how the number of threads and

divisions of work affects potential speedup. Here the results are ag-

gregate over many runs and many sizes. As mentioned above, MIO

and integer arrays see similar results, with the maximal potential

speedup trending between 1.5 and 2.0 times the performance of the

DFA. Mean and minimal performance for these cases are uniformly

low.

Again the string case shows the benefit of its specialized form.

Maximal performance in figure 11 is more uniform and hovers

around 3.0-3.2. Even the mean performance shows some speedup

across all input sizes.

Figure 13 shows the performance difference when running fully

concurrent PIXIMAL with and without a specialized malloc imple-

mentation on a SOAP-encoded array of 25000 strings. The default

malloc here is that which is included with GNU libc 2.7 on Ubuntu

8.04LTS. The results presented are mean timing values over sev-

eral full PIXIMAL runs. While there is a global performance win

for Google’s thread caching malloc, this does not translate to in-

creased improved performance as more threads are used, which in-

dicate that heap usage is not a limiting factor here. This is due

to the fact that PIXIMAL uses mmap(2) to access the input file as

a global memory block and utilizes a zero-copy regime to ensure

that all strings refer to this single segment of memory to minimize

heap usage. The strings used within PIXIMAL are not traditional “C

strings” which are NULL-terminated chunks of memory referred to

with memory pointers, rather they are “Pascal strings” represented

by a data structure containing an integral length and pointer to the

start of the string. This allows the list of stored actions to be as

small as possible and eliminates almost all memory duplications in

the parser. An implementation which incurs a significant amount

of memory copies, say several per byte of input, might encounter a

greater bottleneck with respect to heap contention, and alternative

malloc implementations might ameliorate such problems.

6. CONCLUSIONS
The form of the input XML data affects the overall gains with

the PIXIMAL approach. Large data sets with more text content and

shorter tags work best, whereas documents that encode more infor-
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strings. The underlying reason for the more regular speedup

for arrays of strings over arrays of integers is apparent: most

characters in this input are in PCDATA sections (state 7), thus

a given NFA is much more likely to start at a character in the

input and its execution paths will quickly collapse when a <

character is encountered.
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Figure 10: Effect of scaling up the size of an integer array

SOAP-encoded in XML on potential scalability in PIXIMAL.
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Figure 11: Effect of scaling up the size of a string array SOAP-

encoded in XML on potential scalability in PIXIMAL.

mation into elements and attributes will prevent the XML processor

from providing speedup. This is due to the nature of XML and the

number of transitions that lead to a contradiction in the DFA. Nev-

ertheless, even with inputs which lead to suboptimal performance,

it should still be possible to split the input to be able to make use of

extra processing – speculatively pick a character in a PCDATA text

section.

The PIXIMAL approach to reading large-scale structured data

files, such as XML documents, effectively uses the available cores

on a node. Based on our tests on a variety of CPU configura-

tions, we conclude that even with current memory and I/O sub-

systems, processing large scale data files can potentially provide

performance improvements. Memory bandwidth between the pro-

cessor and memory mapped files is not a strict limiting factor on

thread scalability.

Starting in a content section of an XML data file is beneficial

because the ‘<’ character eliminates a large number of execution

paths through the NFA. If ‘>’ could be treated similarly by the XML

processor, starting in a tag would be less harmful.

If restrictions could be placed on the features of XML speci-

fication that are used in the input XML data, even greater per-

formance could be achieved with the PIXIMAL approach because

more contradictory transitions could be found. One possible re-

striction would be to convert all attributes to nested tags and elimi-

nate whitespace and attributes. This would both increase the num-

ber of characters of input that would be found in the content state

and allow the XML processor to know that whitespace characters

must occur in the content state. If this is considered too restric-

tive for designers of XML datasets, simply requiring that each, for

example, millionth character occur in a text section will be useful.

This would allow the input to be divided such that the NFA would

be known to start processing only in the content state, greatly re-

ducing the amount of work it needs to do. Indeed, it need not be

considered an NFA given that supposition, just a DFA that queues

parser events.

The PIXIMAL framework can be used to determine the most op-

timal way to split an XML data input file to obtain the best possible

speedup. Performance results for commonly used data structures,

such as arrays of integers, strings, and MIOs, indicate that grid ap-

plication programmers need to carefully choose the split percentage

and number of processing threads for the target grid infrastructure

nodes. Naïvely dividing the input may lead to a slowdown.
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Figure 12: Effect of scaling up the size of a MIOs (mesh inter-

face objects) array SOAP-encoded in XML on potential scala-

bility in PIXIMAL.

