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ABSTRACT
The workflow paradigm is one of the most important programming
models for the Grid. The composition of Grid workflows has been
widely studied in the Grid community. However, there is still a lack
of a general and efficient approach for automatic composition of
Grid workflows. In this paper, we present a STRIPS (Stanford Re-
search Institute Problem Solver) based formal definition of the Grid
workflow composition problem, followed by a novel graph based
algorithm for automatic composition of high quality (portable, fault
tolerant and optimized) Grid workflows. Our algorithm searches
for semantic descriptions of workflow activities, i.e., Activity Func-
tions (AFs), defined by ontologies and composes them into Grid
workflows using AF Data Dependence (ADD) graphs. The compo-
sition process consists of three phases: ADD graph creation, work-
flow extraction, and workflow optimization. The worst case com-
plexity of our algorithm is quadratic in the number of AFs. An ex-
tension of our algorithm to compose Grid workflows with branches
and loops is also presented. Experimental results illustrate the ef-
fectiveness and efficiency of our approach: (i) the measured worst
case execution time of our algorithm further proofs the analyzed
time complexity; (ii) the composition of the real world meteorol-
ogy Grid workflow application MeteoAG with our algorithm takes
approximate half a second; and (iii) the execution time of the Me-
teoAG workflow when running on the Austrian Grid is reduced by
up to 25% and the speedup is increased by up to 2.24 by applying
our workflow optimization techniques.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Distributed programming;
D.1.3 [Concurrent Programming]: Parallel programming;
I.2.2 [Automatic Programming]: Program synthesis;
I.2.8 [Problem Solving, Control Methods, and Search]: Plan ex-
ecution, formation, and generation

General Terms
Algorithms, Design, Performance

Keywords
Grid Computing, Grid Workflow, Automatic Workflow Composi-
tion, Workflow Synthesis
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1. INTRODUCTION
With the development of Grid technologies, scientists and en-

gineers are building complex applications to execute scientific ex-
periments on distributed Grid resources. Grid workflow, as a pro-
gramming model, plays a paramount role in this process. A Grid
workflow application can be seen as a collection of activities (com-
putational tasks) that are processed in a well-defined order to ac-
complish a specific goal. Formally, a Grid workflow w is a pair
(A,
−→
D), where A is a finite set of activities and

−→
D is a finite set of

dependences. Each dependence
−→
di ∈

−→
D is either a control flow or

a data flow dependence associated with an ordered pair of activities
(am, an), where am, an ∈ A. The composition of Grid workflows
involves the selection of activities, and the specification of control
flow and data flow dependences among the selected activities.

Extensive research [13, 2, 8, 17] has proposed abstract descrip-
tions of workflow activities which are independent of the changes
of Grid resources. Since an abstract activity represents a group of
concrete computational entities (e.g., software components, Web
or Grid services) which have the same functionality and the same
input and output data structure, the number of abstract activities is
usually considerably smaller than the number of concrete computa-
tional entities. Consequently, the efforts required for the selection
of workflow activities is reduced, and the process of Grid workflow
composition is simplified. However, the selection of abstract activ-
ities is still a challenging and time consuming process for domain
scientists especially when there are hundreds or thousands of such
abstract activities that are available for selection.

Ontology [16] technologies have been used by the Grid commu-
nity [24, 5, 32, 17, 27, 23] for semantic descriptions and discov-
ery of workflow activities. An ontology is a formal representation
of a set of concepts within a domain and the relationships among
those concepts. Classes in an ontology are those concepts that are
abstract groups, sets or collections of objects, in contrast to Indi-
viduals which are instances or objects (the basic or “ground level”
objects). A class can subsume or be subsumed by other classes;
a class subsumed by another is called a subclass of the subsum-
ing class. For example, Animal subsumes Fish, since (necessarily)
anything that is a member of the latter class is a member of the
former.

Automatic workflow composition has been widely studied in sev-
eral areas like Business Process Management, Semantic Web Ser-
vices and Grid computing. Comparing with other areas, automatic
workflow composition in the Grid computing area usually requires
that the composed Grid workflows should be (i) portable or adapt-
able to the changes of Grid resources, i.e., the Grid workflows
should be abstract and can be concretized when they are actually
executed on the Grid; (ii) fault tolerant, e.g., Grid workflows should
contain alternative execution paths, if available. In case an activity
is not available or fails at runtime due to the dynamic nature of the
Grid, an alternative execution path should be adopted; and (iii) op-



timized: Grid workflows should be optimized for execution time.
We call portable, fault tolerant and optimized Grid workflows high
quality Grid workflows.

To the best of our knowledge, there is still a lack of a general
and efficient approach for automatic composition of high quality
Grid workflows. With the help of ontology technologies, our previ-
ous work [26] presented a semantic based approach for Grid work-
flow composition by separating concerns between data meaning
and data representation, and between Activity Function (semantic
description of workflow activities, hereafter abbreviated as AF) and
Activity Type (syntactic description of workflow activities, here-
after abbreviated as AT), thus automated data flow composition of
Grid workflows. This paper is an extension of our previous work
and focuses on automatic control flow composition of Grid work-
flows. In this paper, based on the STRIPS (Stanford Research In-
stitute Problem Solver) language [12], a base language for express-
ing automated planning problems in Artificial Intelligence (AI), we
present a formal definition of the Grid workflow composition prob-
lem, followed by an AI planning based algorithm for automatic
Grid workflow composition using an AF Data Dependence (ADD)
graph. Our algorithm employs progression to create an ADD graph,
and regression to extract workflows, including the alternative ones
if available. Our algorithm also optimizes the extracted workflows
by analyzing data flow dependences among AFs. In contrast to
existing approaches (see Section 7), our algorithm is general, i.e.,
not limited to any workflow modeling notation such as Petri Nets,
and can efficiently and automatically compose high quality Grid
workflows. The complexity of our algorithm is a quadratic in the
number of AFs. Three series of experimental results illustrate the
effectiveness and efficiency of our approach.

Our approach has been implemented as part of the ASKALON
Grid application development and computing environment [10],
where Grid workflows are described by the Abstract Grid Work-
flow Language (AGWL) [11]. The remainder of this paper is orga-
nized as follows. An overview of AGWL is provided in Section 2.
Section 3 presents a formal definition of the Grid workflow com-
position problem. ADD graph and the related notations are intro-
duced in Section 4. The graph based algorithm for automatic Grid
workflow composition is discussed in detail in Section 5 which also
includes the complexity analysis of our algorithm and the exten-
sion of our algorithm for the composition of Grid workflows with
branches and loops. Three series of experimental results are pre-
sented in Section 6. Section 7 compares important related work
against our approach. The paper ends with a conclusion and an
outline of future work.

2. AGWL
AGWL [11] is an XML-based language for describing Grid work-

flow applications at a high level of abstraction. AGWL has been
designed such that users can concentrate on specifying Grid work-
flows without dealing with the complexity of the Grid.

