
Procs and Locks:

A Portable Multiprocessing Platform

for Standard ML of New Jersey*

J. Gregory Morriset t Andrew Tolmach

Carnegie MeUon University Portland State University

jgmorris@cs. cmu. edu apt@cs .pdx. edu

Abstract

We have built a portable platform for running Standard

ML of New Jersey programs on multiprocessors. It can
be used to implement user-level thread packages for multi-

processors withinthe ML language with first-class continua-
tions. The platform supports experimentation with different

thread scheduling policies and synchronization constructs.

It has been used to construct a Modula-3 style thread pack-
age and a version of Concurrent ML, and has been ported
to three different multiprocessors running variants of Unix.
This paper describes the platform’s design, implementation,
and performance.

1 Introduction

Many concurrent and parallel computations can be ex-
pressed elegantly and efficiently using collections of
lightweight threads. Both kernel-level and user-level thread
packages have become a common part of computing envi-

ronments. User-level packages can offer substantially better
performance than kernel facilities, because thread operations

do not require expensive system calls [2, 15, 23].
A user-level thread package can also provide flexibility in

choosing scheduling mechanisms and synchronization primi-
tives, especially if the package is implemented within a pow-

erful higher-level language. Wand [36] enumerated three es-

sential mechanisms for language-based multithreaded com-
putation on a uniprocessor: process saving (i.e., the ability

to remember the state of a paused thread), elementary ex-
clusion, and data protection. He showed that first-class con-

tinuations can be used to implement process saving elegantly
and simply. Elementary exclusion is trivial to achieve on a
uniprocessor, and the thread package’s internal data can be

* This research was sponsored in part by the Defense Advanced

Research Projects Agency, CSTO, under the title ‘(The Fox Project:

Advanced Development of Systems Software”, ARPA Order No. 8313,

issued by ESD/AVS under Contract No. F1962tl-91-C-0168. The

research was conducted in part while the authors were visiting AT&T

Bell Laboratories, Murray Hill, NJ. Tbe first author was supported in

part by a NSF Graduate Fellowship. The work of the second author

was conducted in part at Princeton University with support from NSF

grant C! CR-90027Z36.

Permission to copy without fee all or part of this material ia

granted provided that the copiee are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear. and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permiaaion.

4th ACM PPOPP,51931CA,USA
g 1993 ACM 0-89791 -589 -5/93 /0005 /0198... $ 1.50

protected if the implementation language provides an ab-
stract data type mechanism. Wand used Scheme [10] as his

implement ation language.

Standard ML of New Jersey (SML/NJ) is another

suitable language system for building continuation-based

uniprocessor thread packages [13, 28, 30]. Standard ML [26]
is a mostly functional programming language that provides

first-class functions (closures), compile-time typing, poly-
morphism, exceptions, garbage collection, and a powerful

module facility. The SML/NJ implementation [6, 7] sup-
ports type-safe, first-class continuations [16] and provides
asynchronous exception handling facilities in the form of sig-
nal handlers [29].

Continuation-based mechanisms can also be used to build
language-based multiprocessor thread packages that support

true parallelism. To make this possible in ML, we have ex-
tended the SML/NJ runtime system to include a multipro-

cessing platform, called MP, that makes parallel hardware
resources directly available to ML code. Our primary design

goal was to provide a platform that could be easily ported
to different architectures and/or operating systems. To this
end, we kept the interface as simple as possible. Efficiency

and elegance were also important goals.
From the point of view of a thread system, or client,

MP consists of a processor abstraction Proc and a mutex
lock abstraction Lock. Together with first-class continu-

ations, these facilities suffice to implement multiprocessor

thread packages in a machine-independent fashion. MP
has been used to build an enhanced and portable version

of ML Threads [13], a Modula-3 style thread package, and
this in turn has served as a basis for experimentation with

concurrent debugging [34, 35], a transaction system [38],
and general systems programming [11]. MP has also been
used to construct a multiprocessor prototype of Concur-
rent ML (CML) [30, 31], an ML dialect supporting threads,
channels, synchronous communication events (e.g., send, re-
ceive), and powerful event combinators (e.g., CSP-style non-

deterministic choice).
MP is intended for shared-memory multiprocessors run-

ning Unix-like operating systems. Porting MP to a new ma-
chine involves implementing only a small number of system-

dependent routines. MP has been implemented for the
Mips R3000-based Silicon Graphics (SGI) 4D/380S running

Irix, the Motorola 88100-based Omron Luna88k running
Mach, and the Intel 80386-based Sequent Symmetry run-
ning Dynix. In addition, a trivial uniprocessor implemen-
tation works on all processors that run SML/NJ, including
VAX, SPARC, and Motorola 68000.

