
The Logical Data Model

GABRIEL M. KUPER

IBM T. J. Watson Research Center

and

MOSHE Y. VARDI

IBM Almaden Research Center

We propose an object-oriented data model that generalizes the relational, hierarchical, and

network models. A database scheme in this model is a directed graph, whose leaves represent

data and whose internal nodes represent connections among the data. Instances are constructed

from objects, which have separate names and values. We define a logic for the model, and

describe a nonprocedural query language that is based on the logic. We also describe an algebraic

query language and show that it is equivalent to the logical language.

Categories and Subject Descriptors: H.2. 1 [Database Management]: Logical Design—data

models; H.2.3 [Database Management]: Languages

General Terms: Languages, Theory

Additional Key Words and Phrases: Algebra, database schema, logic, relational database, tuple

calculus

1. INTRODUCTION

Research in database theory during the 1970’s and the early 1980’s has

focused mainly on the relational model [11], due to its elegance and mathe-

matical simplicity. This very simplicity, however, has gradually been recog-

nized as one of the major disadvantages of the relational model: it forces the

stored data to have a flat structure that real data does not always have [12,

46]. This has motivated a great deal of research during the past decade on

structured data models: the so-called semantic data models [21, 44], nested

relations [15, 27], and complex objects [9]. The reader is referred to [19, 20,

41] for excellent surveys.

Two works that we found particularly inspiring are by Jacobs [25, 26] and

by Hull and Yap [24]. Jacobs describes “database logic,” a mathematical

A preliminary version of this paper, under the title “A New Approach to Database Logic,”

appeared in Proceedings of the 3m3 ACM symposium on Principles of Database S.vstems,
Waterloo, April 1984, pp. 86–96. For a more extensive coverage of the material presented here

the reader is referred to the first author’s Ph.D. dissertation. The Logical Data Model: A New

Approach to Database Logic, Dept. of Computer Science, Stanford University, 1985.

Authors’ addresses: G. M. Kuper, ECRC, Arabellastr. 17, 81925 Munich, Germany; M. Y. Vardi,

IBM Almaden Research Center, San Jose, California.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1993 ACM 0362-5915/93/0900-0379 $01.50

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993, Pages 379-413.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F155271.155274&domain=pdf&date_stamp=1993-09-01

380 . G. M. Kuper and M, Y. Vardi

model for databases that claims to generalize all three principal data models.

Hull and Yap [24] describe the “format model,” which generalizes the rela-

tional and hierarchical models. In the format model, database schemes are

viewed as trees, in which each leaf represents data and each internal node

represents some connection among the data.

Both these models are unsatisfactory in their ability to restructure data,

i.e., the ability to query the database. While Hull and Yap ignore the issue of

a data manipulation language, Jacobs’ treatment is an overkill—his query

language enables one to write noncomputable queries [51].

Furthermore, both approaches fail to model a significant aspect of hierar-

chical and network database management systems, which is the ability to use

uirtual records. Virtual records are essentially pointers to physical records,

and they are used to avoid redundancy in the database [49]. Note that virtual

records introduce cyclicity not only in the schema level but also at the

instance level.

In the model we propose here a database scheme is an arbitrary directed

graph. As in the format model, leaves (i.e., nodes with no outgoing edges)

represent data, and internal nodes represent connections among the data.

While it is not hard to model cyclicity at the schema level, it is not quite

apparent how to do it at the instance level without running into cyclic

definitions. Our solution is to distinguish between object names and object

values, or, equivalently, between the address space and the data space. This

distinction goes back to Codd’s notions of surrogates [12]. Thus, instances in

our model consist of objects which have separate names and values. This

enables us to give semantics to instances in a well-defined way.

A data model consists of several components [47]. The first is the database

structure mentioned above, which describes the static portion of the data-

base. The second component is a way to specify integrity constraints on the

database that restrict the allowed instances of the schema. We describe a

logic in which integrity constraints can be specified. Our logic is inspired by

Jacob’s database logic [26], but unlike database logic, our logic is effective.

That is, given a database and a sentence in the logic, one can test effectively

whether the sentence is true in the database or not.

The third component is a way to restructure data in order to describe user

views, queries, and so on. We describe two such mechanisms, a logical, i.e.,

nonprocedural, query language and an algebraic, i.e., procedural, query lan-

guage that are analogous to Codd’s relational calculus and relational algebra;

we prove that these two languages are equivalent. These languages have a
novel feature: not only can they access a nonflat data structure, e.g., a

hierarchy, but the answers they produce do not have to be flat either. Thus,

the langaage really does have the ability to restructure data and not only to

retrieve it, as opposed to the other approaches cited above.

2. INTRODUCTION TO THE LOGICAL DATA MODEL

The logical data model (LDM) is a generalization of Hull and Yap’s format

model [24]. The format model fails to model an important part of network and

ACM Transactions on Database Systems, VO1 18, No 3, September 1993

The Logical Data Model . 381

hierarchical database systems, namely the ability to use virtual records. We

model this by introducing cyclicity into the database schemas. An LDNI

schema is a labeled directed Multigraph.1 Each node has a particular type.

The leaves of the schema (i.e., nodes with no outgoing edges) are all of the

basic type, denoted graphically by ❑ . The instance of each node contains

the data values stored in the database. Each interior node has one of the

following types:

(1) Product, denoted graphically by @. The domain of such a node is the
Cartesian product of the domains of its children.

(2) Power, denoted graphically by @. Such a node has exactly one child. The

domain of such a node is the set of all finite subsets of the domain of its

child.

(3) Union, denoted graphically by O. The domain of such a node is the
disjoint union of the domains of its children.

Example 1. Figure 1 shows a genealogy database as a relation. We can

represent the structure of this relation by the LDM schema in Figure 2. It

consists of two nodes u and u of type ❑ that correspond to the Person and

Parent attributes, respectively, and one node w of type 8 that contains pairs

of related attributes.

For the moment, an instance I of an LDM schema will be an assignment to

each node u of a set 1(u) of values from the corresponding domain. An

instance corresponding to the data in Figure 1 consists of the following

assignments:

1(u) = {Rehoboam, Solomon, David}

1(u) = {Solomon, David, Batsheba, Jesse}

1(w) = {(Rehoboam, Solomon), (Solomon, David),

(David, Jesse)}

Solomon, Batsheba),

Example 2. The genealogy could be represented by the network in Figure

3. In this network there are two record types, Person, containing the names

of the people in the database, and a dummy record, PP. There are two links

(sets) that connect each dummy record to a person and his parents.

The idea behind the mapping from the network to the LDM schema in

Figure 4 is as follows. Each record type R, is mapped into a product node u~,.

For each field of R,, u~l has a child of type ❑ . For each link (set) in the

network with R ~ as a member, let Rj be the owner of the link. Then VE, is a

child of v~,.

In Figure 4, w is UPP and u is UP,,, O.. u corresponds to the field of

the Person record, i.e., the person’s name, and the two arcs from w to u

correspond to the two links.

1In a Multigraph one can have more than one edge between two nodes.

ACM TransactIons on Database Systems, Vol. 18, No. 3, September 1993.

382 . G M. Kuper and M, Y, Vardl

Fig 1. The Person-Parent relation

Fig. 2 The Person-Parent relation as an LDM schema,

Fig. 3. The genealogy as a network

-

Person Parent

Rehoboam Solomon

Solomon David

Solomon Batsheba

David Jesse

w

[$5
x

u u

PP

Person

If the network had the same contents as the relation in Figure 1, the

corresponding instance of the LDM schema in Figure 4 would be

1(u) = {Rehoboam, Solomon, David, Batsheba, Jesse}

1(u) = {(Rehoboam), (Solomon), (David), (Batsheba), (Jesse)}

l(zu) = {((Rehoboam), (Solomon)), ((Solomon), (David)),

((Solomon), (Bat&eba)), ((David), (Jesse))}

Example 3. Figure 5 shows a hierarchical representation of the genealogy.
In this hierarchy, eac h Person record is related to the linked list of his

parents. Even though the hierarchical model uses linked lists, this is really

just a matter of the implementation. Intuitively, the user should see only the

connection between a person and the set of his parents. We therefore map

each record type Rl into a product node v~ as we did for the network model,

with a child of type ❑ corresponding to each of R ,’s fields. However, if R, is a

member of the link (R,, Rj), then instead of connecting U~J to UR, directly, we

connect them through a node of type @. The corresponding LDM schema is

then the cyclic schema in Figure 6.

ACM TransactIons on Database Systems, Vol. 18, No 3, September 1993

The Logical Data Model . 383

!
Xw

xv
Fig. 4. LDM schema corre-

sponding to Figure 3.

Clu

zPerson

Virtual

Person

Fig. 5. The genealogy as a hierarchy.

KVx

Fig. 6. LDM schema corresponding to the hierarchy.

u W*

When we have cyclic schemas, such as this one, we cannot define an

instance in the same way. Writing down the instance, in this example, is very

complicated, and in general, when the data as well as the schema is cyclic, we

cannot write it down at all. This is similar to one of the problems with Jacobs’
database logic. The mathematical theory we develop to deal with this problem

is closely related to the non-well-founded sets of [5]. Our approach to defining

an instance of a schema is to separate the concepts of object name and object

value. Intuitively, an object name is an address and the object value is the

content of that address. An instance I then consists of

(1) an assignment of a set 1(z~) of object names to each node u of the schema,
and

(2) an assignment of an object value ZMl(l) to each name 1 in l(u).

ACM Transactions on Database Systems, Vol. 18, No. 3. September 1993

384 . G. M Kuper and M Y. Vardl

I(u)

r-

1 val(l) 1

1 Rehoboam 4

2 Solomon 5

3 David 6

7

[

T
2

3

4

5

.,

Solomon

David 9 (2, 5)

Batsheba 10 (2, 6)

Jesse 11 (31 7)

Fig. 7, Instance of the LDM schema that corresponds to a relation

I(u) I(v) I(w)

val(l) !