In AGWL, a concrete computational entity such as an executable,
a software component, or a Grid/Web service deployed in the Grid
is called an Activity Deployment (AD). An Activity Type (AT) is an
abstract description of a group of ADs which have the same func-
tionality and the same input and output data structure, but probably
different performance behaviors, QoS characteristics and costs. An
Activity Function (AF) is a more abstract description of a group of
ATs which have the same functionality and the same input and out-
put data semantics, but probably different data representations (e.g.,
where data is stored, what the content type is, etc., see [26]). In
other words, ADs, ATs and AFs are concrete, syntactic and seman-
tic descriptions of workflow activities, respectively. Users compose
Grid workflows at the semantic level, i.e., using AFs. The mapping
from AFs to ATs and further to ADs are done automatically by the
ASKALON runtime system. For details, readers may refer to our
previous work [26] and [29].

RAMSHist RAMSModeledAtmosphere

AF.I AF.O

SeaSurface

Month

Figure 1: The Activity Function RAMSHist

The Abstract Grid Workflow Ontologies (AGWO) [26] are a set
of ontologies used to describe AFs. AGWO consists of three main
concepts: Function, Data and DataRepresentation. Domain spe-
cific functions and data can be defined by subclassing Function and
Data. Two main properties of Function are hasInput and hasOutput
whose values are Data or its subclasses. With the help of AGWO,
an AF is formally defined as follows:

AF = 〈F, I,O〉
where F indicates the function (referring to Function or one of
its subclasses), I is a set of data classes (referring to Data or its
subclasses, hereafter abbreviated as DC) indicating the input data,
and O is a set of DCs indicating the output data. For convenience,
we denote the input and output data classes of an AF by AF.I and
AF.O, respectively. Fig. 1 shows an example AF RAMSHist in the
meteorology domain, where AF.I = {Month,SeaSurface} and
AF.O = {RAMSModeledAtmosphere} respectively denotes the
input and output data of the function RAMSHist.

A rich set of control flow constructs has been provided in AGWL
to simplify the specification of Grid workflow applications such
as sequence, parallel, if, switch, while, doWhile,
for, forEach, parallelFor and parallelForEach with
semantics similar to comparable constructs in high-level program-
ming languages. The dag construct is also provided for describing
a Directed Acyclic Graph (DAG) of activities.

In AGWL, input and output data of activities are described by
data ports. The data flow among activities is expressed by data
flow links from source data ports to sink data ports. When a source
data port is connected to a sink data port with data flow, the data
produced at the source data port will arrive at the sink data port at
runtime when the data is to be consumed. One source data port
may have multiple sink data ports and in that case each sink data
port will receive a copy of the data produced at the source data port.
AGWL also supports data collections which are ordered lists of
data elements provided as initial inputs of a workflow or produced
by workflow activities.

Properties and constraints can be defined in AGWL to provide
additional information for Grid workflow composition and execu-
tion environments for optimization and steering. Particularly, con-
straints should be complied with by these environments. Users can
specify constraints for both activities and data ports. Related to
Grid workflow composition, the example constraints are to access
the elements of a data collection in parallel (or sequential), etc.

This paper aims to automatic compose Grid workflows at the
semantic level. For this purpose, we will only focus on AFs, instead
of ATs or ADs. We will also only focus on DCs, instead of data
representations or concrete data (e.g., a specific value or file). In
the remainder of this paper, the availability of a DC means that of
the corresponding concrete data. The terms data and data class
(DC) will be used interchangeably for convenience.

3. DEFINITION OF THE PROBLEM
STRIPS divides its representational scheme into three compo-

nents, namely, an initial state, a goal state, and actions. A plan for
such a planning problem is a sequence of actions that can be exe-
cuted from the initial state and that leads to the goal state. We use
STRIPS as the basis for the definition of the Grid workflow com-
position problem, where states and actions are defined as follows.

– state: a state is a set of DCs, indicating the availability of
data. The initial state indicates the user provided data which



can be consumed by workflow activities. The goal state in-
dicates the user required data which must be produced by the
composed Grid workflow.

– action: AFs are the actions. AFs can consume and produce
DCs, thereby states can be changed and the goal state can be
reached. Note that in the domain of Grid workflow compo-
sition, the consumption of data does not make it unavailable
because AFs can work on copies of data.

For a given state si, an AF can be included (i.e., applied) in a
workflow when si entailsAF.I , denoted by si � AF.I . Given two
sets of DCs P and Q, P � Q is defined as follows.

P � Q =

(
true ∀q ∈ Q : (q ∈ P ) ∨

(∃p ∈ P, p is a subclass of q)
false otherwise

(1)

P � Q is true if and only if for any q ∈ Q, P subsumes q or
P subsumes a subclass of q (see Section 1 for the explanation of
subclass). For example, if P = {D1, D2.1, D3},Q1 = {D1, D3},
Q2 = {D2, D3} and Q3 = {D1, D4} (Di or Di.j indicates a data
class, and Di.j is a subclass of Di for any natural number i and
j), then both P � Q1 and P � Q2 are true, and P � Q3 is
false, i.e., P 2 Q3. For example, the AF illustrated in Fig. 1 can
be applied in the state si = {Month,SeaSurface}, where Month
and SeaSurface are either the initial input data provided by users or
the output data produced by any AF which is already included in the
workflow. The new state after applying the AF to si is si+1 = si ∪
AF.O, i.e., {Month,SeaSurface,RAMSModeledAtmosphere}.

We consider a Grid workflow composition problem as an AI
planning problem which is defined by the function

f : (sinit, sgoal,AF)→ w

where each component is described as follows.

– sinit is the initial state.
– sgoal is the goal state.
– AF is the set of AFs among which some AFs will be selected

for the composition of the Grid workflow w.
– w is a DAG of AFs connected by control flow edges. The

AFs in the DAG fulfill the following restrictions:
1) sinit � AF.I for any AF which has no incoming con-

trol flow edges

2) sinit∪
`S

AF ′∈AF′ AF
′.O
´

� AF.I for any AF which
has incoming control flow edges. Here AF ′ is the set
of predecessors of this AF.

3) sinit ∪
`S

AF.O
´

� sgoal

Automatic composition of Grid workflows with loops and branches
is explained in Section 5.5.

4. ADD GRAPH AND NOTATIONS
This section defines the ADD graph and the related notations

used for the explanation of our algorithm. The notations are ex-
plained through the example ADD graph illustrated in Fig. 2, where
rectangles labeled withD0, D1, ... are different DCs and round cor-
nered rectangles labeled with AF0, AF1, ... are different AFs. The
edge connecting from Dj to AFi indicates that the AF requires Dj

as input. The edge connecting from AFi to Dk indicates that the
AF produces Dk as output. The dotted round cornered rectangles
are used to group a set of AFs to improve the readability of ADD
graphs. The notations at the bottom of Fig. 2 are explained below.

Contributing AF (cAF): For a given state si, an AF is said to be
a contributing AF if and only if (si � AF.I)∧ (AF.O− si 6= ∅).
That is, si entails AF.I and AF.O includes some DCs which are

not in si. In other words, the AF can be applied in state si and
applying the AF to si can produce new DCs. For example, in Fig. 2,
AF0, AF1 and AF2 are three cAFs of the superstate S0 (explained
below).