198

http://crossmark.crossref.org/dialog/?doi=10.1145%2F173284.155353&domain=pdf&date_stamp=1993-07-01

signature THREAD =
sig

val fork : (unit -> unit) -> unit (* start new thread *)
val yield : unit -> unit (* yield processor to another thread *)

val id : unit -> int (* return own thread id *)

end

signature QUEUE =

s ig
type ‘ a queue

val create : unit -> ‘la queue

val enq : ‘a queue -> ‘a -> unit (* enqueue *)
val deq : ‘a queue -> ‘a (* dequeue *)

exception Empty (* raised on dequeue when empty *)
end

functor UniThread (Queue : QUEUE) : THREAD =
Struct

val ready : (unit cent * int) Queue.queue= Queue.crest.e ()
val current_id = ref O

val next_id = ref 1

fun reschedule (cont,id) = Queue.enq ready (cont,id)

fun dispatch () = let val (cont,id) = Queue.deq ready
in current-id := id;

throw cent ()
end

fun fork (child : unit -> unit) =

callcc (fn parent =>

(reschedule (parent, !current_id);
current-id := !next-id;

next_i.d := !next-id + 1;
child ();

dispatch))

fun yield () =
callcc(fn cent =>

(reschedule (cent, !current_id);

dispatch))

fun id () = !current-i.d
end

Figure 1: Implementing Threads in Uniprocessor SML/NJ. Some ML syntax: The keyword signature declares a module
interface specification; functor declares a parameterized module. A.x refers to element x of module A. r.mit denotes the void
type; unit->unit is the type of a procedure that takes no arguments and returns no results, and is thus executed only for its
effects. ref x constructs a mutable data object with initial contents x; its contents are fetched by the explicit dereferencing

operator ! and changed by the assignment operator :=. callcc(fn c => body) binds the “current continuation” (i. e., the
continuation of the callcc invocation) to c and executes bod~ throw c () invokes continuation c. ~a and ~la are type
variables; they appear in the types of polymorphic functions.

199

2 User-Level Threads in SML/NJ

Figure 1 shows the specification and implementation of a
simple user-level thread package in uniprocessor SML/NJ.
An ML module interface is called a signature. A sim-
ple module implementation is a structure; an implemen-
tation parameterized by another interface is a f unct or. Our

THREAD signature exports three functions: fork creates a
thread to execute a specified function and assigns it a new

integer thread identifier, and sets it running in parallel with

its parent; yield temporarily yields control of the processor
to another thread; and id returns the integer identifier of
the current thread. A thread inherits the environment of

its parent, which may contain both mutable and immutable
identifiers. This environment forms a shared memory; any
variable accessible from two threads is implicitly shared by
them. Shared access to mutable variables (ref cells) requires

a suitable mutual exclusion protocol (not shown here).
The key aspect of the implementation shown in Fig-

ure 1 is the representation of waiting threads by a queue
of first-class continuations. M aking t he queue explicit gives

us great flexibility in managing threads. The thread module
we present is a functor parameterized by a QUEUE structure

whose implementation is straightforward and is not shown

here. The QUEUE signature does not specify the queuing dis-
cipline; for example, FIFO and randomized queue implemen-
tations will both match the signature. Thus, thread schedul-

ing policy can be changed simply by varying the functor’s
argument.1

A more realistic implementation would use timer alarm
signals to preempt compute-bound threads periodically, pre-
venting them from monopolizing the processor. To imple-

ment preemption, we can set up an alarm signal handler to

invoke yield asynchronously. For brevity, preemption has
been omitted from the examples in this paper.