Rehoboam 6

Solomon 7

David 8

Batsheba 9

Jesse 10

val(l) 1

(1,11) 11

(2, 12) 12

(3, 13) 13

(4, 14) 14

(5, 14)

val(l)

{7}

{8,9}

{lo}

0

Fig, 8. Instance of the LDM schema that corresponds to a hierarchy,

The names are taken from a fixed infinite set

of natural numbers. Values are taken from

values, or are built up from object names.

We now show what some of the instances
like when we use names and values.

L, which will usually be the set

a fixed infinite set D of data

in the previous examples look

Example 4. The relational instance in Example 1 consists of the following

assignment of names to nodes.

l(u) = {1,2,3},

I(u) = {4,5,6,7}, and

1(w) = {8,9,10,11}.

We then assign a value ual(l) to each of these names.

shown in Figure 7.

Example 5. In Figure 8 we show the instance that

hierarchy of Example 3.

ACM Transactions on Database Systems, Vol 18, No 3, September 1993.

This assignment is

corresponds to the

‘v

•1

The Logical Data Model . 385

v v v

7\x

L.. .e

v] Vn VI Vn

Fig. 9. Nodes in LDM schemas.

3. FORMAL DESCRIPTION OF THE LOGICAL DATA MODEL

Definition 1. A schema is a tuple S = (V, E, <, p), where

(1)

(2)

(3)

(V, E) is a directed Multigraph;

< is a total order on E;

w is a function from V to the set of types {•,@, @, o}, that satisfies the

following conditions (see Figure 9):

(a) I-L(U) = ❑ iff u is aleafi

(b) if P(U) = @, then u has exactly one child;

(c) if K(V) = O, then the children of u are distinct nodes (if W(u) = 8,

however, there can be multiple edges from u to a node w).

The order on the edges is used to induce an order on the components of

tuples. W(u) is called the type of U. For readability, we use the following

abbreviations:

(1) ~(u) = (@, w) is an abbreviation for “IA v) = @ and its child is w.”

(2) (a) K(u) = (8, n) is an abbreviation for “P(u) = @ and u has n children.”

(b) /-Ku) =(c%n, ul,..., v.) is an abbreviation for “P(u) = 8, there are

exactly n edges el, ..., en with tail u, these edges are in the order

el < . . . < en and their heads are VI, U~.”

(3) (a) I-L(U) = (o, n) is an abbreviation for “I-L(u) = @ and ZJhas n children.”

(b) w(v) = (0, n,ul,.. ., v.) is an abbreviation for “K(u) = O, there are

exactly n edges el, ..., en with tail u, these edges are in the order

el < . . . < e. and their heads are VI, ..., u~.”

We are really overloading the symbol p, but in practice this will not cause

any confusion. Some other abbreviations that we use include referring to

elements of V and E as nodes and edges, respectively, of S, and referring

to < as an order on the children of a node of S. We ignore the order <

when it is clear from the context, and we often refer to a schema as (V, E, p).

An instance of S consists of two parts: An assignment of a set of object

names to each node of S, and an assignment of an object value to each

object name.

Proviso. We assume a fixed infinite set L of object nalmes and a fixed

infinite set D of data values.

ACM TransactIons on Database Systems, Vol. 18, No. 3, September 1993.

386 . G. M. Kuper and M. Y, Vardi

Definition 2. An instance of S is a tuple I = (I, val) that satisfies the

following:

(1) I: V + 2 L is an assignment of sets of object names to nodes. We require
that 1(u) and 1(w) be disjoint whenever u and w are distinct nodes of S.

(2) ual is a mapping with domain (J ,, ~ ~ 1(u), i.e., from the set of all
the names that are in the instance. The mapping ual must satisfy the

following:

(a) If W(U) = ❑ and 1 ● 1(u), then ual(l) is a member of the set D of data

values.

(b) If p(u) =(@, n,ul, ..., v.) and 1 ● 1(u), then ual(l) is a tuple

(ll,...,l.) such that for each i, 1< i s n, 1, is a element of I(vl).

(c) If w(t)) = (@, w) and 1 ● 1(u), then val(z) is a finite subset of l(w).

(d) If K(u) =(@, n,ul,..., u.) and 1 G1(u), then val(l) =l(u I) u . . . u

I(uJ.

Definition 3. A finite instance of S is an instance I = (I, ual) of S such

that for each node u of S, 1(ZI) is finite.

Here we are mostly interested in finite instances, since these correspond to

real databases. If 1 is in U . ~ ~ 1(u), we say that it is a name in I, and L’al(l)

is called its value. The set U ,, ● ~ oal[1(u)] is called the set of values in I.

Definition 4. Let I be an instance of the schema S, and let u be a node of

Softype (@, n,vl,. ... u.). Let 1 be any name in 1(u). If 1 s i < n, then II,(l)

will be the ith component of ual(1). We also use the notation II “(l) for this

component, whenever this does not result in ambiguity.

The following definition explains when it is meaningful to compare two

names, that is, if u and w are nodes of S, 11 ● I(u) and lZ = 1(w), is it

possible for 1~ and lZ to have the same value?

Definition 5. We say that two nodes v and w in a schema S are similar iff

they are of the same type and have the same children, that is, if one of the

following holds:

(1) p(u) = p(w) = ❑ ;

(2) for some node u, P(U) = LL(ZO) = @, u);

(3) for some n and nodes Z~l,...,z~~, p(v) = ~(zo) = (@, n,ul,... ,J; J;

(4) for some n and nodes UI,... ,,., p(v) = K(W) = (~, n,ul,... ,u)’).

A query on an LDM schema S will involve the addition of some nodes to S.

For this we need the following definitions.

Definition 6. Let S = (V, E, <, p) be a schema. S’ = (V’, E’, <’, ~’) is

an extension of S iff

(1) Vg v’;

(2) (a) E GE’,

ACM TransactIons on Database Systems, VO1 18, No 3, September 1993

The Logical Data Model

(b) if (u, Va) ● E’ – E, then U1 is in V’, i.e. all new edges
between new nodes, or from a new node to a node in V;

(3) <’IExE = <, i.e., <‘ is a conservative extension of <;

(4) LL’IV = I-L, i.e., I-L’ is a conservative extension of p.

. 387

are either

The intuition behind (1) and (2) is that the schema S’ adds some extra

nodes (V’ – V) to V, and adds some edges (E‘ – E) to E, but it does not

change the schema S, i.e., it does not add edges between nodes in V or from

nodes in V to new nodes.

Let S’ be an extension of S. We define an extension of I to an instance of S’

as follows.

Definition 7. Let S’ be an extension of S, and let I = (1, ual) be an

instance of S. We say that an instance I‘ = (1’, red’) of S’ is an extension of I

to S’ iff

(1) for all u in V, I’(u) = l(u);

(2) if u is a node of S and 1 = 1(u), then val’(1) = ual(t).

The proof of the following lemma is straightforward.

LEMMA 1. Let S’ be an extension of S, and let I’ be an instance of S’. Then

there is a unique instance I of S such that 1[’ is the extension of I to

S’. This instance is called the restriction of I’ to S.

We conclude this section with a definition of isomorphism. Two instances

are isomorphic if they are essentially the same, i.e., if they differ only by

renaming. As we want to show that the result of a query is well defined up to

isomorphism, we give a stronger definition of isomorphism. Let I be an

instance of S, let S’ be an extension of S, and let 11 and Iz be extensions of I

to S’. We say that 11 and 12 are isomorphic relative to S if there is an

isomorphism between 11 and 12 that leaves the objects of I fixed. In the case

of a query, this means that an isomorphism relative to the database leaves

the contents of the database fixed.

Definition 8. Let S’ be an extension of S, and let I = (1, val) be an

instance of S. Let II = (II, Uall), and 12 = (Iz, Valz) be two extensions of I to

S’. We say that II and 12 are isomorphic relative to S iff thlere is a mapping

g: u ~l(v) ~ IJ 12(V)
VES’ Z,Es’

such that

(1) for each node v of S, g is the identity on 1(v);

(2) for each node v of S’, g maps 11(v) onto IZ(v);

(3) if v is a node of S’ and 1 ● II(u), then

(a) if v is of type ❑ , then val,(g(l)) = vail(l);

ACM TransactIons on Database Systems, Vol. 18. No. 3, September 1993

388 . G. M. Kuper and M. Y. Vardi

(b) if u is of type (B, n), then

rJa12(g(/)) = (g(rI1(zdl(l))),.. .,g(r In(uall(l))))

(c) if Z) is of type C, then zdz(g(l)) = g(uall(l));

(d) if u is of type @, then g[zml,(l)l = Uall[g(l)l.

As a special case of this definition we get the definition of ordinary

isomorphism.

Definition 9. Let 11 = (11, vail) and 12 = (Iz, valz) be instances of S. We

say that I ~ and Iz are isomorphic iff they are isomorphic relative to the

empty schema, i.e., the schema with V = E = w = @.

4. LDM LOGIC

In this section we define the LDM logic. The logic is similar to relational tuple

calculus, and will be used as part of the logical query language. The logic can

also be used to specify integrity constraints on LDM schemas and to define

views. Throughout this section S = (V, E, ~) will be a fixed schema, and

I = (1, val) a fixed instance of S.

Each variable in the logic has a fixed sort, where the sorts are the ele-

ments of V. The sorts define the domains over which the variables range. For

example, if x is a variable of sort u, then .x ranges over 1(u). The analog to

this in relational calculus is a tuple variable that ranges over a specific

relation. We usually write a variable with its sort as a subscript, e.g., x,,.

Variables with different subscripts denote distinct variables, so that x ~ is a

different variable from x,,. Even though variables range over object names,

we think of them as ranging over objects. Thus, we refer to “the name of x ~“

and to “the value of x,, .“

Definition 10. The atomic formulas ouer S are the following:

(1) Xnrr, YU, where w is a node of type 8 and v is its tth child;

(2) x,, p YU, where w is a node of type c and o is one of its children;

(3) xc E yu,, where w is of type (@, u);

(4) XL, =n yu;

(5) x ~ =U yU,, where u and w are similar nodes;

(6) x,, =,, d, where d is a data element in D, and u is of type ❑ .