Superstate: Applying all cAFs of a state si to this state causes
the transition to a new state. We call the new state a superstate
(analogy to superset in set theory) because it is a union of all pos-
sible states which can be reached from si by applying any of these
cAFs. Let us denote a superstate by S, the initial superstate by
S0 and let S0 = sinit. Let us also denote the set of all cAFs of
a superstate S by cAF (S). For example, in Fig. 2, cAF (S0) =
{AF0, AF1, AF2}, cAF (S1) = {AF3, AF4, AF5}, cAF (S2) =
{ AF6, AF7, AF8, AF9 } and cAF (S3) = { AF10 }. Applying
cAF (Si) to Si causes the transition to Si+1 which is defined as:

Si+1 = Si ∪

 [
AF∈cAF (Si)

AF.O

!
(2)

Contributed DC (cDC): It is obvious that Si+1 always contains
some newly contributed (i.e., produced) DCs which are not in Si.
Let us denote the set of all cDCs in a superstate S by cDC(S).
Then, cDC(Si+1) = Si+1−Si. For example, in Fig. 2, cDC(S1)
= {D2, D3, D4}, cDC(S2) = {D5, D6, D7}, cDC(S3) = {D8,
D9}, and cDC(S3) = {D10}, as illustrated by rectangles with
blue (or gray) background. We also consider all DCs in S0 are
cDCs, that is, cDC(S0) = S0 = {D0, D1}.

ADD Graph: An ADD graph γ is a triple 〈A,D,
−→
D〉, where D

is an ordered list of superstates (namely, S0, S1, ..., Sn). For each
superstate Si ∈ D, cAF (Si) ∈ A.

−→
D is a set of dependences each

connecting either from a DC in Si to a cAF in cAF (Si) or from a
cAF in cAF (Si) to a DC in Si+1, where i ∈ [0, n). The depen-
dences connecting to (or from) a cAF indicate the corresponding
input (or output) DCs of the cAF. Note that n will be used in the re-
mainder of this paper to indicate the index of the final superstate in
ADD graphs. In the example ADD graph illustrated Fig. 2, n = 4,
D = {S0, S1, ..., S4}, A = {cAF (S0), cAF (S1), ..., cAF (S3)}.
All dependences in

−→
D are represented as directed edges in Fig. 2.

An ADD graph has the following properties:

(a) For any i, j ∈ [0, n)∧i 6= j, cAF (Si)∩cAF (Sj) = ∅. That
is, all cAF (S) are disjoint. This is obvious because (i) if an
AF is a cAF of Si, it cannot be a cAF of any later superstate
Sj , where i < j ≤ n, due to the fact that applying the AF
can not produce any new DC, and (ii) the AF also can not
be a cAF of any earlier superstate Sk, where 0 ≤ k < i,
because it is a cAF of Si. Therefore, the AF can not be a
cAF of any other superstate, that is, all cAF (S) are disjoint.

(b) For any i, j ∈ [0, n] ∧ i < j, Si ( Sj . That is, each super-
state contains at least one more DC than any previous super-
state. This is illustrated by Eq. (2)

(c) For any AF in cAF (Si),AF.I∩cDC(Si) 6= ∅ andAF.O∩
cDC(Si+1) 6= ∅. That is, any cAF in cAF (Si) must con-
sume (or produce) at least one cDC in Si (or Si+1). This is
obvious based on the definition of cAF.

Dependence: In an ADD graph, a node N can be either a DC
or a cAF. Node Nj depends on node Ni, denoted by Ni δ Nj , if
there exists a path from Ni to Nj in the ADD graph. For example,
in Fig. 2, D1 δ D3, AF0 δ D7, AF5 δ AF7, and D3 δ AF10.
Obviously, D8 does not depend on D4. In addition, we also say
that a node N depends on itself, that is, N δ N . It is obvious that
the dependence relationship is transitive. For reasons of simplicity,
Ni δ sgoal will be used in the reminder of this paper to indicate that
∃D ∈ sgoal, Ni δ D, i.e., sgoal depends on Ni.
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Figure 2: An AF Data Dependence (ADD) Graph
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Figure 3: Alternative AF Combinations

Necessary cAF (ncAF): A cAF AFi in an ADD graph is said to
be necessary if and only if sgoal depends on this cAF, i.e., AFi δ
sgoal. Let us denote all ncAFs in cAF (S) by ncAF (S). Then,
ncAF (S) = {AF |AF ∈ cAF (S) ∧ AF δ sgoal}. For example,
in Fig. 2, ncAF (S2) = {AF6, AF7, AF8, AF9}. Because AF2 is
not necessary, ncAF (S0) = {AF0, AF1}.

Necessary cDC (ncDC): Similarily, a cDC Di in an ADD graph
is said to be necessary if and only if Di δ sgoal. The set of all
ncDCs in cDC(S) is ncDC(S) = {D|D ∈ cDC(S)∧D δ sgoal}.
For example, ncDC(S3) = {D8, D9}. ncDC(S0) = {D2, D3}
because D4 is not necessary.

Alternative AF Combination: According to the definition of
ncAF and the definition of ncDC, it is all ncAFs in ncAF (Si) that
produce all ncDCs in ncDC(Si+1) when the transition changes
from the superstate Si to Si+1. In some cases, instead of all ncAFs
in ncAF (Si), a combination of those ncAFs are enough to pro-
duce those ncDCs. And there may also exist multiple alternatives
of such AF combinations. Let us denote the set of all alternative
AF combinations in ncAF (S) by altAF (S). Although the order
of the AF combinations is not important in our algorithm, we de-
note the k-th AF combination by altAF (S)k for convenience. For
example, in Fig. 2, altAF (S3)1 = {AF6, AF9}, altAF (S3)2 =
{AF7, AF9}, or altAF (S3)3 = {AF8} can produce {D8, D9}.
Although other AF combinations such as {AF8, AF9} can also
produce {D8, D9}, we consider this AF combination redundant
and will ignore it in our algorithm because all ncDCs which can
be produced by AF9 can also be produced by AF8. Similarly,
{AF3, AF5} and {AF4, AF5} are two alternative AF combina-
tions in cAF (S2) each of which can produce {D5, D6, D7}.

The calculation of alternative AF combinations is a nontrivial
task which is exemplified by part of an ADD graph as shown in
Fig. 3(a). In this case, there are in total five alternative AF com-
binations which can produce {D1, D2, D3, D4, D5}, as illustrated
in Fig. 3(b), where ForkNode and JoinNode (each represented as a
thick line segment) are UML Activity Diagram notations and used
to indicate parallel execution.