This continuation-based implementation is particularly

efficient in SM L/N J because creating and invoking continu-
ations is w fast as function invocation. In a system where
closures (i. e., procedure-frames) are stack allocated, captur-
ing continuations (via call cc) generally requires that the
stack be copied, since continuations might be invoked (via

throw) multiple times. SML/NJ allocates all closures on the
heap instead of on a stack and the closures are reclaimed
by the garbage collector. Thus, callcc simply allocates and

initializes a new closure without having to copy anything;
the same work is required to call an arbitrary procedure.z

On the other hand, allocating closures on the heap may

slow down ordinary execution compared to a stack-based im-
plementation. Although Appel has shown that heap aUoca-
tion can be as fast as stack allocation with respect to instruc-
tion counts [3], he ignores memory effects. This allocation

scheme is likely to be slower than a stack-based implemen-
tation for systems with small first-level caches. Thus, while
thread operations built on top of SML/NJ’s continuations
should be efficient relative to the rest of the ML computa-
tion, thread applications may not perform as well overall
under SML/NJ as under stack-baaed systems.

The heap-based approach has another significant advan-
tage over systems, such as C threads [12], that require a stack

to be allocated explicitly for each thread. Since SML/NJ

threads do not use a stack, no stack space needs to be
reserved for them. Consequently, we support the use of

1 Many ~~eful scheduling policies would require minor changes to

the signature; for example, priority queues would need a priority to

be passed to the enqueue operation.

2Functions whose call sites are all statically known can sometimes

be called with less overhesd.

signature PROC =
s ig

type proc.datum
datatype proc.state =

PS of (unit cent * proc_datum)

val acquire-proc: proc-state -> unit

exception No_More_Procs

val release_proc: unit -> ‘a

val initial_datum : proc-datum

val get-datum : unit -> proc-datum
val set_datum : proc_datum -> unit

end

signature LOCK =
s ig

type mutex_lock

val mutex_lock: unit -> rtrutex_lock

val try-lock : mutex-lock -> bool

val lock : mutex_lock -> unit

val unlock : mutex_lock -> unit

end

Figure 2: The PROC and LOCK Interfaces

hundreds or even thousands of continuation-based threads.

Since closures are garbage collected as heap objects, threads
that are unreachable can also be garbage collected.

3 MP Specification

We have extended SML/NJ to support multiprocessing by

adding new primitive facilities for processor management
and for locking. Figure 2 shows ML signatures for these
facilities. A structure Proc that implements the signature

PROC provides operations for managing processors and their
state. A structure Lock that implements LOCK provides mu-
tual exclusion among processors.

3.1 Procs

A proc is a language-level view of a kernel thread execut-

ing on a physical processor. Proc does not define a proc
datatype; rather, it contains functions that an executing

proc can call to aJter itself, or to start a new proc. Ini-
tially, a single root proc is executing on a single processor.
An existing proc can start a new proc executing in paral-
lel by invoking acquire.proc with the continuation to be
executed and a client-defined proc-datum, described below.

Typically, Proc is implemented so that the number of
available procs is equaJ to the number of physicrd proces-
sors on the machine; after this limit is reached, calls to

acquire-proc will raise the exception Nollorelrocs. How-
ever, the number of physical processors available to an
SML/NJ image can change without warning during acom-

putation, asaresult ofactivity byother users and bytheop-
crating system itself. Thus, as is usual with kernel threads,
the correspondence between procs and available physicti
processors is only an approximate one.

Function release-proc causes the caJling proc to stop
executing, and releases the current physical processor to

200

the operating system. If the client wishes to save the ex-
ecution state of the proc before releasing it, it does so by

capturing a continuation using callcc. Since acquire~roc
and release~roc require communication with the operat-

ing system, clients will wish to invoke them sparingly. To ob-
tain good performance (at the expense of other system users)

a client can call acquire-proc repeatedly when it starts up,
acquiring as many procs as possible, and hold on to them

for the duration of the computation.