The atomic formula x ~rr+yU, means that the name of x,, is the tth compo-

nent of the value of yZO.Note that we have to mention which component of w

we are referring to, since there may be multiple edges from w to v. How-

ever, we also write Xc TyU, when this is unambiguous. The atomic formula

x,, ~Y., means that the value of Y,, is ~,,. Since there is only one edge from w

to u, we use p rather than p~. The atomic formula x,, G yU, means that x ~ is

a member of the value of yw.

ACM Transactions on Database Systems, Vol. 18, No. 3, September 199:3

The Logical Data Model . 389

There are several kinds of equality. The atomic formula x,, =. y,, means

that the names of x,, and y. are equal. Since 1(v) and 1(w) are disjoint

whenever u + w, we do not need atomic formulas of the form x,, =~ y,,, for

u + w. The atomic formula x, =U y. means that the values of xl) and yW

are equal. This is meaningful only when u and w are similar nodes, Finally,

the atomic formula x ~ =U d means that the data value of x. is equal to the

data element d.

Definition 11. A well-formed LDM formula over a schema S is

(1) an atomic formula;

(2) @l V I&, where +1 and & are well-formed formulas;

(3) 101, where 41 is a well-formed formula;

(4) (b’xU)@l, where @l is a well-formed formula.

The free variables of @ are defined in the same way as in first-order logic.

We use ~1 ~ $Z, (3xU)0, $1 * ~z and $1 * ~z with the standard mean-

ings. Another useful abbreviation is the following.

Definition 12. The formula “x,, =,, (x~l, xj’)“ where u is a node of type

(@, n,ul,... , u,,) means “x~, nlxt, A . . . ~ x~,, n-,,x,,>

We now define satisfaction of LDM f’ormulals. Let q5(x ~,, x ~,,) be

an LDM formula whose free variables are x ~1,. . . . x ~n. Let 11, 1,, be an

assignment of object names to the free variables in the formula, that is, each

1, is a member of the corresponding 1(u,). 1=1 qX ~~,... , 1,,) means that @ is

satisfied by 11, ..., 1. in the instance 1. When I is clear from the context, we

write R instead of Rr

Definition 13. Let $(x~,, x ~) be a formula with free variables

X;l,..., x:n, and let 1, = l(u,) for all i: 1 < i < n. Then 1=1 @(n, . . . , 1.) iff the

following hold:

Definition 14. Let C$ be an LDM sentence. We say that I satisfies ~

iff RI ~ holds.

Example 6. This example and the next one will be over the LDM schema

of Figure 6 with the instance of Figure 8. The LDM formula 0(x., y.) =

ACM Transactions on Database Systems, Vol. 18. No. 3. September 1993.

390 . G. M. Kuper and M. Y, Vardi

(XL(WI y,,) says that the name of XU is equal to the first component of the

value of y,. >1 q5(Zl, lZ) holds for the (11, lZ) pairs (1, 6), (2, 7), (3, 8), (4, 9),

and (5, 10).

Example 7. The following constraint says that each name in u is related

to exactly one set in w. For example. “8” and “9” as parents of “2” must be in

one set rather that in two different sets. The constraint is

@ = (Vxu)(vy;)(vy:)(vz:,)(vz:)

(Y: =,($.,2;!) ~Y;? =L)(~u>z;) -;, ‘n z:)).

In other words, each name in u (XU) has at most one name in w (z:, and z:,)

associated with it. This association is through y: and y:.

Note that this constraint says that each name in u is associated with at

most one set in w, rather than saying that each person in the database is

associated with at most one such set. There could still be duplication in u,

e.g., two names with the data value “Solomon.” One way to prevent this is

through the constraint

The following lemma shows that a slightly restricted logic has the same

power. This restricted logic does not have atomic formulas that compare

data values of internal nodes. This lemma makes subsequent proofs and

definitions simpler.

LEMMA 2. Let ~(x~l,... , x ~) be an LDM formula whose free uariables are

the variables .Y~,, x~n. There is an LDM formula ~(x~,, x~,,) with

the same free variables that does not contain any atomic subform da of t?le

form XU =,, y,” with P(v) and P(WI different from ❑ , such that * is equiv-

alent to +. That is, for all instances 1 of S and all 11, l., 1, ●

1(1),), kl (p(l I,..., 1~) iff =1 ~(ll,...,l~).

PROOF. The proof is by induction on the size of +. We show how to

construct * for formulas of the form x,(=,, y,,, where u and c] are similar and

not of type ❑ . The result then follows immediately.

We distinguish between the possible types of v and w.

(1) if u and v are of type (Q, w), then $(x,,, y,) is (VZLC,)(ZW, G XU = z,,, e y,,),
where z ~, is a new variable. Let I be an instance of S. Then

F=l(xU =. YL))(ll ,12) = val(ll) = vaZ(12)

~foralllinl(w), l e val(ll) - 1 = val(lz)

= *l((V.ZW)(ZU, =xu = z,,, G.YL,))(11,12),

and therefore ~ = # is valid.

(2) If ZL and o are of type (@, n,zul,wn). then #(xU, y,,) is

ACM TransactIons on Database Systems, Vol. 18, No 3, Sept.mher 1993

The Logical Data Model . 391

where z~l, ..., z~, are n distinct new variables. Let I be an instance of S.

‘Then RI (XU =,, ;,,)(ll, lZ) is equivalent to Uczl(ll) = Ual(12). If Ual(ll) =
(1;,..., 1~) and Ual(lz) = (l; ,.. ., l;), Ual(ll) = Uczl(lz) is equivalent to the

conjunction of l! = 1! for i = 1, ..., n. In other words, Ual(ll) = Ucd(lz) iff,

fori=l,... ,n

Therefore, =1 (XU =,, yU)(11, la) is equivalent to

A . . . A (Z;,nmn~U e Z,;). %-nyL,))(11 ,12),

i.e., @ = IJI is valid.

(3) If u and u are of type (o, n,wl,...,),), then ~(xU, y,,) is

where z~,l, ..., z; are n distinct new variables. Let I be an instance of

S. Then 1=1 (XU ~,, y,,)(ll, lZ) is equivalent to ZXZl(ll) = Ual(lz) = 1. This

holds iff for some i, 1 s i < n, 1 e I(wI), in which case

and once more @ ~ @ is valid. ❑

From now on we assume that XU =,, y,, can appear as a subformula only

when W(u) = V(w) = ❑ , as far as proofs are concerned, but will use the more

general form when convenient.

The proof of the following lemma, which says that satisfaction is preserved

under isomorphism, is straightforward.

LEMMA 3. Let S’ bean extension of S, and let 11 and Iz be extensions of I

to S’. Let g be an isomorphism from 11 and I ~ relative to S, and let

@(x:l, . . ., x~,,) be an LDM formula. Then

1=1, o(l~, ..., ‘,,) e ‘I,, d(g(z~),...,g(zn)).

Finally, we show that our logic is effective over finite instances.

LEMMA 4. Let q5(x~1,... , x;) be an LDM ,formula ouer S whose free

variables are the variables x~l, ..., x ~ . Let 1[be a finite instance and

let 1, = I(u,) for all i, 1 s i < n. Thenn kl C$(ll,... , 1.) can be determined

effectively.

PROOF. We show this by induction on the size of the formula. For atomic

formulas, testing for satisfaction is straightforward. Testing for disjunction

and negation is also clearly effective, For quantification we make use of the

ACM TransactIons on Database Systems, Vol. 18, No 3, September 1993

392 . G. M. Kuper and M. Y. Vardl

finiteness of 1. In order to test whether 1=1 ((’dy,,,)@)(ll,..., 1.), we test

whether =x +(11,1.. 1) for each 1 in the finite set I(w). ❑

5. THE LOGICAL QUERY LANGUAGE

h the relational model the result of a query is a relation. A natural general-

ization would be for the result of a query in our model to be another LDM

schema, henceforth called the query schema, together with an instance of

that schema. We modify this slightly by not requiring that the query’s

schema be an independent schema, but instead allowing the successors of

nodes in the query to be nodes in the database schema.

Continuing the analogy with the relational calculus, the natural thing

to do would be to let the query be some LDM formula ~. The resulting

instance would. then consist of those objects that satisfy +.

There are two problems with this approach. First, while it is clear how an

LDM formula can select objects that satisfy certain conditions, it is not clear

how an LDM formula can construct new objects. One solution would be to

prevent the query from referring directly to object names, but rather have the

query refer onlly to object values. We could then fincl all possible values that

might appear in the result, assign them arbitrary names, and show that the

result is unique u-p to isomorphism.

This still does not solve the second problem, which is how to deal with

cyclicity. Not only do we need the ability to refer directly to object names in

order to deal with cycles, but even then the result of the query is not always

defined uniquely. For example, if the query schema is that of Figure 10, and

the query specifies that i!(u) and 1(u) each contain at least two different

names, then there is no way to choose between the two incomparable instances

in Figures 11 and 12. Our solution to this problem is to restrict the queries

to ones that do not contain cycles, while allowing cyclicity in the database.

Furthermore, we allow the query to refer explicitly to names only in nodes of

the database. For a more detailed discussion of the motivation underlying our

approach, see [31]. More recent work, e.g., IQL ([3]), has shown how query

languages could be defined to allow cyclic queries.

5.1 The Query Language

Definition 15. Let S = (V, E, p) be an LDM schema. A query on S

consists of a tuple Q = (~Q, @Q, <Q) where

(1) SQ is an extension of ~;

(2) <Q k a topological order on the nodes in VQ – V, i.e., ‘Q is a ~i~ear

order such that if u is a child of w then u ‘Q w;

(3) @Q is a set of pairs (V, 4“) that assigns a form~~a 4 to the node U, for
each node u in ~Q – V. The forrnvla 4U that ~orrespomds to the node ~

satisfies:

(a) 4. has only one free variable, and it k of sort v.

(b) all other variables in ~U are bound. Each of their sorts is either a

node of the database schema S or is a query node that precedes u

under ~ Q.