Simple ADD Graph: A simple ADD graph is an ADD graph
where all AFs are ncAFs, all DCs are ncDCs, and each cAF (Si)
contains only a single AF combination, i.e., |altAF (Si)| = 1 for
all i ∈ [0, n). The ADD graph (Fig. 6) discussed in Section 5.5
is an example simple ADD graph. Note that the DCs in some su-
perstates (the ones without blue or gray background) are actually
cDCs in previous superstates and they are necessary. Comparing
Fig. 6 with Fig. 2, AF2 and D4 are eliminated because they are not
necessary. Only AF3 is kept in cAF (S1) because {AF3} is one of
the alternative AF combinations in cAF (S1). Similar is done for
AF8. D7 is eliminated because AF5 is not included. As we will
see later, a simple ADD graph contains only a single workflow.

5. DESCRIPTION OF THE ALGORITHM
In order to solve a STRIPS-like problem, AI planners typically

use techniques such as progression, regression, and partial-ordering.
Our algorithm for automatic Grid workflow composition employs
both progression to create an ADD graph, and regression to extract
workflows, including alternative workflows if available. Our algo-
rithm also optimizes extracted workflows in order to deal with the
heterogeneous nature of the Grid and workflow activities. This con-
stitutes three phases of our algorithm: ADD graph creation, work-
flow extraction and workflow optimization. The algorithm of each
phase is explained in the following subsections. In the remainder of
this paper, unless explicitly stated, our algorithm refers to all three
phases as mentioned above.

5.1 ADD Graph Creation
The algorithm of ADD graph creation is illustrated by Algo-

rithm 1. The ADD graph is built starting from the initial super-
state S0 (line 1). Before expanding the ADD graph to the next
superstate Si+1, the algorithm checks whether the current super-
state Si entails sgoal (line 3). If so, the creation of the ADD graph
is finished and the algorithm returns with the created ADD graph
(line 12). Otherwise, the algorithm searches AFs in AF which are
not cAF of all previous superstates and calculates cAF (Si) (line 4).
If cAF (Si) == ∅, the algorithm returns null (line 6), i.e.,no so-
lution found. If cAF (Si) 6= ∅, the algorithm expands the ADD
graph to the next superstate Si+1 (line 8) and evaluates the super-
state Si+1 again as illustrated above.



Algorithm 1: ADD Graph Creation
Input : initial state sinit; goal state sgoal;

set of AFs AF
Output : An ADD graph if a solution exists, or null otherwise
S0 := sinit // initialize superstate S01
i := 0; // index of current superstate2
while Si 2 sgoal do3

cAF (Si) := {AF |AF ∈ (AF −
S

j∈[0,i) cAF (Sj) ) ∧4
(Si � AF.I) ∧ (AF.O − Si) 6= ∅ } // calculate
cAF (Si)
if cAF (Si) == ∅ then5

return null // no solution found6
else7

calculate Si+1 based on Eq. (2) // next superstate8
i := i+ 1 // index of next superstate9

end10
end11
return the ADD graph based on the created superstates, the12
calculated cAF(S) and the dependences among them.

When the ADD graph is expanded to S1, all AFs in AF have
been accessed once, thereby

S
AF∈AF AF.O � sgoal is deter-

mined. If it is evaluated to be false (i.e., some DCs in sgoal cannot
be produced by any AF in AF), our algorithm returns null imme-
diately. For reasons of simplicity, this part is not shown in Algo-
rithm 1.

Fig. 2 is an ADD graph where the initial state sinit = {D0, D1},
the goal state sgoal = {D9, D10}, and the set of all AFs AF =
{AF0, AF1, ..., AF10, ...}. The AFs which are not cAFs of any su-
perstate are not included in the ADD graph and thereby not shown.
The final superstate S4 = {D0, D1, ..., D10} satisfies S4 � sgoal.

5.2 Workflow Extraction
The algorithm of workflow extraction is illustrated by Algorithm 2.

First, it calculates ncDC(Si), ncAF (Si) and altAF (Si) from Sn

to S1 (line 3–9) by analyzing AF data dependences. The prin-
ciple is that if a cDC Dj ∈ cDC(Si) is a ncDC, then the cAF
AFk ∈ cAF (Si−1) producing Dj is a ncAF, and the DC Dj′ ∈
cDC(Si−1) inputting to AFk is a ncDC, and so on. Through
this regression, all ncDC(S) and ncAF (S) can be determined.
ncDC(S0) is calculated based on ncAF (S0) at the outside of
the loop (line 9). For example, in Fig. 2, D10 δ sgoal, therefore,
AF10 δ sgoal and D8 δ sgoal. Since D2 δ sgoal and D3 δ sgoal

(note that there exists a pathD3-AF10-D10), ncAF (S0) = {AF0,
AF1}. AF2 is redundant and will be eliminated. altAF (Si) is cal-
culated when ncAF (Si) and ncDC(Si+1) are determined. This is
done by enumerating all possible AF combinations in ncAF (Si),
such that each of the AF combinations is sufficient to produce all
DCs in ncDC(Si+1), and eliminating the redundant AF combi-
nations (the corresponding algorithm is omitted here due to space
limitation).

Once all ncDC(S), ncAF (S), and altAF (S) are determined,
the algorithm eliminates non-necessary cDCs and cAFs, and checks
whether the size of each altAF (Si) is 1. If so, the ADD graph is
a simple ADD graph, i.e., it contains a single workflow. The work-
flow can then be optimized in the next phase (line 12). Otherwise,
depending on the selection of alternative AF combinations in each
altAF (S), multiple ADD graphs can be extracted (line 14). Each
extracted ADD graph is then recursively extracted again (line 16).

In the ADD graph shown in Fig. 2, ncAF (S1) has two alterna-
tive AF combinations {AF3, AF5} and {AF4, AF5}, ncAF (S2)
has three {AF8}, {AF6, AF9} and {AF7, AF9}, ncAF (S0) and
ncAF (S3) each have one. Six ADD graphs are extracted in the
first invocation of Algorithm 2. When {AF3, AF5} and {AF8}
are selected, there exist again two alternative AF combinations in
ncAF (S1), i.e., {AF3} and {AF5}. It is similar when {AF4, AF5}

Algorithm 2: Workflow Extraction: extractWorkflows()
Input : ADD graph γ; goal state sgoal;
Output : set of extracted simple ADD graphs Γ

Γ := ∅ // initialize Γ1
R := sgoal // set of DCs to be produced by previous2
superstates
for Si := Sn to S1 do // regression3

ncDC(Si) := R ∩ cDC(Si)4
ncAF (Si−1) :=5
{AF | AF ∈ cAF (Si−1) ∧ AF.O ∩ ncDC(Si) 6= ∅ }
calculate altAF (Si−1) // alternative AF Combinations6
R := (R ∪ (

S
AF∈ncAF (Si−1)AF.I) )− ncDC(Si)7

end8
ncDC(S0) :=

S
AF∈ncAF (S0)AF.I9

eliminate non-necessary cAFs and cDCs from γ10
if ∀i ∈ [0, n) : |altAF (Si)| == 1 then11

Γ := Γ ∪ γ // is simple ADD graph12
else13

E :=
Q

i∈[0,n) altAF (Si) // cartesian product for14
extraction
forall e ∈ E do // for each extracted graph15

Γ := Γ ∪ extractWorkflows(e, sgoal) // recursion16
end17

end18
return Γ19
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Figure 4: Automatically Composed Grid Workflows

and {AF8} are selected. Because two of the extracted ADD graphs
are identical, in total, we obtain seven alternative workflows when
Algorithm 2 returns. For all of these workflows, the AFs in the
same ncAF (Si) can be executed in parallel (via the AGWL con-
struct parallel), and all AFs in the ncAF (Si) are executed be-
fore the AFs in ncAF (Si+1) (via the AGWL construct sequence).
Fig. 4(a), (b) and (c) show three generated workflows, represented
with UML Activity Diagram [30]. We can obtain the other four
workflows by substituting AF3 with AF4 in these three workflows
and AF3 with AF5 in the first workflow (Fig. 4(a)).

