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Abstract

This paper discusses some of the issues involved in implement-

ing a shared-address space programming model on large-scale,

distributed-memory multiprocessors. While such a programming

model can be implemented on both shared-memory and message-

passing architectures, we argue that the transparent, coherent cach-
ing of global data provided by many shared-memory architectures

is of crucial importance. Because message-passing mechanisms

are much more efficient than shared-memory loads and stores for

certain types of interprdcessor communication and synchroniza-

tion operations, however, we argue for building multiprocessors

that efficiently support both shared-memory and message-passing

mechanisms. We describe an architecture, Alewife, that integrates

support for shared-memory and message-passing through a simple

interface; we expect the compiler and runtime system to cooperate

in using appropriate hardware mechanisms that are most efficient

for specific operations. We report on both integrated and exclu-

sively shared-memory implementations of our nmtime system and

two applications. The integrated runtime system drastically cuts

down the cost of communication incurred by the scheduling, load

balancing, and certain synchronization operations. We also present

preliminary performance results comparing the two systems.

1 introduction

Researchers in parallel computing generally agree that it is im-

portant to support a shared-address space or shared-memory pro-

gramming model—programmers should not bear the responsibility

for orchestrating all interprocessor communication through explicit

messages. Implementations of this programming model can be di-

vided into two broad areas depending on the target architecture.

With message-passing architectures, the shared-address space is

typically synthesized by low-level system software, while tradi-

tional shared-memory architectures offload this functionality into

specialized hardware.
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In the following section, we discuss some of the issues involved

in implementing a shared-address space programming model on

large-scale, distributed-memory multiprocessors. We provide a

brief overview and comparison of conventional implementation

strategies for message-passing and shared-memog architectures.

We argue that the transparent, coherent caching of global data

provided by many shared-memory architectures is of fundamen-

tal importance, because it affords low-overhead, fine-grained data

sharing. We point out, however, that some types of communica-

tion are handled less efficiently via shared-memory then they might

be via message-passing. Building upon this, we suggest that it

is reasonable to expect that future large-scale multiprocessors will

be built upon what are essentially message-passing communication

substrates. In turn, this suggests that multiprocessor architectures

might be designed such that processors are able to communicate

with one another via either shared-memory or message-passing

interfaces, using whichever is likely to be most efficient for the

communication in question,

In fact, the MIT Alewife machine [1] does exactly that—

interprocessor communication can be effected either through a

sequentially-consistent shared-memory interface or by way of a

messaging mechanism as efficient as those found in many present

day message-passing architectures. The bulk of this paper re-

lates early experience we’ve had integrating shared-memory and

message-passing in the Alewife machine. Section 2 overviews

implementation schemes for shared-memory. Section 3 describes

the basic Alewife architecture, paying special attention to the in-

tegration of the message-passing and shared-memory interfaces.

Section 4 provides results comparing purely shared-memory and

message-passing implementations of several components of the

Alewife runtime system and two applications. We show that a hy-

brid thread scheduler utilizing both shared-memory and message-

based communication performs up to a factor of two better than

an implementation using only shared-memory for communication.

Section 5 discusses related work. Finally, Section 6 summarizes the

major points of the paper and outlines directions for future research.

1.1 Contributions of this Paper

In this paper, we argue for building multiprocessors that efficiently

support both shared-memory and message-passing mechanisms
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for interprocessor communication. We argue that efficient sup-

port for fine-grained data sharing is fundamental, pointing out

that traditional message-passing architectures are unable to pro-

vide such support, especially for applications with irregular and

dynamic communication behavior. Similarly, we point out that

while shared-memory hardware can support such communication,

it is not a panacea either—we identify several other communica-

tion styles which are handled less efficiently by shared-memory

than by message-passing architectures. Finally, we (i) describe

how shared-memory and message-passing communication is inte-

grated in the Alewife hardware and software systems; (ii) present

some preliminary performance data obtained with a simulator of

Alewife comparing the performance of software systems using both

message-passing and shared-memory against implementations us-

ing exclusively shared-memory; and (iii) provide analysis and early

conclusions based upon the performance data.

2 Implementing a Shared-Address Space

Implementations of a shared-address programming model can be

divided into two broad areas depending on the underlying system

architecture. On message-passing architectures, a shared-address

space is typically synthesized through some combination of com-

pilers and low-level system software. In traditional shared-memory

architectures, this shared-address space functionality is provided

by specialized hardware. This section gives a brief comparison of

these implementation schemes and their impact on application per-

formance. We conclude that the efficient fine-grained data sharing

afforded by hardware implementations is of fundamental impor-

tance for some applications, but also point out that some types

of communication are handled less efficiently via shared-memory

hardware then they could be via explicit message-passing. In either

case, we assume that the physical memory is distributed across the

processors.