ACM Transactions on Database Systems,Vol. 18, No. 3, September 1993

The Logical Data Model . 393

wo >
1/ x

o
x (, Fig. 10. LDM schema

Eri?-
Fig. 11. A possible result of the query.

-i--

1 Vd(l)

3 (2) -

4 (1)

Fig. 12. Another possible result of tbe query.

The order <Q is used to specify the order in which we define the result of

the query. Each formula ~,, specifies the contents of u in terms of database

nodes and of query nodes that precede u.

Before continuing with the formal details, we give several examples of

queries. The database schema in all these examples is the genealogy schema

of Figure 6 with the instance of Figure 8.

Example 8. ‘The schema of QI is shown in Figure 13. The formula @U(XU)

is

In other words, we want 1(u‘) to be a copy of 1(u). (We eliminate, however,

any duplication that may be in 1(z~).) The result of the query is shown in

Figure 14.2

2In all these examples, the result is defined only up to isomorphism relative to S, i.e., the choice

of names is arbitrary.

ACM Transactions on Database Systems, Vol. 18, No 3, September 1993.

394 . G. M. Kuper and M, Y. Vardl

u’ •1

Fig, 14. Result of QI

Fig. 15. Schema of Q2.

{d?iJVx

u W*

Fig. 13. Schema of Q1.

I(u’)

r

1 val(l)

17 Rehoboam

18 Solomon

19 David

20 Batsheba

21 Jesse

v

u’ d u d

u

‘w+

Example 9. The schema of Qz is shown Figure 15. We want u‘ to contain

the set of parents of Solomon, so we have the formulas

&l(xUl) = (3y~)(3y~)(3z~) (3z~)(3z~)((y~ =,, XU) A (y; =,, “Solomon”)

‘)) A (z: =2:) ~ (Y:~,z:))A(z: ‘U(y; ,ZW

and 4,,,(xU) = WYU)(YU E XU).

The intuition is that q5U(XU) says that there is some name (y;) in 1(u)

with the value “Solomon” and another name (y:) with value equal to XU. The

rest of the formula says that y: is a parent of y:. I#Iu(x ~~) says that 1(u‘)
contains all the names in 1(Z~’) in one set. The result of the query is shown in

Figure 16.

ACM Transact,ofis on Database Systems,Vol. 18, No. 3, September 1993.

The Logical Data Model . 395

I(u’)

t--

1 val(l) 1 val(l)

17 David 19 {17, 18}

18 Batsheba

Fig. 16. Result of Qz.

We now formally define the result of a logical query. We start by looking at

queries that add just one node to the schema. We call such queries simple

queries.

Definition 16. A query Q is called a simple query if IVQ – VI = 1.We use

the notation Q,, for a simple query with VQ – V = {u}.

Let Q,, be a simple query on a schema S and let I be an instance of S. The

result of Q“ on I is an extension 1,, of I to S~ ,. In order to define 1,, we have to

define what names 1,(u) contains and what the values of these names are.

We would like lU(U) to contain all the objects that satisfy @U(x U). The problem

with using this as a definition of 1,, is that @U(x,) is satisfied by names, and

since 1,, has not yet been defined, it is meaningless to talk about the objects

that satisfy @v. It might seem that this is really a trivial problem, but suppose

that @,)(x,,) included the conjunct (b’ yU)(VZ,)(yU =. z,,), i.e., 1(u) can contain

at most one name. If the rest of ~c, allowed several possibilities for the value

of this name, there would be no way to choose which one should be in the

result.

This is not a problem for us because such a formula is not allowed in our

query language—all bound variables in our language must refer to database

nodes or to nodes that precede u, but cannot refer to u itself. As a result of

this restriction, it turns out that although ~U refers to names, @u is actually a

statement about values. We can therefore find the values that satisfy ~,, and

pick the names arbitrarily.

Definition 17. Let ual be a value (i.e., anything that could be the value of

XC,). We say that val is a candidate value for v 3 if the following holds. Let 1

be some new name, i.e., a name that does not appear in I. Let 1,, be the

extension of I to SQL with Iv(v) = {1} and val U(.l) = val. Then *I ~,,(l).

By using this arbitrary name, we are able to express the fact that val is

one of the objects that should be in the result of the query. Note that this

definition is where we make use of the fact that the query is acyclic.

We first show that the particular choice of name is unimportant.

L~AII~A 5. Let val be a data value and let 11 and Iz be two extensions of I

to SQ defined by, respectively, II(v) = {11}, vall(ll) = val, and 12(v) = {12},

valz(l~) = val. Then k=l, q5,,(11) * 1=1, ~U(lz).

3This really depends on Q and I as well, but they should be clear from the context.

ACM Transactions on Database Systems, VOI 18, No. 3, September 1993

396 . G. M. Kuper and M. Y. Vardi

PROOF. By definition, ~,, has only one free variable of sort u, i.e., the

variable x,,. By inspection we can see that the only atomic formulas that can

contain x,, are .XU,T,XC, XU,PXV, xc,, G XV, x,, =,, d, xc, =, XU, and xv =. x,,.

The last of these is always true, and it is easy to see that the truth of the

others depends only on the value of x,, and not on its name. The proof is then

a straightforward induction. ❑

We now define the result of S~L,. Take all the candidate values for u, pick a

new name for each one of them, and put all of these names into 1,(u). Notice

that the set of candidate values can be infinite in principle, even when 1 is a

finite instance. Queries with the property that the set of candidate values

is finite correspond to the safe queries in the relational model. In the next

section we look at this issue in more detail.

Definition 18. The result of Q” is the extension 1,, of I to SQ,, defined as

follows. Let R be the set of all the candidate values for u and let {l,,.l I ml ~ R}

be a set of new names, i.e., names that do not appear in 1. 1,,(U) is defined as

the set {l,,.l I val G R} with val,(lo.l) = val for each val G R.

We now show that this definition has the desired properties: the result is

well defined up to isomorphism relative to S, everything in the result satis-

fies @,,, and we cannot add anything else that satisfies @,, to the result

without introducing duplication.

The proof of the following lemma is similar to the proof of Lemma 5.

LEMMA 6. Let 11 be an extension of I to SQ,. Let 1 be an element of II(v)

ad let Iz be the extension of I to SQ,, defined by Ij(v) = {1} and valz(l) =

vail(l). Then !=l, ~t,(t) ~ *1,, @c)(l).

LEMMA 7. (1) Let 11 and Iz be two results of Q,. Then 11 and Iz are

isomorphic relative to S. (2) Let 1. be the result of SQ,. Then for each 1 in

l,,(v), t=~,, +.(l).

PROOF. (1) Let 11 be an element of 11(u). Since vall(ll) is a candidate

value for v, there must be some lZ in lz(v) with valz(lz) = c]all(ll). Since, by

the definition of the result of the query, both 11(v) and Iz(v) have

no duplication, we immediately get a l–to– 1 correspondence between

the names of 11(v) and Iz(v). It is straightforward to show that this

correspondence is an isomorphism.

(2) Let 1 be an arbitrary element of 1,(v), and let 1“ = (1*, vaz”) be
the extension of I to ~Q,, defined by l“(v) = {1} and vcd’(1) = val(z). By

Lemma 6:

*IL, o,)(z) = RI 4.(1).

Since val(1) is a candidate value for v, we can extend I to an instance I** of

SQ,, by defining 1“*(v) = {1**}, val(l””) = val(l). We then have *I 4,,(1”’).
By Lemma 5, &I. @,,(l), and therefore E=I @u(/). ❑

We now define the result of an arbitrary query Q. To do this, we first define

composition of queries.

ACM Transact]rm. on Database Systems. Vol 18, No 3, September 1993

The Logical Data Model . 397

Definition 19. Let QI be a query and let Qz be a query on S~,. Qz oQI is

the query on S that we get by composing them in the following way. Q!z oQ ~

consists of S~,,,~l = S~,, @~,.~, = @~l u @~,, and

‘Qz” Q1 = <Ql u ‘Q, U {(u, d I ~ =’~Q1,W f= ~Q2}.

LEMMA 8. ~2 OQ1 is a query on S.

Let the nodes added by the query Q be VQ – V = {U ~, u,} where u ~ <

. . . < v.. We define a sequence of simple queries Q,j,, Q,,. as follows. Each

Q,,z is a query on the schema of Q,,,_l. QU, adds the node U, to that schema,

and the formula for U, is +U1. It is easy to see that Q = QUn o . . . OQU1, and we

use this to define the result of Q.

Definition 20. ‘Ike result of the query Q on I is the result of applying the

queries Q “,, Q.,, successively to 1.

L1311~A 9. The result of ~ is unique up to isomorphisrn. In other words,

different choices of names at each step yield isomorphic results.

PROOF. This is a straightforward application of the first part of Lemma 7.

D

‘IWEOREM 10. Let IQ be the result of the query Q on the instance 1.

(1) Let u be a node added by G! and let 1 be an element of .~Q(v). !l%en

!=,Q +“(1).

(2) Let v be a node added by ~ and let 11 and lZ be two different names in
I(u). Then val(ll) # val(lz), i.e., there is no duplication in the result.

(3) IQ is a maximal extension of 1 to SQ that satisfies (1)-(2). This means

that there is no extension 1: with I;(v) z IQ(o) for all v E VQ – V that

satisfies (1)–(2) and such that for at least one v the inclusion is proper.

PROOF’.

Let Q* be the query Q,,, 0 . . . 0 Q,,, where v = Vk and let IQ be the result

of Q’*. By Lemma 7, %1~ @U(l). It is easy to see that IQ is an extension Of

an isomorphic image of I ~, and that extending I ~, to I ~ does not affect

the satisfaction of +,.

Obvious.

Assume that such an I* exists. Let v = v, be the first of the nodes

Ul, ..., v. for which l~(v) + l~(v) and let Q; be the query Q,,, o ‘“ OQ,),.

From (1) and (2) it follows immediately that both IQ and la restricted to

s ~, are results of Q*. Lemma ~ then impiies that ~[~ and IQ are

isomorphic; a contradiction. ❑

5,2 Safe Queries

In the previous section we observed that the set of candidate values at

a query node can be infinite in principle, even over finite instances. For

example:

ACM ‘11-ansactionson Database Systems,Vol. 18. No 3, September 1993.