The extracted workflows provide alternative execution paths in
case of failure at runtime. For example, if AF8 in Fig. 4(a) cannot
be mapped to any AD or the execution of AF8 fails, instead of
returning an error to users, the workflow execution can continue
with AF6 and AF9 (Fig. 4(b)). If AF6 fails again, AF7 can be
used as a replacement (Fig. 4(c)).

The selection of these alternative workflows for execution is based
on two factors: (i) user preferences: users may specify which AFs
they want (or do not want) to be included in the extracted workflows
(e.g., based on their experiences with previous workflow execu-
tions), and (ii) scheduling decisions: the workflow scheduler may
try to schedule (without actual execution) all of these alternative
workflows and select the best one (e.g., with minimum execution
time or minimum cost) for the actual execution.



Algorithm 3: Workflow Optimization
Input : simple ADD graph
Output : DAG of AFs

mark all AFs in ncAF (S0) as the root nodes of the DAG1
for ncAF (Si) := ncAF (S1) to ncAF (Sn−1) do2

forall AF ′ ∈ ncAF (Si) do3
U := AF ′.I // unsolved inputs4
k := i // index of current superstate5
L := ∅ // located predecessors6
repeat7

T := ∅ // temporarily unsolved inputs8
forall D ∈ U do9

if D ∈ ncDC(Sk) then10
L := L ∪ {AF |AF ∈ ncAF (Sk−1)∧11
D ∈ AF.O} // mark as predecessors

else12
put D into T // mark as unsolved13

end14
end15

forall AF ′′ ∈ L do16
T := T −AF ′′.I // ignore inputs of17
predecessors

end18
k := k − 1 // move to previous ncDC(S)19
U := T // update unsolved inputs20

until U == ∅ // until all inputs are solved21

mark all AFs in L as the predecessors of AF ′22
end23

end24
return the DAG25

5.3 Workflow Optimization
The workflows extracted in the previous phase may still be op-

timized in terms of control flow. For example, in Fig. 2, AF3 can
be executed as long as AF0 is finished, even if AF1 is not fin-
ished at that time, because AF3 does not depend on AF1. Using
only parallel and sequence constructs prevents such execu-
tion from happening, thereby may increase the workflow execution
time due to unnecessary waiting.

In order to eliminate such delays in execution time, we introduce
a workflow optimization phase, which, instead of using sequence
or parallel constructs, composes AFs into DAGs, as illustrated
by Algorithm 3. In this algorithm, two nested loops (line 2 and
3) are used to locate predecessors of each AF in each ncAF (Si).
This is done by solving (i.e., finding the producers of) input DCs of
each AF. For each AF, Algorithm 3 initializes unsolved input DCs
U with AF.I (line 4), then tries to solve them by checking against
previous ncDC(Sk) (line 9–15). If an unsolved input DC is con-
tained in ncDC(Sk), we mark all the AFs in ncAF (Sk−1) which
produce this DC as predecessors of the AF (line 11). Otherwise,
the input DC is marked as unsolved temporarily (line 13). When
all unsolved input DCs in U are checked against ncDC(Sk), U
is updated through T by eliminating input DCs of the located pre-
decessors (line 16 –18, 20). This is because these input DCs have
been solved in previous iterations and they are input to the prede-
cessors of the AF. This process continues until all input DCs are
solved (line 21).

Fig. 4(d), (e) and (f) show the optimized workflows of Fig. 4(a),
(b) and (c), respectively. The optimization can be significant when
the execution time of AF1 is much longer than that of AF0. Let us
denote the execution time of AFi by t(AFi). Fig. 5 compares the
execution of the workflow shown in Fig. 4(a) and that of its opti-
mized version in Fig. 4(d), where t(AF1) > t(AF0) + t(AF3) +
t(AF8). The processors P1 and P2 may be located on two differ-
ent Grid resources. For reasons of simplicity, the communication
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Figure 5: Improvement of Workflow Optimization

time between two processors and the overhead of the Grid mid-
dleware are ignored. In Fig. 5, compared with the non-optimized
execution, AF3 and AF8 are executed in parallel with AF1 in
the optimized execution. This results in a total execution time of
t4− t1 = t(AF1)+ t(AF10), which is less than the execution time
of the non-optimized workflow t5 − t1 = t(AF1) + t(AF3) +
t(AF8)+t(AF10). The actual performance improvement achieved
by employing workflow optimization on a real world Grid work-
flow application is discussed in Section 6.

The Grid workflows composed by our algorithm through the
three phases achieve high quality because of (i) Portability: the
workflows are abstract and represented at the semantic level; (ii)
Fault tolerance: the workflows may include alternative workflows
thereby provide alternative execution paths in case some activities
fail; and (iii) Performance: the workflows are optimized for execu-
tion time.

5.4 Algorithm Analysis
The execution time of our algorithm is caused mostly by the

phase of ADD graph creation because this phase involves match-
ing inputs of AFs with superstates through reasoning. This fact
can also be proved by the experimental results shown in Section 6.
Therefore, the complexity analysis of our algorithm focuses only
on the phase of ADD graph creation.

For convenience, let us denote the set of all possible workflows
by W and denote the number of AFs by x. As we demonstrate in
the following propositions, the worst case execution time taken by
our algorithm is a quadratic in x.

Proposition 1. Given a set of x AFs, an initial state sinit and a
goal state sgoal, the time taken by our algorithm to find an element
of W is a quadratic in x if W 6= ∅. If such an element is not found
by our algorithm, then necessarily W = ∅.