2.1 Anatomy of a Memory Reference

When executing a multiprocessor application written assuming a

shared-address space programming model, the actions indicated

by the pseudocode in Figure 1 must be taken for every shared-

address space reference. The pseudocode assumes that locally

cached copies of locations can exist. (If shared-data caching is not

supported, the first test is eliminated.) The most important parts of

the code in Figure 1 are the two “local/remote” checks.

The localh-emote check is the essence of the distinction be-

tween shared-memory and message-passing architectures. In the

former, the instruction to reference memory is the same whether the

object referenced happens to be in local or remote memory; the lo-

cab’remote checks are facilitated by hardware support to determine

whether a location has been cached (cache tags and comparison

logic) or, if not, whether it resides in local or remote memory (lo-

calhemote address resolution logic). If the data is remote and not

cached, a message will be sent to the remote node to access the data.

Although the first test is unnecessary if local caching is disallowed,

shared-address-space-reference(locat ion)

if currently-cached? (lo cat ion) then

//satisfy request horn cache

load-from-cache( locat ion)

elsif is-local-address? (locat ion) then

//satisfy request from local memory

load-from-local-memory(l ocat ion)

else

//must load fi-om remote memory; send remote

//read request message and invoke any actions

//required to maintain cache coherency

Ioad-from-remote-memory (locat ion)

Figure 1: Anatomy of a shared-address space reference.

the second test is still required to implement a shared-address space

programming model. Because shared-memory systems provide

hardware support for detecting non-local requests and sending a

message to fetch the data from the location, a single instruction can

be used to access any shared-address space location, regardless of

whether it is already cached, resident in local memory, or resident

in remote memory.

Message-passing architectures, on the other hand, do not pro-

vide hardware support for these local/remote checks. Hence, they

cannot use a single instruction to access locations in the shared-

address space. Rather, they must implement the pseudocode of

Figure 1 entirely in software.

The actions specified in Figure 1 maybe performed by the pro-

grammer, compiler, runtime system, or hardware. For simplicity,

assume that there are two types of applications: static and dynamic.

In static applications, the control flow of the program is essentially

independent of the values of the data being manipulated. Many

scientific programs fit into this category. In dynamic applications,

on the other hand, control flow is strongly dependent on the data

being manipulated. Most real programs will lie somewhere be-

tween these two extremes, having some parts that are dynamic and

others that are static. Data sharing in programs can also be fine- or

coarse-grained.

Through a great deal of hard work, a programmer can often

eliminate the overhead incurred by localhemote checks shown in

Figure 1 by sending explicit messages. The fixed costs of such

operations are typically high enough, however, that for efficient ex-

ecution, the messages must be made fairly large. The result is that

the granukwity at which data sharing can be exploited efficiently

is quite coarse. For static programs with sufficiently large-grained

data sharing, these explicit messages are like assembly language:

if done well, they always provide the best performance. However,

as with assembly language, it is not at all clear that most pro-

grammers are better off if forced to orchestrate all communication

through explicit messages. For static applications which share data

at too tine a grain, even if overhead related to local/remote checks

can be eliminated, performance suffers because messages typically
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aren’t large enough to amortize any fixed overheads inherent in

message-based communication. It is worth noting, however, that

for architectures like iWarp [4] which in effect support extremely

low overhead “messaging” for static communication patterns, this

is not a problem.

Optimizations similar to those a programmer might use to elim-

inate the overhead of Iocai/remote checks can be applied by a com-

piler. There has been a great deal of work in this area for scientific

programs written in various dialects of FORTRAN and targeted at

message-passing machines [5, 11, 14, 21, 24]. Of course, the con-

straints are the same as when the optimizations are programmer ap-

plied: applications must be primarily static and only coarse-grained

data sharing can be exploited efficiently.

For dynamic applications, the compiler can’t help much. It is

usually not possible to know a priori (at compile time) whether

or not a particular reference will be to local or remote memory.