398 . G. M. KuPer and M. Y. Vardl

Example 10. ~U(xU) is (.xU +,, “David”). This query is unsafe since the

set of candidate data values is R = D – {David}, an infinite set.

Definition 21. A query Q on a schema S is safe on a finite instance I of S

if the set of candidate data values at each node is finite. Q is safe if it is safe

on every finite instance I of S.

Let ~ be a query node. Assume that we have defined the result of Q on all

the nodes that precede u, and that each of these preceding nodes contains a

finite set of names. If P(U) = B, @ or ,~), the set of candidate values for u is a

subset of, respectively, the Cartesian product, powerset, or union of the

instances of u‘s children, and therefore is finite. The only case when the set of

candidate values may be infinite is when K(u) = ❑ , since the set D of data

values is infinite.

LEMMA 11. Q is safe on I iff for euery query node of type ❑ the set of

candidate data ualues for u is finite.

The following two examples use the database and query schema of Figare

13 and the database instance of Figure 8.

Example 11. ~U (XU) is (3 yU)(XU =,, yU) V (Xu =,, “Absalom”). This query

is safe, since the set of candidate data values is R = {Jesse, David, Batsheba,

Solomon, Rehoboam, Absalorn}.

Testing safety of relational queries can be reduced to testing safety of LDM

queries [31]. As a consequence, testing for safety is, in general, undecidable.

It is decidable, however, to test whether a given query Q on a schema S is

safe on a given instance I. We now describe the decision procedure.

LEMMA 12. Let Wl, u’,, be all of the nodes of the database schema S

that are of type ❑ , and let {dl, d~j be the constants that occur in the

form l~la of Q. Q is safe on ~ if~ for each query node v of type ❑ , each
candidate L)alue for v is either (a) the ualue of an element of some 1(w,] or (b)

one of the dl’s.

PROOF. One direction is obvious—if this condition holds then Q is safe

on I. We prove the converse by induction on the query nodes VQ – V =

{l)l,..., u,} where c~l < ..” < Z~71.Let u = V, be a query node of type ❑ , and

assume that the lemma holds for the nodes that precede U, and that Q is safe

on I. Let I,_l be the result of Q, _,.

Since Q,, is safe on I, the set of ‘candidate data values for u is a finite set R.

We have to show that

RC{dl,..., dk}u I.J l(w).
p(to)= ❑

lcev

ACM Transactions on Database Systems, Vol 18, No 3, September 1993

The Logical Data Model . 399

Call the right hand of this equation S. If the lemma is false, then there is

some element ual in R – S. By the induction hypothesis,

S={dl,..., cik}u u I1_l(zv).
p(u)=n
wEVOr

lUEVQ, W<lJ

Since val is a candidate data value for v, if we extend I,. ~ to an instance I;

of S~r, by defining l,l(u) = {1] and Uczll(l) = ual, we have I=I; ~,(l). Let ual’

be an arbitrary element of D – S, and extend 11 ~ to an instance If of S~L, by

defining I,z(u) = {1} and ualz(l) = val’. Since val and val’ do not appear

either in the database, in preceding query nodes, or in the query formulas, an

induction on the size ~U(x,,) shows that

The key point in the induction is that XU can occur in @U(x,,) only in

(1) atomic formulas of the form XU =, dJ and x,, =U y,,,, where w is a node of

type ❑ that is either in V or is one of the nodes v ~, v,_ ~—such a

formula is false whenever the data value of .x,, is not in S;

(2) XU are XU =. x,, and XU =,, x ~—these formulas are always true.

We have shown that all the elements of the infinite set D -- S are candidate

values, contradicting the assumption that Q is safe on I. D

The technique of the proof gives us an effective procedure for determining

whether a simple query Q~, is safe on a finite instance I. Take some data

value do ● D that does not occur anywhere in the database or in the query

formulas. Test if do is a candidate value (it is not difficult to see that this can

be done effectively). In a similar way to the proof of this lemma, we can show

that Qv is safe on I iff do is not a candidate value for v. Intuitively, if some

such do is in the result, the result is infinite since do cannot be distinguished

from any other such data value. This proves the following theorem.

THEOREM 13. Let Q be a query on S and let I be a fimite instance of S.

There is a decision procedure to test whether Q is safe on 1. If Q is safe on 1,

then the result can be computed effectively.

6. THE ALGEBRAIC QUERY LANGUAGE

6.1 The Algebraic Operators

In this section we define a set of algebraic operators. We then show that any

safe logical query is equivalent to some sequence of algebraic operations, and,

conversely, each sequence of algebraic operations is equivalent to a safe

logical query.

Since a logical query adds some nodes to the database schema and leaves

the instance of the database schema unchanged, each algebraic operator
must do the same. Therefore, a selection operator, for example, should not

delete tuples that do not satisfy the selection condition, but should rather

create a copy of the database node. That copy should contain only those

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

400 . G. M. Kuper and M. Y Vardl

.—-— —— .
I I
1 I

Fig. 17. The algebraic operation w + ❑ (u). KI
I

I
❑ VI

I

I I
L_____J

tuples that satisfy the condition. In fact, this copying of tuples is what is

really done in the relational model—a query does not throw away those

tuples in the database that do not meet a selection condition, but copies

those tuples that do. ‘I’his issue is not addressed explicitly in relational

database theory, because the theory does not deal with what happens to

temporary relations that are created while computing the result of a query.

As we shall see in the next section, it is necessary to delete nodes in certain

circumstances. We would still like to make the deletions explicit, rather than

hide them in other algebraic operations.

In this section S is a database schema with instance K The algebra consists

of operations of the form w ~ a(ul, ..., Vn). Here a is the name of the

operator, and its arguments u ~, Un are nodes in the schema S. a adds

the node w to the schema, and extends I to the new schema. We define each

operator as a simple logical query, by giving

(1) the types of its arguments;

(2) the type of w and the list of its children;

(3) an LDM formula 4,,,(.x,,) that specifies the contents of 1(w).

6.1.1 Operators that Copy and Combine Existing Nodes.

(1)

(2)

(3)

w e ❑ (~) creates a copy of the node u, as is shown in Figure 17. (In all

these figures the schema S is shown in the box on the right, and the node

that is created by the operation is on the left.) For each distinct data

value in 1(u), 1(w) contains exactly one name with this data value. Note

that duplication in 1(u) is eliminated in 1(w).

(a) u is a node of S that has type ❑ ;

(b) w is of type ❑ ;

(c) @l,,(xZ,,) is (3 Y,, XXU, =,, y,,).

U! - ❑ (d) creates a node of type ❑ that contains just the data value d.

(a) d is a data value in the data domain D;

(b) w is of type ❑ ;

(c) @,L,(X,L,) is x,,, =,, d.

w - @ u) creates a node that contains all finite subsets of 1(u) (see

Figure 18).

(a) u is any node in the schema S;

(b) w is of type (@, u);

(c) +Uf XZo) is T (i.e., always true).

ACM Tkansact]ons on T)ataba.e Systems. Vol 18, No 3. September 1993

The Logical Data Model . 401

w

w

-~ Fig. 18. The algebraic opwation w + @(v)

I \ev I

1 I
L—— —-.--l

I VI Vn I
L ---- --l

Fig. 19. The algebraic operation w + B (u ~,..., U.).

Fig. 20. The algebraic operation w + Q)(ZI~, v,,).

L—— —--d

(4) w + @(uI,.. ., U.) creates a node that contains the Cartesian product

I(ul) x . . . X I(u.) (see Figure 19).

(a) VI,..., u,, are any n nodes in the schema S;

(b) w is of type (C%n, Vi,..., Vn);

(c) OW(x,,,) is T.

(5) w +@(uI,.. ., v.) creates a node that contains thle disjoint union

I(ul) u o.. U 1(v,,) (see Figure 20).

(a) Ul,..., U~ are n distinct nodes of the schema S;

(b) w is of type (Q, n, Vl, U.l);

(c) $W(x,,,) is ‘7’.

6.1.2 Selection Operators. The LDNI algebra has two selection operators.

(1) The operation w ~ CT,,~(u) is similar to the selection operation in the
relational algebra. This operator selects those tuples inl u whose i th and

jth components are related by O (see Figure 21).

(a) v isanode of So ftype(@, n,ul,... , ~.) and i @j is one of the relations
i ~ j, iwt j, i pj, i =,~ j and i ‘~, J“;

(b) w is of type (8, n,vl,..., v~);

(c) O,,,(%U,) is

(3 XC,)(3y,,l)(2yU,)(y,,,, $TL,lXU A y,>,~u,:ru ~ yu,~y,,, ~ X, ‘C> X,,,).

ACM Transactions on Database Systems, Vol. 18. No. 3, September 1993

402 . G. M. Kuper and M. Y, Vardi

~–––_
–1

Fig. 21. The algebralc operation w + [J, ,J(L,)

10”””.1

Lzk – _ _v% J

Alternatively, the selection condition may be of the form i =, d where d

is a data value in D. Then @U,(x,,,) is (3x U)(3yU,)(y,, zinc,x, ~ y,,, =,, d A

x,, =L,Xu,).

(2) w + ml.(U, Z)). Here u is a child of L, and w contains those objects of I(u)
that actually appear in 1(u) (see Figure 22). For example, if u is of

type @, each element of 1(u) becomes a set of elements from 1(u). The

result of u,~(u, u) selects from 1(Z)) those elements that are in at least one

of these sets.

(a) u and u are nodes of S and u is a child of u;

(b) zu is of the same type as u and has the same children;

(c) ~,,,(Xw,) depends on the type of U. Note that u cannot be of type ❑

since it has a child Zt.

(i)

(ii)

(iii)

If v is of type @ with u as its zth child then +,,(x,,) is

(3 XU)(3X,)(XU =,, x,,, A XUT, XL,).

(Strictly speaking, CTln(u, u) is under-specified here, in case there

are multiple edges from u to u, since we have to specify the edge

to which we refer. In this case we use the notation cr,~(u, u, i) to

mean: use the i th edge with tail v.)