3.2 Per-Proc Data

Often, a proc needs some small amount of private state. For
example, consider the ref cell containing the current. id of
the executing thread in Figure 1. In a multiprocessor setting

in which all ref cells are shared by various processors, it is
not possible to store a unique id in a single ref; instead,

each processor requires a private copy of current _id.

%-oc provides a single, programmer-defined proc-datum

for each proc. The operations get-datum and set.datum al-
low a proc to read and write its private datum. The initial

datum value for the root proc is specified by initial_datum.

Specific requirements for private data vary from client to
client. For the thread system of Figure 1, a single integer
thread identifier suffices; this integer can be stored directly in

the proc_datum slot. Clients needing to store more complex
state information can define proc_datum to be a record or
array.

3.3 Memory Management and Mutual Exclusion

All heap memory is implicitly shared among all procs; in

particular, a proc can freely read or write into heap loca-
tions allocated by another proc. To prevent access conflicts

on shared mutable variables, MP provides mute.z locks to

achieve mutual exclusion. Mutex locks are one-bit shared
memory locations that can be atomically tested and set.
They are often used as spin locks. More elaborate synchro-
nization constructs such as reader/writer locks, semaphores,
channels, etc., can be synthesized from mutex locks, refs,

and first-class continuations.
Function mutexdock returns a fresh lock in unlocked

state. try_lock attempts to lock the specified mutex lock
and immediately returns a bool indicating whether the op-

eration was successful. unlock releases a mutex lock; it may
be called by any proc (not necessarily the one that set the

lock). lock is equivalent to the following function:

fun lock S1 = while not (try _lock s1) do ()

It is included in the interface because some operating sys-
tems may provide a more efficient spin than the one shown
above (e.g., by using backoff techniques [I]).

Mutex locks are directly supported in hardware on most

current multiprocessors, typically in the form of a test-and-
set primitive. Implementations of Lock use hardware sup-

port where available to make locks as efficient as possible.

The current MP specification does not address the un-
derlying memory consistency model provided by the hard-
ware architecture; maintaining the desired degree of consis-

tency is the responsibility of the MP client. For the ma-
chines on which it is currently implemented, MP does ex-
pose enough of the low-level architecture to allow clients to
control consi~tency. However, lack of a common consistency
model can be a major problem in designing efficient, portable
client code.

3.4 1/0 and Signals

In addition to the explicit addition of Proc and Lock facili-
ties, we must specify the behavior of existing SML/NJ 1/0

and signaI handling facilities on multiprocessors.

The major 1/0 problem posed by multiprocessing is that
two procs may may perform 1/0 operations simultaneously,

possibly accessing the same runtime-system data structures.
MP takes no specific steps to prevent such conflicts since

different clients may have different locking needs. For in-
stance, our CML implementation protects the data struc-
tures by a single global lock. Other clients may wish to use
finer-grained locklng.

We use the existing SML/N J signal interface [29], adding
suitable conventions for multiprocessing. Signal ha,ndlers are
installed on a globaJ basis, i.e., all procs share the same
signal-handling functions, and aJl procs receive each deliv-

ered signal. However, masking and unmasking of signals is

controlled on a per-proc basis. There is no MP facility for

procs to signal, control, or alert one another, primarily be-

cause we found it difficult to provide a semantically uniform

interface that could be ported easily. Fortunately, these op-

erations may be simulated using timer-driven polling in the

target proc.

4 MP Applications

This section illustrates the use of MP facilities by describing
some simple client packages.

4.1 A Thread Package

Figure 3 shows a multiprocessor implementation of the sim-

ple thread signature from Figure 1.
Changes from the uniprocessor version are few and sim-

ple. When a thread is forked, the multiprocessor kernel first
attempts to allocate a new proc on which to continue run-

ning the parent thread; only if this attempt fails is the par-
ent blocked on the ready queue. Conversely, a proc calling

dk.pat ch releases itself if there are no threads available in
the ready queue. The ready queue and next-id reference

must be protected by mutex locks to avoid race conditions
between competing procs. The current-id number is stored

in the per-proc datum, as suggested above.