PROOF. According to Section 5.1, the basic operation in the phase
of ADD graph creation is to check whether an AF is a cAF for a
given superstate. The number of the basic operation is determined
by the number of AFs and the number of the superstates that are in
the ADD graph. Note that the set of cAFs of each superstate are
disjoint. Given x AFs, the maximum number of superstates in the
ADD graph is x+ 1, in which case, all sets of cAFs of each super-
state have the minimum number of cAFs, i.e., 1. In other words,
∀i ∈ [0, n) : |cAF (Si)| = 1. Here we assume that there are
enough DCs defined in AGWO and associated with AFs such that
the number of newly produced DCs in each superstate is greater
than 0, i.e., cDC(Si) 6= ∅. Note that if there are fewer DCs, the
maximum number of superstates is less than x+1; if there are more
DCs, the maximum number of superstates is not affected. There-
fore, given x AFs, the maximum number of superstates is x + 1.
To expand the ADD graph to the superstate S1, x basic operations



ncAF(S) Input Output
ncAF (S0) {D0, D1} {D2, D3}
ncAF (S1) {D1, D2} {D5, D6}
ncAF (S2) {D5} {D8, D9}
ncAF (S3) {D3, D8, D9} {D2, D10}

Table 1: ncAF(S) and Their Input and Output DCs

are required because there are x AFs to be compared. Because
|cDC(Si)| = 1, expanding to S2 requires x − 1 basic operations,
expanding to S3 requires x − 2 basic operations, and so on. The
maximum total number of the basic operations is:

x+ (x− 1) + (x− 2) + ...+ 1 =
x2 + x

2
Note that if

S
AF∈AF AF.O 2 sgoal (in which case W == ∅),

our algorithm can return no solution found after the first x basic
operations. �

Proposition 2. If an element of W is found by our algorithm, the
number of the superstates of the ADD graph is minimum, which
also means that the length1 of the DAG workflow is minimum.

PROOF. Let us assume the algorithm finds a solution when expand-
ing the ADD graph to Sn. This means that ∀i ∈ [0, n), Si 2 sgoal.
Therefore, n is minimum. �

5.5 Branches and Loops
With the help of AGWL constraints [11], our algorithm can be

extended to compose Grid workflows with loops and branches. The
example constraints related to workflow composition are to access
elements of a data collection in parallel, to produce a DC when
another DC is produced, etc.

Branches: Users can specify constrains for the goal state to ob-
tain workflows with branches. For example, the goal state sgoal =
{D9, D10(agwl:precondition=“D6==true”)}means that the com-
posed Grid workflow must produce D9 and D10, and D10 must
be produced when D6=true (assuming D6 is a boolean). In this
case, we first compose a workflow by invoking our algorithm with
sgoal1 = {D6, D9} as the goal state. The result is an ADD graph
with Sn � sgoal1. Then we compose another workflow with sinit =
Sn and sgoal2 = {D10} as the goal state. Then we connect these
two workflows through a DecisionNode which has an outgoing
edge with the guard [D6=true] connecting to the second workflow.
The else branch is empty in this case. Two branches are merged at
the end of the second workflow.

Parallel Loops: In the initial state, users can also specify a data
collection and how each data element is allowed to be accessed. For
example, sinit = {D1 (agwl:cardinality=multiple, agwl:access-
order=parallel), D2} means that the user provided data is D2 and
a collection of D1, and all D1 can be accessed in parallel. In this
case, we can compose a workflow by invoking our algorithm with
sinit = {D1, D2} as the initial state. Then we can invoke the com-
posed workflow in the loop body of a parallelForEach which
iterates over the data collection of D1. Automatic composition of
workflows with parallelFor is also possible if users specify the
initial state, for example, sinit = {D1(agwl:value-range=1:10:3,
agwl:access-order=parallel), D2}, where 1:10:3 indicates the loop
counter, i.e., from 1 to 10 step by 3.

Sequential Loops: Users may specify a goal state {D9, D10

(agwl:postcondition=“D10 < 0.1)” } which means when D10 is
produced, its value must be less than 0.1 (e.g., a threshold value).
A workflow with a sequential loop is required in this case. To com-
pose a workflow with sequential loops, our algorithm first com-
poses a workflow with sgoal = {D9, D10}. Then it checks the pos-
sibility of sequential loops. Let us assume the workflow illustrated
1The length of a finite DAG is the number of edges of the longest
directed path.
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Figure 6: An ADD Graph for Generation of Sequential Loops

in Fig. 4(d) is considered for sequential loop generation. The corre-
sponding simple ADD graph is shown in Fig. 6. Based on the ADD
graph, we can obtain the input and output DCs of ncAF (S) as Ta-
ble 1. Our algorithm checks output DCs starting from ncAF (S3)
(because it produces D10) to see which DCs can be input to any
previous ncAF (Si)(i < 3) and thereby produces new D10. It is
obvious that D3 produced by AF10 can be input to AF4 (the red
dash line), which consequently updates D10 (the blue solid line).
Based on this, a workflow with a doWhile loop can be generated,
and AF4, AF8 and AF10 are sequentially executed in the loop
body. In case of multiple possibilities of sequential loops found,
user interactions are required. The detailed algorithm for gener-
ation of sequential loops is illustrated by Algorithm 4. Line 3 – 9
find in which superstate the input DCD is first produced. Then, the
algorithm tries to find DCs ∈ Sk which are not ncDCs and can be
input to a ncAF of a previous superstate and thereby further update
D (line 11 – 17). This process is done for all previous superstates
except S0 (line 10 – 19).

6. EXPERIMENTAL RESULTS
Our algorithm is implemented in Java as part of the ASKALON

Grid application development and computing environment [10].
The reasoning part is implemented using the Jena APIs [20]. We
evaluate our approach through three series of experiments: (i) the
composition of a Grid workflow in a simulated domain, to test
how our algorithm behaves in the case where thousands of AFs
are available; (ii) the composition of a real world Grid workflow
application in the meteorology domain to illustrate the execution
time of our algorithm for a real world case; and (iii) the com-
parison of the execution time of optimized and non-optimized real
world Grid workflows. The first two series of experiments are con-
ducted on a normal desktop computer with 2 GB memory and one
2.4 GHz Intel Core 2 Duo CPU. The Java runtime environment
used is JRE 1.5.0_16. In the third experiment, we execute a real
world Grid workflow application on the Austrian Grid [1] through
ASKALON [10]. A subset of the computational resources which
have been used for the third experiment is summarized in Table 2.

In the first experiment, we developed an ontology which contains
thousands of AFs (namely, AF0, AF1, ...) and thousands of DCs
(namely, D0, D1, ...). In order to measure the worst case execu-
tion time of our algorithm, as described in Section 5.4, these AFs
are defined in the following way: AFi accepts Di and a random
number (between 0 and 10) of DCs from {D0, ..., Di−1} as input,
and produces Di+1 and a random number (between 0 and 10) of
DCs in {D0, ..., Di−1} as output. Thus, all AFs can be pipelined.
The reason that we use a random number (between 0 and 10) of
DCs as input and output of AFs is based on our experiences in
multiple scientific domains such as material science, astrophysics
and meteorology where the number of the input and output ports
of workflow activities varies from 0 to around 10. This observation
actually makes the composition of Grid workflows more difficult
if a classic state space searching based AI planning algorithm is



Algorithm 4: Sequential Loop Generation
Input : simple ADD graph

data class D ∈ sgoal associated with a postcondition
Output : A workflow with a sequential loop if success, or a

message otherwise.