If [) is of type C, then @w(x,,,) is

(~ XU)(q XU)(.ZU ‘c, x,,, A Xu ~.xc)).

If v is of type @, then @,c,(XU,) is

(~ Xu)(=XL,)(Xu ‘,, .%wA Xu ●X,)).

6.1.3 Union, Difference, and Projection.

(1) The union operator is similar to the relational union. The syntax we use

isw-U(vl, ..., u.) (see Figure 23).

(a)vl, ..., U. are n nodes of S that are of the same type and have the

same children;

(b) w has the same type and the same children as the u,’s;

(c) @U,(.x,O)is (3.z,,,)(x,,, =,, KU,) V . . . V (3 XC,,,)(X,,,1 =,, X,O).

ACM Tramsactlms on Database Systems,Vol. 18, N{, :3,Septemb,r l$I!)S

The Logical Data Model 403

~—— —__,
I I
I

I
*IJ

I

I

‘b ‘

I

Fig. 22. The algebraic operation w + crln(u, v).

UI
f

I e’ 01
L_____J

w

/\

i

r— VI ‘“ Fig. 23. The algebraic operation W+u

[eA:

(V1,212).

; ‘.v” /

VIL____J

(2)

(3)

For difference we use infix notation, i.e., we write w ~ u ~ – v ~ rather

than – (Ul, Uz).

(a) UI and Uz are nodes of S that are of the same type
children;

(b) w has the same type and the same children as u ~

(c) +W(x,,,) is (~x,,)(x,,, ‘U XW) A (VXU,)(X,,, #d XU).

and have the same

and Vz;

The projection operation is similar to projection in the relational algebra.

The syntax we u~e is w + II~(v), where A is an ordered multiset of edges

with tail v.

(a) v is a node of S of type (8, n, Vl,... , v.) and A is an ordered multiset
of edges with tail v;

(b) let A = {el, ek} where ej is the edge (v, v,,). Then w is of type

(B, k,v,,,..., v,k);

(c) @W(xW) is

(qXU)(~XUl) ““” (3 XUn)(XuZlWlxW A ““” A (xUl,mhx,O)

Axv =L, (x,,,, . . . , x,,,)).

When it does not cause any ambiguity, we use a set A of

than of edges, as in Figure 24.

nodes rather

6.2 Equivalence of the Logical and Algebraic Query Languages

We now use these algebraic operators to define an algebraic query language.
An algebraic query i; a sequence {al, ..., a.}, where each a, is an algebraic

operator on the result of a,_ ~. We would like to be able to show that this

query language is equivalent to the logical query language. In other words,

ACM Transactions amDatabase Systems,Vol 18,No, 3, September 1993.

404 . G, M, Kuper and M Y Vardl

Fig. 24. The algebraic operation w + 11{,,,, ,,,~ u)

w ~————-

%

xl

xv

.

1
I

I

I

I

I

I
.J

for each logical query on a schema S, there should exist a sequence of

algebraic operations, and vice versa, with the property that the schemas

created by these two queries are identical, and, for every database instance 1,

the results are isomorphic relative to S. Unfortunately, as the next example

shows, this is not quite true.

Example 12. Let S consist of a node u of type ❑ and let Q be the logical

query that adds a node u of type ❑ to S. Let dl and dz be two data values,

and let @,(x U) be (x,, =U dl v x,, =, dz). The candidate values for u are then

{dl, d~}. There is no algebraic query equivalent to Q. If there was such a
query, it would consist of one algebraic operation alone, since each operator

adds a new node to the schema. By inspection, we can see that no single

algebraic operator is equivalent to Q.

How can we modify the definition to get an equivalent query? If Q~ is

the algebraic query that consists of the operations w ~ - ❑ (dl), w ~ ~ ❑ (dz),

and u - u (w ~, w ~), it is clear that the instance of u is what we are after.

If we were then to restrict the result of the query to the schema that consists

of the nodes u and u, we get the instance we want. We have essentially

used the two nodes w ~ and w ~ for temporary storage while computing the

result of the query. In fact, the same thing occurs in the relational model,

since temporary relations are used there for subexpressions and then deleted

at the end. It is therefore reasonable to expect the same thing to happen in

the logical data model.

To be able to use temporary nodes, we extend the algebraic query language

by adding a “delete” operator. This operator deletes a node from the schema

and restricts the instance of the original schema to the new schema. We have

to make sure that we never delete a node that is the child of some other node,

since in that case the result would not be a legal schema. The operator that

deletes the node u will be written D(u).

Definition 22. Let S be an LDM schema with instance I. The algebraic

operator II(v) is legal when u is a node with no parent. The result of LX u) is

the schema S’ that consists of deleting v from S, together with the instance

that we get by restricting I to S’.

In the algebraic query language we must take care not to delete database

nodes, i.e., we must only allow user to delete nodes that have been con-

structed by the user query. We call the language with the deletion operator

the extended algebraic query language.

ACM TransactIons on Database Systems, Vol 18, No. 3, September 1993.

The Logical Data Model . 405

Definition 23. Let S be an LDM schema. An extended algebraic query on

S is a sequence Q~ = (al,..., a.) where each a, is either

(1) an operation of the form w, * ~L(u},..., U; I), where ~, is an algebraic

operator other than the deletion operator and v:, U; j are either node of

S or are nodes that were created by some previous flj and have not been

deleted;

(2) the operator D(u,), where u, is a node that was created by a previous
algebraic operator in the sequence PI, @l_ ~ and has not yet been

deleted.

Definition 24. Let QA be an extended algebraic query on S, and let Q~ be

an extended algebraic query on the result of Q~. The query Q~ o Q~ is the

composition of QA and Q~, formed simply by concaterlating the lists of

algebraic operators.

Obviously, the delete operator itself is not equivalent to any logical query,

since every logical query adds nodes to the schema. This by itself does not

necessarily mean that we cannot find a logical query equivalent to any

extended algebraic query. After all, an extended algebraic query does not

delete database nodes, since the only nodes that are deleted are those that

were constructed by previous algebraic operations. It might still be the case

(as in Example 12) that there is an equivalent logical query that does not use

temporary nodes. Nevertheless, in [31] it is shown that the extended alge-

braic query language is strictly more powerful than the logical query lan-

guage. In order to get an equivalent query language, we modify the logical

language to include temporary nodes as well.

Definition 25. Let S be an LDM schema. An extended logical query on S is

atuple Q = (S~,@~, ~Q, DQ) where

(1) (SQ, @Q, ‘Q) is a logical query ‘n ‘;

(2) DQ is the set of temporary nodes used in the query. DQ is a subset of the

query nodes VQ – V that we can delete and still get an LDM schema. In

other words, there is no edge with tail outside DQ and head in DQ, i.e., if

(el, ez) ~ EQ and ez ● DQ, then el = DQ.

Definition 26. Let Q be the extended logical query (SQ, @Q, <Q, DQ), and

let I be an instance of S. The result of this query consists of

(1) the schema St consisting of

(a) the nodes in V~ – D~;

(b) the relevant edges, i.e., all those edges of SQ whose head and tail are

both in VQ – DQ;

(c) the restriction of the type assignment w to VQ – DQ.

(2) The result of Q on I is defined as follows. Let IQ be the result of

(SQ, @Q, ‘Q) on I. The result of Q on I is then the restriction of IQ to S~.

We now show that every extended algebraic query is equivalent to some

extended logical query.

ACM Transactions on Database Systems, Vol. 18, No, 3, September 1993,

406 . G M. Kuper and M, Y. Vardl

LEMMA 14. Let QA = (al, CY,) be an extended algebraic query on S.

There exists a safe extended logical query Q~ on S such that for every instance

I of S, the results of Q~ and Q~ on I are isomorphic relative to S.

PROOF. The schema of Q~ consists of all those nodes that are created by

the operations in the query Q~. The set of temporary nodes D~,, is the set of

nodes deleted in Q~, i.e., {u, I the operator a, is D(v,)}. Since we are only

allowed to delete nodes that are not in S and that have no parent, it is easy to

see that there is no edge whose head is in D~, and whose tail is not. Each al

that is not a delete operator must be of the form w, + ~J(w,l, WJJ).

We define an order on the nodes of V~ – V as follows: w, < w~ whenever

i < .j. o,.: XWZ) is the formula that was used to define the operator p]. It is

easy to verify that the results of Q~ and Q~ on any instance I are indeed

isomorphic. ❑

To show the converse, let Q~ be a logical query on S. Let I be a fixed

instance of S such that Q~ is safe on I. The definition of Q~ will not depend

on I, but the results of Q~ and Q~ will only be isomorphic on those instances

of S on which Q~ is safe. We keep I fixed so that we will be able to prove

various lemmas about the results of the queries as we go along.

We first look at the case when Q~ is a simple query QU,. We start by

creating a node w~u~, that contains the “domain” of w, i.e., all those objects

that might be candidate values for w, if we were to ignore everything except

the type of w and the fact that Q~ is safe on L We define Zudom as follows.

(l) Ifwisof type o,letvl,..., Uf be all the nodes in S that are of type ❑

and let dl, dk be the constants that occur in @,O(x,,,). Define w~O~ by

the algebraic query:

SI - El(ul)

St+ ❑(rJt)

St+] + ❑(all)

St+h + ❑(dk)

Wdom’+ U(sl, . . .

D(sl)

D(sf+k)

(2) If IA(w) = (@, k,ul,..., uA) define w~O~ by

St+h)

Wdom’+ C3(ZJ1,..., ZJk).

(3) If p(w) = (@, u) define w~o~ by w~O~ - @(u).

(4) If w(w) = (o,h,~l,...,v~) define w~O~ by w~O~ - @Ul,..., V~).

Call this algebraic query Q~O~.

ACM TransactIons on Database Systems,Vol 18, No 3, September 1993

The Logical Data Model . 407

LEMMA 15.

(1) The schema created by Q~O~ is equal to the schema of S together wit?t a
node w~O,~ of the same type and with the same children as the node w in

the original logical query Q,”.