In such a case, the only way to achieve a shared-address space

paradigm on message-passing architectures is essentially by exe-

cuting something like the code in Figure 1 for every shared-address

space reference in an application. This is typically done by having

a low-level software layer that synthesizes a global address space,

possibly also maintaining a cache of some sort. This software layer

adds significant overhead to every shared-address space reference,

even when no communication is necessaiy. Herein lies the primary

advantage of shared-memory architectures: unlike shared-address

space implementations on message-passing architectures, a shared-

memory architecture will perform well on dynamic programs that

re-use data because all data is automaticrdly cached. If the data is not

in the cache, but is in local memory, it will be automatically fetched

into the cache. To get good performance on a message-passing

architecture, the programmer or compiler must handle caching ex-

plicitly in order to generate the proper code, i.e. the program must

be static. It is for these reasons that we believe that some hardware

support for shared-memory programs is important; the fundamental

hardware mechanism is coherent caching of global addresses.

Note that from this perspective, systems like [22] and Active

Messages [23] provide just an efficient messaging interface-an

implementation of a shared-address space programming model on

top of such systems will face the same problems as those described

above for implementations on message-passing architectures.

2.2 Defects of Shared-memory

The previous section discussed the aspects of application behavior

that benefit from hardware support for shared-memory: dynamic

memory reference behavior and fine-grain data sharing. The support

for these behaviors have a cost, however, when the data sharing is

coarse-grained or something is known statically about how shared

data will be accessed. We enumerate below three scenarios in which

we expect shared-memory to be less effective than message based

communication n:

Coarse granularity When a large chunk,of data is to be shared,

the cost of transferring the data from one processor to another must

be incurred. The most efficient mechanism is a block transfer where

all of the data is sent in a single message. If the copy is done with

loads and stores of shared-memory, more network and memory

bandwidth is required because of the fixed overhead associated

with each shared-memory transaction. Section 4 contains several

examples and suggests why it might be better sometimes to use

shared-memory for copying in spite of these costs.

Known communication patterns Coherent caches on a mul-

tiprocessor work well when data is either read-only or is accessed

many times on a single processor before being accessed by other

processors. Frequent writes on different processors can cause poor

performance because they make caching ineffective and lead to ad-

ditional overhead due to invalidations or updates that must be sent

over the network. Furthermore, in many cache coherence protocols,

in order to acquire a cache line that is dirty in another processor’s

cache, that data must be communicated through a home or interme-

diate node instead of being passed directly to the requester. This

is less efficient than communicating via direct point-to-point mes-

sages, as is possible when communication patterns are well known.

Combining Synchronization with Data Transfer A purely

shared-memory implementation typically generates separate mes-

sages for communicating synchronization events and for trans-

ferring any associated data. Such transfers often occur during

producer-consumer communication. While the latency associated

with data transfer can often be tolerated through mechanisms like

weak ordering and prefetching, the latency associated with the syn-

chronization signal itself is hard to overlap. The central problem

in overlapping the latency of synchronization signals lies in the

inability of the consumer to predict exactly when to request a syn-

chronization objec~ premature prefetching of the synchronization

object can lead to even worse performance. A message from the

producer to the consumer bundling both synchronization and data

and informing the consumer of the availability of data is the natural

mechanism in such situations. Section 4.3 provides an example of

this.

We argue that to get good performance with a tractable pro-

gramming model on a wide variety of applications, an architec-

ture must integrate hardware support for both shared-memory and

message-passing. The software system antior programmer can then

choose the appropriate mechanism based on cost. Such an archi-

tecture has been designed at MIT. The next section describes how

shared-memory and message-passing are integrated in the Alewife

machine. We then investigate the extent to which we can use

Alewife’s message-passing functionality to address the defects of

shared-memory described above.

3 Architectural Interfaces for Messages

Most distributed shared-memory machines are built on top of an

underlying message-passing substrate [1, 9, 13]. Therefore any ad-

ditional cost to support both message-passing in addition to shared-

memory must only be paid at the processor-network interface. In
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Figure 3: A shared-memo~ interface.

this section, we describe the manner in which Alewife integrates

shared-memory and message-passing communication facilities; we

provide this detail in part to demonstrate that the complexity of

integrating both message-passing and shared-memory is not unrea-

sonable. See [12] for additional details.

Figures 2 and 3 show typical interfaces provided by message-

passing multicomputers and shared-memory machines, respectively.

In the message-passing version, the processor has direct access to

the network and can send (or receive) packets directly into (or from)

the network. Messages from the network are placed into queues

accessible by the processo~ the contents of these queues can then

be accessed via conventional loads and stores or register ops, de-

pending on whether the queues are memory-or register-mapped.

Shared-memory interfaces, on the other hand, provide a hard-

ware layer between the network and the processor. This layer

typically translates certain loads and stores into messages to other

nodes; it models the shared-memory programming paradigm by ab-

stracting away the communication layer. The presence of this layer

prevents the processor from directly accessing the network.