build the ncAF (S) input and output table, as Table 11
B := ∅ // set of triples each indicating a possible sequential2
loop
k := 0 // index of a superstate where D is first produced3
for ncDC(Si) := ncDC(Sn) to ncDC(S0) do4

if D ∈ ncDC(Si) then5
k := i;6
break;7

end8
end9
repeat10

forall D′ ∈
`S

AF∈ncAF (Sk−1)AF.O − ncDC(Sk)
´

do11
for ncAF (Sj) := ncAF (Sk−1) to ncAF (S0) do12

if ∃AF ′ ∈ ncAF (Sj) ∧D′ ∈ AF ′.I ∧ AF ′ δ D13
then

// D′ in Sk can be input to AF ′ at ncAF (Sj)
put a triple 〈D′, k, j〉 into B // found a seq.14
loop

end15
end16

end17
k := k − 118

until k == 019
if B == ∅ then20

return sequential loop is impossible21
else if |B| == 1 then22

return create a workflow with a doWhile loop based on23
B

else if |B| > 1 then24
return user interaction is required25

end26

Grid Site CPU # GHz LRM Location

karwendel Dual Core
AMD Opteron 8 2.4 SGE Innsbruck

altix1 Itanium 2 8 1.4 PBS Innsbruck
schafberg Itanium 2 8 1.4 PBS Salzburg
altix1jku Itanium 2 8 1.4 PBS Linz

c703-pc1801 Pentium 4 8 2.8 Torque Innsbruck
c703-pc2601 Pentium 4 8 2.8 Torque Innsbruck

Table 2: The Austrian Grid Testbed

used, due to the huge number of states. In this experiment, AFs are
defined as below:

AF0 : (D0)→ (D1)
AF1 : (D0, D1)→ (D2)
AF2 : (D2)→ (D1, D3)
AF3 : (D0, D1, D3)→ (D4)
· · ·

Then we compose Grid workflows using these AFs. Obviously, we
obtain a workflow consisting of a sequence of AFs. Although the
structure of the composed workflow is simple, the number of the
basic operations invoked in our algorithm is maximized. By spec-
ifying a suitable initial state, e.g., sinit = {D0}, and a goal state,
e.g., sgoal = {D1000}, we can obtain the worst case execution time
of our algorithm.

Fig. 7 illustrates the experimental results of the execution time
of our algorithm with two curves: the total execution time, the
execution time of the ADD graph creation phase. The x-axis is
the number of AFs. We can observe that the execution time of
ADD graph creation is very close to the total execution time, i.e.,
most of the execution time of our algorithm is spent in the phase
of ADD graph creation. The trend analysis shows that the worst
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case total execution time of our algorithm to compose a Grid work-
flow is a quadratic in the number of AFs. If 1000 AFs are defined
in ontologies in a certain domain, our algorithm can compose a
Grid workflow (or return no solution found) in 7.04 seconds in the
worst case. It is 20.70 seconds in case of 2000 AFs. We also mea-
sured the heap memory usage in Java virtual machine (JVM) when
composing these Grid workflows with our algorithm. The results
are illustrated in Fig. 8, where the values are calculated based on
the measurements of java.lang.management.MemoryMXBean, the
management interface for the memory system of JVM provided
since Java 1.5. Because of the automatic garbage collection mech-
anism of JVM, we consider the heap memory usage illustrated here
as an estimation of the amount of the memory that are allocated for
the objects of our workflow composition program, including the
objects for storing the ontologies and the objects required by our
algorithm itself. According to what we observed, roughly 10% of
the heap memory is used by the latter. We can conclude that our al-
gorithm uses a reasonable amount of memory. Note that the actual
memory usage of our workflow composition program as provided
by the operating system is usually higher than those measured here.

In the second experiment, we compose the real world Grid work-
flow application MeteoAG using our algorithm. MeteoAG [28] is a
meteorology simulation application based on the numerical model
RAMS [7]. The simulations produce precipitation fields of heavy
precipitation cases over the western part of Austria at a spatial and
temporal grid in order to resolve most alpine watersheds and thun-
derstorms. The ontology, provided by the Institute of Meteorology
and Geophysics, University of Innsbruck, consists of 19 AFs. We
composed the MeteoAG workflow with and without the workflow
optimization phase enabled respectively and obtained two versions
of the workflow as illustrated in Fig. 9. Note that the workflow con-
sists of two nested levels of parallel loops. The loop body of the
inner loop (corresponding to a simulation case) is a DAG, in case
of the optimized version, or a sequence of activities and a parallel
section, in case of the non-optimized version. The total execution
time for the composition of the two workflows is 0.64 seconds for
the optimized version and 0.54 for the non-optimized version. We
conclude that our algorithm is fast enough in this case.
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In the third experiment, we executed the optimized and the non-
optimized MeteoAG workflows on the Austrian Grid respectively.
First, we executed one simulation case using one CPU (denoted by
"1CPU,1CASE", similar for the others). Obviously the execution
time of both workflows are similar in this case because no paral-
lelism can be employed. Since the maximum number of parallel
jobs in one simulation case is two, we then increased the number
of simulation cases and the number of CPUs such that the num-
ber of CPUs is twice the number of simulation cases. Note that
if the number of CPUs is more than twice the number of simula-
tion cases, the additional CPUs can not be used. If the number of
CPUs is less than twice of the number of simulation cases, the ex-
ecution time of both MeteoAG workflows are similar because the
execution of all simulation cases are interleaved and the differences
in control flow dependences in single simulation cases become in-
significant. Fig. 10 compares the execution time of both MeteoAG
workflows in our experiments. We can see that the execution time
of the optimized MeteoAG workflow is less than that of the non-
optimized one. Specifically, when we execute 4 simulation cases
on 8 CPUs on karwendel, 25% execution time is reduced (270.64s
vs. 203.37s). The percentages of reduced execution time in other
cases vary from 9% to 20%. The corresponding speedup is im-
proved by up to 2.24, as illustrated in Fig. 11.

7. RELATED WORK
Lautenbacher et al. [21] presented a survey of available work-

flow composition approaches in areas like Grid workflows, Seman-
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tic Web Services, and Business Process Management. The authors
mainly focus on the question what features are supported by the
existing approaches, e.g., whether semantic technologies are in-
cluded, or whether the approach works at an abstraction level. Lit-
tle information about algorithms of automatic workflow composi-
tion is given.

Gil [14] mentioned some ideas to use semantic technologies (e.g.,
application specific ontologies) and AI planning algorithms to sup-
port assisted workflow composition. The author pointed out sev-
eral cases where automatic completion of workflows is desirable,
such as creating an executable workflow from a workflow instance
by assigning tasks to resources, completing under-specified work-
flow templates by mapping abstract tasks to specific components
or adding data conversion steps. However, no specific algorithms
were discussed. Wings[15] is a workflow creation system that com-
bines semantic representations with planning techniques. While
Wings can generate workflows of computations for given data col-
lections, it can only generate workflow instances based on work-
flow templates. The creation of workflow templates is still done
manually. Furthermore, the creation of workflows is limited to
DAGs. Gubała et al. [18] presented the Workflow Composition
Tool (WCT) for automatic Grid workflow composition. The main
idea of their work is to iteratively solve unsatisfied data depen-
dences by contacting service registries until some dependences can-
not be satisfied. The algorithm is limited to Petri Nets and cannot
handle alternative control flows like the case presented in Fig. 3. In
addition, our algorithm works at a higher level of abstraction than
the WCT approach. A planning approach presented in [3] automat-
ically constructs data processing workflows where the inputs and
outputs of services are relational descriptions. Their planner uses
relational subsumption to connect the output of a service with the
input of another. Their approach focuses on cases where inputs and
outputs of services are relational descriptions.