(2) Let I.~O~ be the result of Q~(,~ on 1 and let 1,,, be the result of QU, on 1. If

val is a ualue of an object in Iw(w), then val is also a value of an object in

10dom ‘dom .

PROOF. If w is of type 8, 0, or @, the lemma is obvious. If w is of

type ❑ , the first part follows from the fact that all the nodes except w~O~ that

are created by Q~O~ are also deleted by Q~O~. The second part is an immedi-

ate consequence of Lemma 12 and the definition of Q~O~. ➤1

We may assume (if necessary by renaming some bound variables) that all

the bound variables in the formula ~U(x,,,) are distinct. Let these variables be

X:,l, X:k. The algebraic query QP,O~ on the result of Q~O~ consists of the

operation

Wprod + @(w I>..., ‘h ~‘dol~).

For the purpose of defining QA, we label the edges with tail wP,O~, as

follows. The ith edge with tail wP,O~ will be labeled x~o,. These labels are used

only to define the algebraic query, and are not themselves part of the query.

Their purpose is to tell us which bound variable the edge corresponds to.

In certain cases, when we create a new node using some algebraic opera-

tion, the outgoing edges from the new node willl inherit the labels of the

corresponding edges whose head is one of the arguments of the operator. We

only use this inheritance in cases when it is unambiguous, i.e., in cases when

all the arguments have the same labeling. The operations for which labels

will be inherited are a, ~J, difference and union. When we use the projection

operation the new edges will also inherit the labeling of the corresponding

edges whose head is the argument of the projection.

Arrange all the well-formed subformulas of +U(x,.) in a list Vl, il~,

() and *, precedes #j whenever it is a subformula of @j.where ~~ = ~U x UJ~

For each such subformula, we define an extended algebraic query Qo! on

the result of Q,,,,_,. Q$, is a query on the result of QP,O~. The node W,ll M of

type (B, k + 1, Wj,, w),, w~O~), and contains, intuitively, those tuples

(ll,.. ., 1~, ld) for which RI,,, @l(ll, 1~, id). The edges with tail WJ will be

labelled with the variables that might be free in *—i.e., those that have not

yet been bound by q. The definition of Qot is as follows.

(1) 4, is X~,cdX~b. Q+, is W*L + ~.,,(u+md).

(2) 4, is x~,z~xw. Q$, is W{,, - CZ”k + l(wP,o~).

(3) 4, is Xw f3xw. Qtit iS W+, + ff~+ IO,+ ~(w,,.~).

(4) ~, is x; =, d. Q$, is U+/, - % =Cd(wpml~.

(5) L)IZis XU,U=Cd. Qti, is we, ~ O-(A~ ~)=ti~ (WPrO~).

(6) t, is ~,, v @j,. Let Al be the (ordered multi)set of edges with tail W+,, that

have the same label as some edge with tail *i,,. Let Az be the

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

408

(7)

(8)

. G. M. Kuper and M. Y. Vard!

corresponding set of edges with tail W,15,. Q$, is the following extended

algebraic query

()S1 + ~A, u+,ll

()‘2 + ‘Az ‘*,3

WI,, + U(S1, S2)

D(sl)

D(sz’)

(SI and S2 are different temporary nodes from those used above, and from

similarly named nodes used below.) Note that the way we defined Al and

Az guarantees that there is no ambiguity in labeling the edges of the

result, at least as long as the labels of the edges in Al and A2 are in

the same order. We show later that this is indeed the case.

4, is - rj. Let A be the
have the same label as

extended algebraic query

(ordered multi)set of edges with tail Wdom that

some edge with tail Zol,,. Qtil is the following

‘1 ~ ‘A(‘$dom)

w+, + s~ – W*
J

D(sl).

As in the previous case, we show that we can label the edges with tail W$,

without any ambiguity.

O, is (2x:,)(O,). Let A be the (ordered multi)set of all edges with tail w,,,,.
except f~~ the edge labeled Xfia. We show below that there mus~

be exactly one edge with this label. Q$l then consists of the algebraic

operation wtit - IIA(wti,).

L~~NfA 16. Let @ = ~, be one of these well-formed subforrnulas of 4W(XU,).

Let x ~:ul,... , XZ,J be those variables in the above list that are not bound in ~1.

Note that someabf the X;:UL’S may not actually occur in til. Then W+, is of type

(B, j ~ 1, w.,,..., w.,, Wdom). Furthermore, the tth edge with tall W@, has

head w., and is labeled with the variable x~!a,. As a consequence of this, all the

labelings of edges are in the same order, and the assumptions that

we made on the labelings when we defined the W,bt’S hold.

PROOF. The proof is a fairly straightforward induction using the definition
of W4 . The tricky case is when o, is @~lv yjj. Then the children of WO,l

correspond to the bound variables of ~,,, that are not bound in ~11 and the

children of w ,,j, to the bound variables of @,O not bound in IJJ,. Since a

variable is not bound in *JI V *J, iff it is not bound in v,, and it is not bound

in @l,, we see that the result does hold in this case.4 ❑

i Note that “not bound is not the same as “free.” A variable that is not bound in one of these
formulas is either free in this formula, or does not appear in it at all.

ACM TransactIons on Database Systems, Vol. 18. No. 3, September 1993

The Logical Data Model . 409

~EMMA 17. Let Wti, be of type (8, j, w],, w],, w~O~). Let Itiz be the result

of Q(,L on 1, let 1~ be a member of Iti$ w~O~) and let lt be a member of ItiJ Wj,)

fort =l,..., k. Then there exists an 1 in I$Jwti,) with val(l) = (11,..., lh, 1~) if

and only if PI,,, *,(11, . . . , 1~, l~). Intuitively, (11, lh, 1~) is a candidate

value iff it satisfies *,.

PROOF. A straightforward induction on the structure of 4,. ❑

The extended algebraic query Qfi~,l on the result of Q@U,consists of

WA ~ Oin(wdom , w~)

D(w~,)

D(wP,O~)

D(WdO~).

We finally define the algebraic query QA as

Qfinal OQ4 OQ$m_, OQ$l “Qp,od ‘Qdmn.

~EMMA 18. Let II be the result of QW on I and let Iz be the result of the

algebraic query Q~ on 1. Then II and Iz are isomorphic relative to S.

PROOF. First note that the schemas are equal. The only node created but

not deleted by Q~ is the node WA. This node is similar to the node w~O~, and

hence to w.

We have to show that the instances of WA and zu are isomorphic, i.e., that

at the point in evaluating the queries where we compute the instances of

these nodes, they have the same candidate values. We assume that we are at

the point in the evaluation of Q~ just before the final round of deletions.

Let val be a candidate data value for w. Extend I to an instance Iu) of

SQ by defining lU(W) = {1} and val(l) = val. Then I=IW +,.(l). Let 10, be

th~result of Q@w on I. By the second clause of Lemma 15, val is a candi~ate

data value for w~O~,) val(ld) = ual. Byand so for some ld m ~~w(wdO~ ,

Lemma 6, *IW @u(l) implies ~ltw @,.(Zd), and therefore, by Lemma 17, for

some 14 in Id (wdo~), val(l+) = val is a candidate data value for WA.
For the con~erse, suppose that val is a candidate data value for WA. Let I+u,

be the result of Q4W on I. Since val is a candidate data value for WA, for some

1+ in 14 (w+w) and some ld in ~$w(wd.~ ,) Val(l+) = (Zd) and Val(ld) = Val.

Since 14 ;S in l@W(w+U,), Lemma 15 Implies that RI +L,)(ld). Restrict I+u, to an

instance Ido~ of the schema of QdO~. Then kI,om &(Zd), and so by Lemma 6,
val(ld) = val is a candidate data value for w. ❑

Since an arbitrary logical query can be viewed as a sequence of simple

queries, we can easily extend the above construction to arbitrary queries by

concatenating the algebraic queries for the individual simple queries. If we

ACM Transactions on Database Systems,Vol 18,No 3, September 1993.

410 . G. M. Kuper and M. Y. Vardi

have an extended logical query, we have to add deletion operations to delete

those nodes in the delete set of the query. This yields the following theorem.

THEOREM 19. The extended algebraic query language and the extended

logical query language are equivalent, i.e., for every extended algebraic query

on S there exists a safe extended logical query on S and for every extended

logical query on S there exists an extended algebraic query on S such that

both queries define the same schema, and for every database instance 1 on

which the logical query is safe, the results of both queries are isomorphic

relative to S.

7. CONCLUDING REMARKS

We have described a new model of data, the Logical Data Model, that is

designed to combine the advantages of the existing data models. On the one

hand, it enables the database to describe more of the semantics of the data

than is possible using the relational model of data. On the other hand, we do

not lose the nice properties that relational databases have, in particular the

ability to query the database using equivalent nonprocedural and procedural

languages. The complexity of our query language is studied in [23, 33, 34].

Our work unifies and generalizes a long sequence of previous works on

semantic data models [1, 13–18, 21, 27, 29, 38, 37, 40, 43–46, 48]. The

preliminary publication of our results in [32], stimulated later work, [2, 30,

39]. All these models can be viewed as special cases of LDM, designed

to make certain classes of queries easier to express or more efficient to

implement.

Our model incorporates two important object-oriented features: object iden-

tity, captured by the distinction between object names and object values, and

strong typing, our types are built from the product, power, and union opera-

tions. It does not, however, incorporate other features considered important

to object-oriented databases, such as “inheritance,” “methods,” “encapsula-

tion” (see [7]). An important feature of our model is the separation of schema

and instance, unlike the models in [8, 36].
One of the features of LDM—the ability to describe cyclic data—is lacking

in the query language. This brings up two questions: Is it possible to

eliminate cycles from databases? Is it possible to add cycles to queries? The

first question is addressed in [33]. More recently, [3] shows how to extend the

query language to allow cycles in queries.

The query languages that we have described are based on the paradigm of

first-order logic. It is by now recognized that in the framework of the
relational model, first-order languages are too weak for the task of database

querying [6]. This motivated the study of more powerful query languages,

based on the paradigm of logic programming [10, 22, 42, 50]. More recently,

similar query languages have been developed for models similar to LDM [2, 3,

4, 8, 28, 35].