4.2 A Selective Communication Facility

A real thread package also requires a mechanism for com-

munication and synchronization between threads. A fairly
complicated example of such a mechanism is CSP-style se-
lective communication, described by the SELECT signature
of Figure 4. It specifies dynamically created, polymorphic

channels (>a than), a send operation that sends a value to a
channel (blocking until the value is received), and a receive
operation that takes a list of channels and “nondeterminis-

tically” chooses to receive a vaJue from one of them.
Figure 5 shows how SELECT can be implemented using

MP, refs, and continuations. The protocol is similar to

one used in our multiprocessor CML prototype. A channel
consists of a queue sndrs of sender states and a queue rcvrs
of receiver states, jointly protected by a mutex lock ch-lock.
A sender’s state consists of its continuation, its id, and the
value that it is sending. A receiver’s state consists of its con-
tinuation, its id, and a mutex lock, committed, that serves
as a flag to indicate when a sender has been determined.3

3Thi~ ~echani~m is similar to the one proposed by Ramsey [28]

201

functor MPThread(structure Proc : PROC

structure Lock : LOCK
structure Queue : QUEUE

sharing type Proc. proc.datum = int) : THREAD =

struct

val ready : (unit cent * int) Queue.queue = Queue.create ()

val ready.lock = Lock.mutex.locko

val next-id = ref 1

val next_id_lock = Lock.mutex_locko

fun reschedule (cont,id) = (Lock.lock ready_lock;

Queue.enq ready (cont,id);

Lock.unlock ready-lock)

fun dispatch () = (Lock.lock ready-lock;

let val (cont,id) = Queue.deq ready

in Lock.unlock ready-lock;

Proc.set_datum id;

throw cent ()

end handle Queue.Empty => (Lock,unlock ready-lock;

Proc.release-proco))

fun fork child =

callcc (fn parent =>

(let val current-id = Proc.get_datumo

in Proc.acquire-proc (Proc.PS(parent,current-id))

handle Proc.No_More-Procs =>

reschedule (parent,current-id)
end;

Lock.lock next_ld_lock;
Proc.set-datum (!next_ld);

next_id := !next_id + 1;
Lock.unlock next_id_lock;

child ();

dispatch))

fun yield () =

callcc (fn cent =>

(reschedule (cont,Proc.get_datumo);
dispatch))

fun id () = Proc.get-datum ()

end

Figure3: MP Threads. More ML syntax: ezpr handle em => bodginstalls bodyasthe handler for exception eznduring the

execution of ezpr.

signature SELECT =

s ig

type ‘a than

val than : unit -> ‘la than (* create a channel *)

val send : (~a than * ‘a) -> unit (* send a value to a channel *)

val receive : ,Ia ch~ list -> >Ia (* receive a value from one channel *)

end

Figure 4: Selective Communication

202

type ‘a sndr = {kont : unit cent, id : Proc. proc.datum, value: ‘a}

type ~arcvr = {kont : Ja cent, id : Proc.proc.datum, committed : Lock.mutexJock}

type ‘a than = {ch_lock : Lock,mutex_lock,

sndrs : 7a sndr IJueue.queue,

rcvrs : ‘a rcvr CJueue.queue]

fun send ({ch-lock, sndrs, rcvrs}, V) =

(Lock.lock ch-lock;

let fun loop () =

let val {kont,id,committed} = (Jueue.deq rcvrs

in if (Lock.tryJock committed) then

(Lock.umlock ch-lock;

reschedule_thread (kont,v,id))

else

loopo

end

in loopo

end handle Queue.Empty =>

callcc (fn c =>

(queue.enqsndrs {kont = c, id = Proc.get.datumo, value = v};

Lock.unlock ch-lock;

dispatch ())))

fun receive (chans: ‘la than list) =

callcc (fn c =>

let val committed= Lock.mutex_lock ()

val r = {kont = c, id = Proc.get_datmo, comml

fun loop [1 = dispatch ()

\ 100P ({ch-lock, sndrs, rcvrs}: :rest) =

(Lock.lock ch-lock;

let val {kont,id,value} = queue.deq sndrs

in if Lock.tryJock committed then

(Lock.unlock chJock;

reschedule (kont,i.d);

value)

else

(Lock.unlock ch_lock;

dispatch ())

end handle @cue.Empty =>

(queue.enq rcvrs r;

Lock.unlock ch-lock;

loop rest))

in

loop (randomize chans)

end)

ted = committed}

Figure 5: Implementing Send and Receive. Function reschedule-thread, not shown here, converts thereceiver’s ‘la cent

an~ ‘iavalu~ to auni~ cent that can be rescheduled as in Figure 3.