In the area of Semantic Web Services, some AI planning based
approaches for automatic web service composition are proposed.
Wu et al. [31] adapted the graphplan algorithm [6] with semantics
and focused on addressing both process heterogeneity and data het-
erogeneity of web services composition problems. Meyer et al. [25]
uses an extension of the Enforced Hill-Climbing planning algo-
rithm [19] for automatic service composition. Although the idea of
graph based planning is similar to our approach, there are several
differences: (i) our approach can generate alternative workflows,
and (ii) we consider workflow optimization. In addition, our algo-
rithm focuses on Grid workflow composition and models workflow
activities with input and output data classes and the consumption
of data classes does not make them unavailable. Therefore, mutual
exclusion links, as used in the graphplan algorithm, are not needed
in our approach. Ambite et al. [4] models the web service composi-
tion problem as a Triple logic program and uses Triple logic engine
to generate workflows. Duan et al. [9] sketched an algorithm to
synthesis BPWL4WS abstract processes. They assume that tasks



are associated with ranks which, however, is not feasible for Web
or Grid services which are developed by different organizations.

In addition, Lelarge et al. [22] presented an AI planning based
approach for automatic composition of secure workflows in the do-
main of stream processing systems. No Semantic Web technologies
such as Ontology are involved.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we formalized the Grid workflow composition prob-

lem based on the STRIPS language and presented a novel graph
based algorithm for automatic composition of high quality (portable,
fault tolerant and optimized) Grid workflows. Our algorithm com-
poses semantic described workflow activities, i.e., Activity Func-
tions (AFs), into Grid workflows by employing progression to cre-
ate an AF Data Dependence (ADD) graph and regression to extract
workflows, including the alternative ones if available. Our algo-
rithm also optimizes extracted workflows in order to deal with the
heterogeneous nature of the Grid and workflow activities. The time
complexity of our algorithm is a quadratic in the number of AFs.
With the help of AGWL constraints, we also extended our algo-
rithm for composition of Grid workflows with branches, parallel
and sequential loops. The composition of Grid workflows with our
algorithm in domains with up to 20000 AFs further proves the ana-
lyzed time complexity. The composition of a real world meteorol-
ogy workflow MeteoAG takes around half a second. By applying
our workflow optimization techniques, the execution time of the
MeteoAG workflow is reduced by up to 25% and the speedup is
increased by up to 2.24. We believe that our graph based approach
of automatic Grid workflow composition is the most feasible one
among all methods introduced so far. Assuming that ontologies for
application domains are given, it demonstrates good potential to be
used as part of production workflow environments, which is in con-
trast to most related work that has been largely evaluated against
experimental implementations. Our approach has been integrated
in the ASKALON Grid application development and computing
environment and is used by numerous application groups for their
daily work and research with Grid workflows.

The initial state, the specification of the initial available data
classes, is considered fully known in our algorithm. We will in-
vestigate possible extensions to our algorithm to deal with cases
with partially known initial states for further simplification of the
Grid workflow composition process.
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[18] T. Gubała, D. Herȩżlak, M. Bubak, and M. Malawski. Semantic Composition of
Scientific Workflows Based on the Petri Nets Formalism. In Proc. of the 2nd
IEEE International Conference on e-Science and Grid Computing, Amsterdam,
The Netherlands., December 2006.

[19] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research,
14:253–302, 2001.

[20] Jena Team. Jena Semantic Web Framework API. http://jena.sourceforge.net/.
[21] F. Lautenbacher and B. Bauer. A Survey on Workflow Annotation &

Composition Approaches. In Proceedings of the Workshop on Semantic
Business Process and Product Lifecycle Management (SemBPM) in the context
of the European Semantic Web Conference (ESWC), Innsbruck, Austria, 2007.

[22] M. Lelarge, Z. Liu, and A. V. Riabov. Automatic Composition of Secure
Workflows. Technical Report W0607-005, IBM Research Division, July 2006.

[23] M. Lemos, M. A. Casanova, L. F. B. Seibel, J. A. F. de Macedo, and A. B.
de Miranda. Ontology-Driven Workflow Management for Biosequence
Processing Systems. In Proceedings of 15th International Conference Database
and Expert Systems Applications (DEXA 2004), Zaragoza, Spain, 2004.

[24] P. Lord, P. Alper, C. Wroe, and C. Goble. The Semantic Web: Research and
Applications, chapter Feta: A Light-Weight Architecture for User Oriented
Semantic Service Discovery, pages 17–31. Springer, 2005.

[25] H. Meyer and M. Weske. Automated Service Composition using Heuristic
Search. In Proceedings of the Fourth International Conference on Business
Process Management (BPM 2006), Vienna, Austria, 2006.

[26] J. Qin and T. Fahringer. A Novel Domain Oriented Approach for Scientific Grid
Workflow Composition. In SC’08: Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, Austin, Texas, USA, 2008.

[27] L. Salayandia, P. P. da Silva, A. Q. Gates, and A. Rebellon. A Model-Based
Workflow Approach for Scientific Applications. In Proceedings of the 6th
OOPSLA Workshop on Domain-Specific Modeling, 2006.

[28] F. Schüller, J. Qin, F. Nadeem, R. Prodan, T. Fahringer, and G. Mayr.
Performance, Scalability and Quality of the Meteorological Grid Workflow
MeteoAG. In Proceedings of 2nd Austrian Grid Symposium, Innsbruck,
Austria, September 21-23, 2006. OCG Verlag.

[29] M. Siddiqui, A. Villazon, J. Hofer, and T. Fahringer. GLARE: A Grid Activity
Registration, Deployment and Provisioning Framework. In SC’05: Proceedings
of the ACM/IEEE conference on Supercomputing, Seattle, WA, USA, 2005.

[30] The Object Management Group (OMG). UML 2 Activity Diagram.
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/.

[31] Z. Wu, A. Ranabahu, K. Gomadam, A. P. Sheth, and J. A. Miller. Automatic
Composition of Semantic Web Services using Process and Data Mediation.
Technical report, LSDIS lab, University of Georgia, February 2007.

[32] J. Zhang. Ontology-Driven Composition and Validation of Scientific Grid
Workflows in Kepler: a Case Study of Hyperspectral Image Processing. In
Proceedings of 5th International Conference on Grid and Cooperative
Computing Workshops, 2006.


	Introduction
	AGWL
	Definition of the Problem
	ADD Graph and Notations
	Description of the Algorithm
	ADD Graph Creation
	Workflow Extraction
	Workflow Optimization
	Algorithm Analysis
	Branches and Loops

	Experimental Results
	Related Work
	Conclusions and Future Work
	References