ACKNOWLEDGMENTS

We are indebted to Jeff Unman for some of the basic ideas underlying this

work. We would also like to thank Rick Hull, Paris Kanellakis, and Dave

ACM Transactions on Database Systems, Vol 18, No 3, September 1993.

The Logical Data Model . 411

Maier, for helpful discussions and suggestions, and the anonymous referees

for’ suggestions for improvements.

REFERENCES

1. ABITEBOUL, S., AND BIDOIT, N. Non-first normal form relations: An algebra allowing data

restructuring. JCSS 33 (1980), 361–393.

2. ABITEBOUL, S., AND BEERI, C. On the power of languages for the manipulation of complex

objects. Tech. Rep. 846, INRIA, 1988.

3. ARITEBOUL, S., AND KANELLAKIS, P. Object identity as a query language primitive. To appear

in Proceedings of the ACM Conference on Management of Data (1989).

4. ABITEBOUL, S., AND GRUMBACH, S. A rule based language with functions and sets. ACM

Trans. Database Syst. 16 (1991), 1-30.

5. ACZEL, P. Non-Well-Fowtded Sets. Stanford University, Center for Study of Language and

Information Lecture Notes, no. 14, 1988.

6. AHO, A. V., AND ULLW, J. D. Universality of data retrieval languages. In Conference

Record of the Sixth Annual ACM Symposium on Principles of Programming Languages

(1979), 110-120.

7. BANCILHON, F. Object-oriented database systems. In Proceedings of the 6th ACM Sympo-

sium on Principles of Database Systems (1987), 152–162.

8. BANCILHON, F., AND KHOSHAFIAN, S. A calculus for complex objects. In Proceedings of the 5th

ACM Symposium on Principles of Database Systems (1986), 53-60.

9. BANCILHON, F., NAQVI, S.j RAMAKRISHNAN, R., SHMUELI, O., AND TSUR, S. Sets and negation in

a logic database language (LDL1). In Proceedings of the 6th ACM Symposium on principles

of Database Systems (1987), 21–37.

10. BANCILHON, F., AND RAMAKFHSHNAN, R. AD amateur’s introduction to recursive query

processing strategies. In Proceedings of the ACM Conference on Management of Data

(Washington, 1986), 16-52.

11. CODD, E. F. A relational model of data for large shared data banks. Comm m. ACM 13, 6

(1970), 377-387.

12. CODD, E. F. Extending the database relational model to capture more meaning. ACM

Trans. Database Syst. 4 (1979), 397-434.

13. DAYAL, U., AND BERNSTEIN, P. A. On the correct translation of update operations on

relational views. ACM Trans. Database Syst. 7, 3 (1982), 381–416.

14. FURTADO, A. L., AND KERSCHBERG, L. An algebra of quotient relations. In Proceedings of the

ACM International Conference on Management of Data (Toronto, Ont., 1977), 1-8.

15. FISCHER, P. C., AND THOMAS, S. J. Operators for non-first-normal-form relations. In Proceed-

ings of the IEEE Computer Software Applications Conference (1983), 464–475.

16. GANGOPADHYAY, D., DAYAL, U., AND BROWNE, J. C. Semantics of network data manipulation

languages: an object-oriented approach. In Proceedings of the Eighth International Confer-

ence on Very Large Data Bases (1982), IEEE.

17. GRAHAM, M. H. NETS: operations and logic. In A Panache of DBMS Ideas II, F. H.

Lochovsky, Ed., 152–179. Tech. Rep. CSRG-101, Computer Systems Research Group, Univ. of

Toronto, 1979.

18. HARDGRAVE, W. T. Ambiguity in processing boolean queries on TDMS tree-structures: A

study of four different philosophies. Tech. Rep. IFSM TR-35, Univ. of Maryland, 1978.

19. HULL, R. A survey of theoretical research on typed complex database objects. In Databases,

J. Paredaens, Ed., Academic Press, 1987, 193-256.

20. HULL, R., AND KING, R. Semantic database modeling survey, applications, and research

Issues. ACM Comput. Suru. 19, 3 (Sept. 1987), 201-260.

21. HAMMER, M., AND MCLEOD, D. Database description with SDM: a semantic database model.

ACM Trans. Database Syst. 6 (1981), 351–386.

22. HENSCHEN, L. J., AND NAQVI, S. A. On compiling queries in recursive first-order databases.

J. ACM 31 (1984), 47-85.

ACM Transactions on Database Systems, Vol. 18, No. 3, September 1993.

412 . G. M Kuper and M. Y. Vardl

23.

24.

25.

26.

27.

28,

29.

30.

31.

32.

33.

34.

35.

36.

37.

38

39.

40.

41.

42.

43,

44.

45.

HULL, R , AND SU, J. Domain independence and the relational calculus. Tech. Rep. 88-64,

Univ. of Southern California, 1989.

HULL, R., AND Y.4P, C. K. The format model: A theory of database organization. J. ACM 31,

3 (1984), 518-537.

JI!COM, B. E. Application of database lo~c to database design. Tech, Rep TR-892, Univ. of

Maryland at College Park, 1979.

JACOBS, B. E. On database logic. J. ACM 29, 2 (1982), 310-332.

JAESCHKE, G., AND SCHEK, H.-J. Remarks on the algebra of non first normal form relations.

In Proceedings of the First Annual ACM Symposium on Principles of Database Systems (Los

Angeles, Calif,, 1982), 124-138.

KI~ER, M., AND LAUS~N, G. F-Logic: A higher order language for reasoning about objects,

inheritance, and scheme. In proceedings of the ACM Conference on Management of Data

(1989), 134-146.

KOBAYASHI, I An overview of the database management technology Tech. Rep, TRCS-4- 1,

Sanno College, Kanagawa, Japan, 1980, 259-11.

KORTH, H. F., ROTH, M. A., AND SILBERSCHATZ, A. Extended algebra and calculus for

non-first-normal-form relational databases. Dept. of Computer Science, TR-84-36, Univ. of

Texas at Austin, 1984.

KUPER, G. M. The logical data model: A new approach to database logic. Ph.D. dissertation,

Stanford Univ., Stanford, Calif., 1985.

KUPER, G. M., AND VARDI, M. Y. A new approach to database logic, In Proceedings of the

Third Annual ACM Sympos,um on Principles of Database Systems (Waterloo, Ont., 1984),

86-96.

KUPER, G. M., AND VARDI, M. Y. On the expressive power of the loglcal data model. In

Proceedings of the ACM International Conference on Management of Data (Austin, Tex.,

1985), 180-189.

KUPER, G. M, AND VARDI, M.Y. Onthecomplexlty ofqueries inthelogical data model. In

proceedings 2nd International Conference on Database Theory. Lecture Notes In Computer

Science, 326, Springer-Verlag, 1988, 267-280.

KUPER, G. M. Logic programming with sets J. Comput. Syst. Sci. 41, 1 (1990), 44-64.

MAIER, D. A logic for objects. In Proceedings of the Workshop on Foundation.s of Dedactiwe

Databases and LogZc Programming (Washington, D. C., 1986).

MAKJNOUCHI, A. A consideration on normal form of not-necessarily normalized relations in

the relational data model. In Proceedings of the Thu-d International Conference on Very

Large Data Bases (Tokyo, 1977), IEEE, 447-453.

MANOLA, F,, AND PIROTTE, A. CQLF—A query language for CODASYL-type databases. In

Proceedings of the ACM Ittternatlonal Conference on Management of Data (Orlando, Fla ,

1982), 94-103

OZSOYOC+LU, Z. M., OZSOYOGLU, M., AND MATOS, V. Extending relational algebra and rela-

tional calculus with set-valued attributes and aggregate functions. ACM Trans. Database

Syst. 12 (1987), 566-592.

O.ZSOYOGLU, Z. M,, AND Yum, L.-Y, A normal form for nested relations In Proceedings

Fourth Annual ACM Symposium on Principles of Database Systems (Portland, Ore,, 1985),

251-260.

PECKHAM, J,, AND MARYANSKI, F. Semantic data model. ACM C’omput S7,.7,. 20. 3 (S,pt.

1988), 153-190.

REITER, R. Deductive question answering m relational databases. In Log[c and Databases,

H. Gallaire and J. Minker, Eds.j Plenum Press, 1978, 147-177.

RAFAN~LLI, M., AND RICCI, F. L. A data definition language for a statistical database, Tech.

Rep. TR-62, IASI-CNR, July 1983.

SHIPMAN, D. The functional model and the data language DAPLEX. ACM Trans. Database

Syst. 6 (1981), 140-173.

SCHECK, H.-J., mm PISTOR, P. Data structures for an integrated data base management and

information retrieval system. In Proceedl ngs of th e IEEE Fourth International Conference on

Very Large Data Bases (1982).

ACM Transactions on Database Systems, VO1 18, No 3, September 1993

The Logical Data Model . 413

46. SMITH, J. M., AND SMITH, D. C. P. Database abstractions: Aggregation and generalization.

ACM Trans. Database Syst. 2, 2 (1977), 105-133.

47. TSICHRITZIS, D. C., AND LOCHOVSKY, F. H. Data Models. Prentice-Hall, Englewood Cliffs,

N.J., 1982.

48. TSICHRITZIS, D. C. LSL: A link and selector language. In Proceedings of the ACM Znterna-

tumal Conference on Management of Data (Washington, D, C., 1976), 123–133.

49. ULLMAN, J. D. Principles of Database Systems. Computer Science Press, Rockville, Md.,

1982.

50. ULLMAN, J. D. Implementation of logical query languages for databases. In Proceedings of

the ACM International Conference on Management of Data (Austin, Tex., 1985).

51. VARDI, M. Y. Review of “On database logic.” J. ACM 29, 2 (1982), 310–332. Zentralblatt fiir

Mathematik, 497.68061, 1983.

Received July 1989; revised July 1992; accepted August 1992

ACM TransactIons on Database Systems, Vol 18, No. 3, September 1993