203

When a thread wants to send a value to a channel, it
first checks to see if a receiver is available for that channel.
If so, the sender must check that no other sender has al-

ready delivered a value to that receiver; it does so by trying
to lock the receiver’s committed lock. If the sender is suc-
cessful in obtaining the lock, it effects the communication
by rescheduling the receiver’s continuation and id along with
the value. Ifthe sender fails tolockthe receiver’s committed

lock, it looks for another receiver; if there are no more, the
sender enqueues its current state and the value it is sending

onto the channel’s sndrs queue, and passes control of the
proc to another thread by calling dispatch.

When a thread wants to receive a value from a list
of channels, it crest es a single receiver state, including a

committed lock. It then loops through the channels in
pseudo-random order, trying to find a blocked sender. If
it finds a sender, the receiver attempts to lock its own
committed lock; if successful, it effects the communication

by reading the sender’s value and rescheduling the sender for
execution. If the receiver cannot acquire its own committed

lock, some sender must have already effected the communica-
tion and re-scheduled the receiver’s continuation, so this in-

vocation of the receiver abandons its computation and passes
control of the proc to another thread by calling dispatch.

If the receiver cannot find a sender on the channel, it inserts
its state into the channel’s rcvr queue, and tries another

channel on its list; when all channels have been processed,
the receiver calls dispatch.

5 MP Implementation

The implementation of the MP platform is divided into a
generic system-independent layer, and a system-dependent

layer. The generic layer makes up the bulk of the implemen-
tation, allowing the platform to be ported easily. In adding

MP support, we attempted to minimize changes to the exist-
ing SML/N J implementation. Internally, SML/NJ supports

a range of mechanisms for access to the underlying hard-
ware and operating system [5, 6]. The compiler generates

generic machine code, which is then translated into machine-
specific instruction sequences. The generic machine model
includes generaJ-purpose registers and transfer operations,
and a set of primitive operators (primops) for arithmetic and
logic functions and specialized tasks such as callcc; primops
are translated to in-line machine-specific code. Assembly-

level functions are used for common code sequences, such
as string allocation and built-in arithmetic functions, that
are too lengthy to generate in line. The SML/N J runtime

system is written in C and uses a coroutine interface with

machine code generated from ML. ML code obtains runtime
services, such as garbage collection or 1/0, by passing con-

trol to C code. This code executes on the ordinary C stack,
accesses C global variables containing runtime flags and val-
ues, and can invoke the underlying operating system using
standard system calls.

In our MP implementation, each proc is allowed to ex-
ecute both ML and C code. The obvious alternative—
restricting C execution to a single server thread—would in-

troduce unnecessary synchronization delays. Most of the
runtime system’s global variables have become per-proc vari-
ables; a few remaining globals are shared under protection
of (internal) mutex locks.

acquireqroc and releaseqroc are implemented as
C functions. ,Since the ML runtime system must stati-
cally allocate data structures for each process, a compile-
time constant determines the maximum number of procs

that the runtime system can provide. When a client calls
acquire.proc (and the proc limit has not yet been reached),

the runtime system normally obtains a new kernel thread
from the operating system and sets it executing the specified
continuation. Alternatively, the run time system may choose
to re-use a previously released kernel thread and avoid cre-
ating a new one.