Recognizing that shared-memory machines are built on top of a

message-passing substrate, Alewife integrates direct network access

with the shared-memory framework as depicted in Figure 4. In a

sense, the machine allows controlled breaking of the shared-memory

abstraction by the programmer, runtime system, or compiler when

doing so can yield higher performance. In fact, Alewife’s coherence

protocol, LimitLESS directories [6], relies on the processor’s ability

to directly send and receive coherence packets into the network.

Whh Alewife’s integrated interface, a message can be sent with

just a few user-level instructions. A processor receiving such a

message will trap and respond either by rapidly executing a mes-

sage handler or queuing the message for later consideration when

<---———- ---------- _=
I I

! Processor I\________ ----------

24
/’

------ ------
‘1( Shared-Memory Hardware ,

1.—— —_— _ --- —-- z

N 11__ ——— —— —-———-———- _

Network
be ___________________ /

Figure 4: Alewife’s integrated interface.

an appropriate message handler gets scheduled. Scheduling and

queuing decisions are made entirely in software.

The Alewife hardware provides the following high-level inter-

face for integrating messages and coherent shared-memory to the

software system. The runtime system provides other higher-level

abstractions built upon this interface (e.g. remote thread invocation

and barrier synchronization) to compiler writers and application

programmers.

1.

2.

3.

Coherent shared-memory loads and stores: These operations,

implemented as single processor instructions, comprise the

traditional shared-memory operations, They invoke suitable

coherence actions when multiple cached copies of a memory

location exist.

Processor-to-processor message: On the source side, this

operation allows a processor to write packets directly into a

network queue; it is implemented using a sequence of proces-

sor instructions described below. At the destination, message

arrival interrupts the processor and invokes a handler which

can examine the data in the packet. It takes 5 cycles to get

into the message handler. These messages can be used for

efficient register-to-register communication between proces-

sors.

Source-and-destination-coherent data transfer: A processor

executing this operation describes a region of memory on the

local (source) node to be sent in a single message to some

region of memory on a remote (destination) node. The data

transfer is achieved in a way that leaves the source and desti-

nation caches consistent with their respective local memories.

Such a transfer takes no action on copies of the source or des-

tination data present in other caches. These messages can

be used for coarse-grained bulk (memory-to-memory) data

transfer and invoke DMA facilities at the source and destina-

tion.

The processor-to-processor message andthedata-transfer mech-

anisms are both implemented using a single low-overhead interface

to the network. In fact, the interface describes a generic message

with the combined characteristics of processor-to-processor mes-

sages and bulk data transfer.
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Figure 5: Packet descriptor format.

The network interface includes specifications at the source and

at the destination. At the source, the network interface permits

messages to be sent through a two phase process: describe then

launch. Description proceeds by writing directly to registers on

Alewife’s network coprocessor, or Communications and Memory-

Management Unit (CMMU). These writes proceed at the same

speed as cached writes. The resulting descriptor, depicted in Fig-

ure 5, can be up to 16 words long. The descriptor consists of a

variable number of explicit operands that will be placed at the head

of the message followed by a number of address-length pairs de-

scribing data to be taken directly from memory and concatenated

to the end of the packet. The first operand must specify the desti-

nation and a message type, while the remaining words are software

defined.

Once a packet has been described, it is launched via an atomic,

single-cycle instruction. The encoding of the launch instruction

specifies both the number of explicit operands and the number

of address-length pairs. Processor-to-processor messages specify

only explicit operands, while bulk data transfer messages utilize

only address-length pairs. The multiple address-length pairs allow

multiple source regions of memory to be sent in a single packet. A

single message with both explicit operands and multiple address-

length pairs can also be sent. Both the user and supervisor are

permitted to send messages.

On the destination side, for efficient reception of messages,

the Alewife interface provides a 16-word, sliding window into the

network input queue. On reception of a message, the CMMU

interrupts the processor (unless the processor has masked message

interrupts) while making the first 16 words of the packet visible in

the reception window. The processor can examine words within

this window by reading coprocessor registers; as with the output

interface, these reads complete at the speed of a cached memory

access.

Once the processor has examined the packet, it can execute a

special coprocessor storeback instruction to remove data from the

window. User code may dispose of user-generated messages. Two

separate fields are encoded directly in the storeback instruction.