For arrays of integers commonly used in grid applications, a

speedup by a factor of 2 can be obtained. As explained by Am-

dahl’s law, the speedup is limited by the sequential fraction of the

program. The sequential aspect for XML data processing includes

access to main memory for shared data structures, resolving names-

paces that may have dependencies, and updates of data structures

to keep track of the automatons that need to be stored and the ones

that need to be discarded. The performance results of commonly

used data structures in scientific computing, MIOs, is similar to

that of array integers as the XML representations are quite similar.

For XML data sets that primarily consist of arrays of strings, a

greater overall speedup can be obtained. On an 8-core machine,

the best speedup is achieved when the initial DFA thread processes

26% of the input, while the rest of the 7 NFAs speculatively pro-

cess the rest of the input data. Arrays of strings allow for quicker

elimination of incorrect execution paths and hence lead to overall

performance gains.

The implementation of memory allocation libraries can make a

difference in the overall performance on multi-core architectures.

We observed that Google’s thread caching malloc performs better

than the GNU libc malloc library, widely used in grid applications.

However, if zero-copy methods are used, such as mmap(2) for read-

ing the input XML data, this performance gain does not improve

with increase in the number of threads.

7. FUTURE WORK
In future work we plan to explore pre-fetching and piped imple-

mentation techniques that can enhance the performance of PIXI-

MAL. We will study the effect of operating system-level caching

on the processing of large documents that may be read more than

one time. We will develop algorithms for optimal layouts of DFA

tables in memory to efficiently process frequently occurring transi-

tions. We will build a MapReduce extension of PIXIMAL to process

large documents that are stored in a distributed file system. We will

further study the scalability of PIXIMAL as processors with mul-

tiple cores (greater than 8) are available for research and testing

purposes on grid infrastructures.

7.1 Algorithmic Improvement Opportunities
The PIXIMAL design allows a wide range of application-specific

optimizations to be carried out. Execution of each LNFA results in
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Figure 13: Comparison of overall parse times when running

PIXIMAL concurrently with two different malloc(3) imple-

mentations, GNU libc 2.7 and Google’s Thread Caching mal-

loc. The XML input for this case encodes an array of 25,000

strings.

consumption of CPU and memory resources. The worst case sce-

nario is the execution of all possible LNFA for any given XML input.

The approach to optimizing the parallelization model is therefore to

reduce the number of LNFA to be executed using heuristic methods

or by elimination of paths due to other considerations. For exam-

ple, the execution time depends on the starting point for a LNFA.

If it starts just after a sentinel character such as ‘<’, it reduces the

number of start states that need to be considered. However, given

that many execution paths simply can not start with a ‘<’, it may

be more efficient to first scan backwards a little from the starting

point and potentially reduce the number of execution paths.

In addition to investigating cases such as the above, there are

deeper topics to investigate:

Minimize memory load in NFA. Another approach to optimize

the memory overhead is to process the input in chunks to reduce

NFA memory load. Partitioning the entire input into N parts and

processing the entire document in parallel leads to memory usage

proportional to input size. To address this memory usage, it is more

efficient to divide the input into more manageable chunks, small

enough to fit in cache or at least to fit in main memory without

requiring a virtual memory swap, and process each of these chunks

in a sequence of parallel parsing steps. This requires dividing the

input evenly into M sections, each of size T . This sets a bound

on memory usage for the NFA action history, because each NFA

will only process a limited size input and guarantees that no NFA

will need more than a finite f (T ) memory to operate. If all the

processing is balanced, there should be little overhead compared to

the un-optimized PIXIMAL case.

Convert LNFA into a DFA. In this approach, care needs to be

taken to ensure that action history for each execution path is main-

tained properly, but it should be possible to transform the LNFA into

an equivalent DFA and reduce it using the standard algorithms to

optimize the run time processing overhead.

Optimize DFA Table layout. To maximize the number of cache

hits while traversing the DFA table, it is helpful to profile the usage

(which states most frequently transition to other states) and rear-

range the state layout in memory to keep those states near each

other in the table.



Integrate with application level actions to eliminate the ac-

tion queue. In some applications, such as XML transformation or

format conversion, it may be possible to trigger the actions directly

from the NFA, rather than queueing them. An XSLT processor

could begin writing to multiple files, one for each execution path

of each NFA as SAX events are triggered. The application would

need to perform its own fix-up routines when the correct execution

paths are known, but this would convert the memory load into disk

usage.
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