First is the number of words to be discarded fmm the head of the

window. Second is the number of words (following those discarded)

to be stored to memory via DMA. If this option is chosen, the

processor must write the starting address for DMA to a special

controller register before issuing the storeback instruction. Multiple

storeback instructions can be issued for a single packet to scatter it

to memory. Either of these storeback fields can contain a special

“infinity” value which denotes “until the end of the packet”.

The Alewife CMMU has been completely implemented and

is in the final stages of testing. We expect to have small proto-

type Alewife systems (four to 16 nodes) operational sometime this

year. These systems will utilize nodes clocked at 33 MHz, coherent

caches, and a two-dimensional mesh interconnect.

4 Results

This section provides results compting the performance of the

shared-memory and message-passing implementations of several

library routines, our runtime system, and one application.

4.1 Experimental Environment

The results presented in this paper were obtained through the use of a

detailed machine simulator. This simulator provides cycle-by-cycle

simulation of all components of Alewife. Our original simulator

implementation targeted desktop SPARC- and MIPS-based work-

stations; we have also developed a version of the simulator which

runs on Thinking Machines’ CM-5 multiprocessors. In the latter

implementation, each CM-5 node simulates the processor, memory,

and network hardware of one or more Alewife nodes. The CM-5

port of our simulator has proved invaluable, especially for running

simulations of large Alewife systems (64to512 nodes).

4.2 Combining Tree Barriers

In order to implement barrier synchronization on Alewife, we use a

combining tree scheme [16]. In such a scheme, a k-my tree with n

leaves is laid out across then processors participating in the barrier

such that exactly one tree leaf resides on each processor. Upon

entering the barrier, a processor activates the leaf node of the tree,

which in turn sends an arrival signal to its parent. Each internal

node issues an arrival signal to its parent after arrival signals have

been received from all its children. When the root of the tree has

received arrival signals from all its children, it then issues wakeup

signals to all its children. Internal nodes pass such wakeup signals

on to all of their children. Once a wakeup signal arrives at a leaf

node, the user thread which had been running on that processor

before the barrier is allowed to continue execution.

In principle, only a single message need be sent to signal each

combining tree arrival or wakeup. In a cache-coherent shared-

memory implementation, arrivals and wake-ups are signaled via

memory writes; even in a carefully tuned implementation, these

writes require several messages each. By utilizing explicit messag-

ing, the ideal of a single message per event is readily achieved. The

benefit of doing so is substantial. On a 64-processor machine, our
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Figure 6: Remote thread invocation,

best shared-memory barrier implementation (utilizing a six-level

binary tree carefully crafted to minimize the total number of mes-

sage exchanges) executes in about 1650 cycles (50 psec); a direct

message-based implementation (utilizing a two-level eight-sty tree)

takes only 660 cycles (20 ,usec). By comparison, typical software

implementations (e.g. Intel DELTA and iPSC/860, Kendall Square

KSR1) take well over 400 ~sec [9].

4,3 Remote Thread Invocation

To invoke a thread on a remote processor, a pointer to the thread’s

code and any arguments must be placed atomically on the task

queue of another processor. To do so via shared-memory, the

invoking processor must first acquire the remote task queue lock

(which requires at least one network round-trip, if not more) and

then modify and unlock the queue using shared-memory reads and

writes, each of which can require multiple network messages. A

message-based implementation is substantially simpler all of the

information necessruy to invoke the thread is marshaled into a single

message which is unpacked and queued atomically by the receiving

processor. In this manner, we combine synchronization and data

transfer in a single message, as suggested in Section 2.2.

We characterize the performance of these two implementation

schemes by measuring two intervals: Tznvoker, the time from when

the invoking processor starts the operation until it is free to proceed

with other work, and TzmVOke.,the time from when the invok-
ing processor starts the operation until the invoked thread begins

nmning (see Figure 6). With our best shared-memory implemen-

tation, these times are 353 and 805 cycles, respectively (10.7 and

24.4 ,usec). With the message-basedimplementation, both times

are reduced drastically, to 17 and 244 cycles, respectively (0.5 and

7.4 Psec). Note that for both implementations, these times were

measured in the context of a complete thread scheduling and migra-

tion system; &VOke. would be substantially smaller in a minimal

system inlplementation.

4.4 Bulk Data Transfer

Memory-to-memory copy of data blocks between processors, as

might be used to perform buffered dkk I/O or when relocating

large data objects, can be implemented using either shared-memory

or message-passing. Figure 7 compares the performance of three

P

o — o no-prefetching
A...... A prefetching
❑ --- o message-passing

64 256 1024 4096

block sizs (bytes)

Figure 7: Memory-to-memory copy performance; see Section 4.4

for details.

different implementations of memory-to-memory copy. The first

two implementations (rro-prefetching and prefetching) utilize hrmd-

coded inner loops to copy data between buffers using doubleword

(eight byte) loads and stores through the shared-memory interface

(no-prefetching uses a simple copy loop; prefetching uses essen-

tially the same loop but also prefetches one cache block (16 bytes)

ahead). The third implementation (message-passing) copies data
between buffers using a single message and the CMMU’S DMA

facilities.

As expected, message-passing performs substantially better

than no-prefetching or prefetching, even for relatively small block

sizes. With 256-byte blocks, message-passing is roughly 1.5 and

2.4 times faster than no-prefetching and prefetching, respectively

(17.3 vs. 11.7 and 7.3 Mbyte/see). The benefit of message-passing

grows with larger block sizes, reaching a peak rate with four-

kilobyte blocks more than 3 and 6 times faster than no-prefetching

and prefetching, respectively (55.4 vs. 16.4 and 8.6 Mbyte/see).

In some situations, when an application fetches a large block of

data from a remote node, it will immediately “consume” that data.

A particularly simple example of this is accum, a toy application

which computes the sum of a linear array of integers which resides

on a remote node. Figure 8 compares the performance of shared-

memory and message-passing implementations of accttm. The

shared-memory implementation uses a straightforward inner loop

which prefetches one cache block ahead. The message-passing

implementation first transfers the entire array into local memory

(using the memory-to-memory copy mechanism described above)

and then performs the necessary computation entirely out of local

memory.

In this case, the message-passing implementation runs substan-

tially slower than the shared-memory implementation—ranging

from roughly twice as slow for small blocks to about 1.3 times

slower for large blocks. Given that the message-passing implemen-
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tation serializes communication and computation, this is hardly

surprising. To be fair, it might be reasonable to discount the time

spent transferring data from the remote node, for during that time

the local processor is idle and could be doing other usetid work.

Discounting this time amounts to subtracting the message-passing

curve from Figure 7 from that in Figure 8; doing so provides a curve

which rides just below the shared-memory curve in Figure 8. This is

also not surprising, given that the “compute” phase of the message-

passing implementation uses almost exactly the same inner loop as

the shared-memory implementation-the only difference being that

the shared-memory implementation has one additional instruction

(a prefetch) per loop iteration.

From this last observation we can conclude that even if we

were able to utilize the processor idle time during message transfer

(perhaps by breaking large data blocks into smaller blocks and

pipelining the transfer of and computation on those data blocks),

the message-passing implementation might perform better than the

shared-memory implementation, but only by a very smrdl amount.

We observe this effect with accum because:

b

●

4.5

accum doesn’t store the remote data it fetches for later use—

amay elements are only fetched such that they can be accu-

mulated into the global sum.

accum is a “static” application which accesses data in a

particularly regular fashion—this allows data to be prefetched

into the cache such that virtually all actual accesses to remote

data hit in the cache, effectively hiding all communication

latency.

Thread Scheduler

The Alewife rnntime system is based on lazytaskcreation[17J. This

system performs the tasks of load-balancing and dynamic partition-

ing of programs that cannot be statically partitioned effectively.
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Figure 9: grain performance on 64 processors; see Section 4.5 for

details.

As part of this research, we have implemented a version of this

rnntime system that uses message-based communication in both

searching for work and thread migration. When compared to the

original (shared-memory only) implementation, this hybrid (shared-

memory + message-passing) implementation drastically cuts down

on the communication overheads incurred by thread scheduling

and load balancing operations. We benchmarked both the original

shared-memo~ and the hybrid implementations using one synthetic

application (grain) and an adaptive numerical integration code (aq).

As described in [17], the grain application enumerates a com-

plete binary tree of depth n and sums the values found at the leaves

using a recursive divide-and-conquer structure. Before obtaining

the value found at each leaf, a delay loop of i cycles in duration is

executed. Figure 9 compares the speedup for grain obtained with

the two scheduler implementations running on 64 processors for

n = 12 and a wide range of 1. By choosing n = 12, we assure a

sufficient amount of parallelism (4,096 leaf tasks for 64 processors);

by varying 1 we can vary the “grain size” of that parrdlelism.

For very small grain size (1 = O, corresponding to a sequential

running timel of 7.1 milliseconds), the lower searching and thread

migration overheads afforded by the hybrid implementation scheme

yield considerable benefit-rain runs almost twice as fast under

the hybrid implementation (speedups of 12.0 vs. 6.3 for the hybrid

and shared-memory implementations, respectively). As grain size

1 is increased, the relative benefit of the hybrid implementation

decreases. This is as one would expect, since the fraction of time

spent in “overhead” decreases with increased grain size. Even so,

for relatively large grain size (/ = 1000 cycles, corresponding to a

‘In this paper, the sequential running time of an application is taken to be the

nmohrg time of that application when compiled for and run on a single node, Thus
sequential running time doesn’t include any scheduler or nmtime system overhead.

The speedup results shown in Figure 9 and Figure 10 me computed with respect to

sequential running time.
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Figure 10: aq performance on 64 processors; see Section 4.5 for

details.

sequential running time of 131.2 milliseconds) grain running under

the hybrid scheme still runs around 33 percent faster than under

the original shared-memo~ implementation (speedups of 48.6 and

36.4, respectively).

The aq application computes a numerical integration of a bi-

variate function over a rectangular domain. Like grain, aq utilizes

a recursive divide-and-conquer stmcture, dividing space and recurs-

ing more deeply in those regions that are not sufficiently smooth at

the current scale. Since the scale at which many integrands become

sufficiently smooth can vary significantly across the domain of inte-

gration, the call tree resulting from this recursion is often relatively

irregular. In the results presented here, we hold the integrand and

domain of integration fixed; problem size is increased by changing

the threshold for what is to be considered sufficiently smooth. Fig-

ure 10 compares the speedup for aq obtained with the two scheduler

implementations running on 64 processors; sequential running time

is used on the z-axis as a measure of problem size.

Once again, the hybrid scheduler implementation outperforms

the shared-memory implementation by roughly a factor of two for

small problem sizes. As problem size (and thus grain size) is

increased, the relative advantage of the hybrid implementation de-

creases, although for the largest problem size shown in Figure 10

(sequential running time of around 800 milliseconds), the hybrid

scheduler implementation still yields over 20 percent better perfor-

mance than the original shared-memory implementation.
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Figure 11: Jacobi SOR performance on 64 processors; see Sec-

tion 4.6 for details.

In the shared-memory implementation, this communication is ef-

fected through conventional shared-memory operations (without

prefetching); in the message-passing implementation, all commu-

nication is accomplished through the message-based memory-to-

memory copy mechanism described in Section 4.4. Figure 11 com-

pares the performance obtained with both implementations for grid

sizes of 32x32, 64x64, and 128x128 running on 64 processors.

In jacobi, the amount of data communicated with each neigh-

boring processor on each iteration is proportional to the side length

of the local grid block. Given the memory-to-memory copy and

accum results from Section 4.4, it is not surprising that the per-

formance of the shared-memory and message-passing implemen-

tations differs by such a small amount. With small grid sizes, the

shared-memory implementation of Jacobi performs slightly bet-

ter than the message-passing implementation. Since only a small

amount of data is transferred between neighboring processors when

grid size is small, this follows directly from Figure 7, where we

see that using shared-memo~ to copy small blocks of data between

nodes is mom efficient than using message-passing. For large grid

sizes, the message-passing implementation of jacobi wins out by a

small amount. In this case, much of the benefit of using messages

to copy large blocks of data is masked by increasing computation-

to-communication ratio-because computation-to-communication

ratio in jacobi scales with problem size, efficient communication

becomes less important for large problems.

5 Related Work
4.6 Jacobi SOR

Finally, we have developed both shared-memory and message-

passing implementations of jacobi, a simple block-partitioned Ja-

cobi SOR solver. In this application, processors only communicate

with one another to exchange new values for their border elements.

There have been several papers on comparing the performance of

message-passing and shared-memory for particular applications.

Martonosi andGupta[15] compare the performance of a message-

passing and a shared-memo~ implementation of a standard cell

router. However, their comparison focused on the two programming
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styles, and not on the architectural mechanisms provided by the two

styles. In contrast, our work focuses on mechanism, not program-

ming style. We argue for the use of a shared-memory programming

model, but consider a machine which integrates shared-memory

communication mechanisms with a fast message mechanism. Our

performance results compare the sole use of shared-memory mecha-

nism with an integrated approach that allows the use of both shared-

memory and message-passing mechanisms.

To our knowledge, there are no existing machines that support

both a shared-address space and a general fine-grain messaging in-

terface in hardware. In some cases where we argue messages are

better that shared-memory, such as the barrier example, a similar

effect could be achieved by using shared-memory with a weaker

consistency model. For example, the Dash multiprocessor [13, 10]

has a mechanism to deposit a value from one processor’s cache di-

rectly into the cache of another processor, avoiding cache coherence

overhead. This mechanism might actually be faster than using a

message because no interrupt occurs, but a message is much more

general.

Some shared-memory machines have implemented message-

like primitives in hardware. For example, Beck, Kasten, and

Thakkar [2] describe the implementation of SLIC—a system link

and interrupt controller chip-for use with the Sequent Balance

system. Each SLIC chip is coupled with a processing node and

communicates with the other SLIC chips on a special SLIC bus that

is separate from the memory system bus. The SLIC chips help dk-

tribute signals such as interrupts and synchronization information

to all processors in the system. Although similar in flavor to this

kind of interface, the Alewife messaging interface is built to allow

direct access into the same scalable interconnection network used

by the shared-memory operations.

Another example of a shared-memory machine that also sup-

ports a message-like primitive is the BBN Butterfly, which provides

hardware support for block transfers. In an implementation of

distributed shared-memory on this machine, Cox and Fowler [7]

conclude that an effective block transfer mechanism was critical

to performance. They argue that a mechanism that allows more

concurrency between processing and block transfer would make

a bigger impact. It turns out that Alewife’s messages are imple-

mented in a way that allows such concurrency when transferring

large blocks of data. Furthermore, the Butterfly’s block transfer

mechanism is not suited for more general uses of fine-grain mes-

saging because there is no support in the processor for fast message

handling.

Finally, it is worth noting that some message-passing machines

also provide limited support for the shared-address space program-

ming model. For example, the J-machine [8] provides a global

name space for objects and an object name cache which speeds

up (but does not eliminate) the Iocalkemote checks suggested in

Figure 1.

6 Conclusions and Future Work

In this paper, we argue that multiprocessors should provide efficient

support for both shared-memory and message-passing communica-

tion styles. We contend that implementations of a shared-address

space programming model on traditional message-passing archi-

tectures can only efficiently execute static applications that exhibit

coarse-grained data sharing. Shared-memory architectures with

hardware support for coherent caching of global data circumvent

these problems, allowing efficient execution of dynamic applica-

tions and applications that share data at a fine grain. Unfortu-

nately, in traditional shared-memory architectures, shared-memory

is the only communication mechanism available, even if a compiler,

runtime system, or programmer knows that an operation could be

accomplished more efficiently via explicit messaging; we identify

several such scenarios.

We describe how shared-memory and message-passing commu-

nication are integrated in the Alewife hardware and sofiware sys-

tems. We present preliminary results compruing the performance

of various runtime system primitives and one complete application

when implemented using exclusively shared-memory or a hybrid

approach in which communication is effected through message-

passing when appropriate. These results show performance gains

on the order of two- to ten-fold for some of the rttntime system prim-

itives and up to a factor of two for applications running under the

hybrid thread scheduler. We also show that in some cases message-

based communication is not as efficient as that through shared-

memory. From these observations, we draw the following general

conclusions about the suggested “defects of shared-memory” of

Section 2.2:

a

●

b

When transferring large blocks of data between two nodes,

using message-based communication to do so can yield a fac-

tor of three or more performance improvement overdoing so

via shared-memory, even if prefetching is used. If transferred

data is consumed immediately in a regular fashion and not

stored for later use (e.g. accum), judicious use of prefetching

can eliminate any advantage of using messaging instead of

shared-memory for data transfer.

Message-based communication is only significantly more

effective than shared-memo~ for applications with known

communication patterns when (i) problem size can be scaled

such that messages are large enough to amortize any (even

modest) fixed messaging overhead and (ii) scaling problem

size in such a manner does not increase the computation-to-

communication ratio to the point where communication costs

become insignificant (e.g. jacobi).

When message-based communication can be used to bundle

synchronization operations with data which must be oper-

ated on after successful synchronization, doing so is likely to

yield substantial performance gains over shared-memory im-

plementations of the same ti.mctionality (e.g. remote thread

invocation).
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As of this writing, we have only used explicit messaging in parts

v f the Alewife nrntime system and software libraries. We plan to

continue investigating further integration, including compile-time

“communication optimizations” and programming systems which

provide limited programmer access to both the shared-memory and

message-passing interfaces. In addition, we note that a shared-

object space with messages is the basis for implementing a par-

allel object-oriented language. In this sense shared-memory and

message-passing might be integrated at the language level by in-

tegrating object-oriented and procedural programming asinT[18,

19], CLOS [3] and, more recently, Dylan [20].
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