The Luna port maps procs onto kernel threads, which are

provided directly by Mach. Irix and D ynix do not provide
kernel threads per se, but do provide the ability for Unix-

style processes to share a common address space (though

by somewhat different mechanisms). Thus, for the SGI and

Sequent, each MP proc is mapped onto a distinct process.
To imdement the rmoc.datum we modified the SML/NJ

generic machine mod~l to include a new dedicated vir~ual
register. Two primops corresponding to get-datum and
set-datum were added to read and write the register. On
RISC machines that have 32 or more registers, like the

MIPS-based SGI, dedicating a register for per-proc data
scarcely affects performance [6, page 189], so the virtual reg-
ister is implemented by an actuaJ register. On architectures
with fewer registers, the datum is stored on the stack and

accessed indirectly through the stack pointer.
Mutex lock implementation is heavily dependent on un-

derlying hardware support. The Motorola 88100 provides an
atomic exchange instruction on any word in memory. Thus,

on the Luna, mutex locks are implemented as ML boolean
refs and an exchange instruction is used to implement the

try-lock routine. The Sequent has a similar facility, The
MIPS R3000 does not have a test-and-set instruction. How-
ever, the SGI provides a limited number of hardware locks,
which are implemented by a separate lock memory and bus.

The runtime system uses these to control an extensible set
of software locks implemented as ML ref cells. On all ma-
chines, the mutex lock operations try..lock and unlock are

implemented as assembly language subroutines.

Our present MP implementation uses a modification of
SML/NJ’s existing two-generation, copying garbage collec-

tor [4]. SML/NJ alJocates heap storage very frequently (ap-

proximately one word per every 3-7 instructions [6, page
196]), and thus depends on allocation being fast. Alloca-
tion is performed by in-line code; heap overflow checks are
made at “clean” points where the location of alJ live roots
is known. In adapting this system to a multiprocessor, it is
import ant to avoid proc synchronization during allocation.
This means that each proc must allocate into a separate part

of the total allocation region; all regions can be read or up-
dated by the other procs, however. When one proc fills its

share of the allocation region, it can “steal” spare memory

from other procs. When the allocation region is completely

filled and a garbage collection (GC) is required, the procs
are synchronized at clean points, the collection is performed
by one of them, and the allocation region is redivided.

6 Evaluation

To judge MP’s portability, we counted the number of lines

of code (including whitespace and comments) that make

up the system-dependent routines of each MP implementa-
tion. The SGI system-dependent code consists of 144 lines
of C code and 15 lines of assembly. The Sequent system-
dependent code consists of 267 lines of C code and 10 lines

of assembly; 115 of these lines implement restart of exported
images. The Luna system-dependent code consists of 630
lines of C code and 34 lines of assembly. However, 2]4

lines of the Luna code, which implement routines needed

204

L
ideal

?.@q

/// “m
Speedup

8 –

6 –

4 - ==___--msr

2 –

Iv
Ov I I I I I 1 I I
o 2 4 6 8 10 12 14 16

Number01Processors

Figure 6: Self-Relative Speedup for ML Threads Bench-

marks (Sequent)

to export restartable images, replace a 600 line machine-

independent module in the original SML/NJ runtime. An

additional 280 lines of the code, which emulate signals for

Mach kernel threads, replace a 101 line operating system-
independent module. For comparison, the entire SML/NJ

runtime system (version 0.75 including MP support) for a
MIPS machine, consists of approximately 6,750 lines of C
code and 650 lines of assembly.

Another indication of portability is the time it takes to

complete an implementation of the platform for a new ar-
chitecture or operating system. After the initial port to the

SGI, the Luna implementation was completed within two
days by the first author. An initial Sequent implementa-

tion was completed within a week by someone familiar with
SML/NJ but unfamiliar with MP. The current Seauent im-.
plementation took longer, primarily because of complica-
tions involved in exporting restartable images which could

have been avoided by taking the machine-specific approach
of the Luna port.

To evaluate the performance of our MP implementa-
tions, we measured benchmarks running on top of a com-
plete thread package running on top of MP. The package
was similar to that shown in Figure 3, with the addition of a

distributed run queue and a signal-based preemption mech-

anism. Shared memory locations were protect ed with user-

level mutex locks built on top of Lock mutex locks. Tests
used a 16-processor Sequent Symmetry S81 with 16 MHz In-

tel 80386 processors, running Dynix V3.1 .4. Tests used 100
MB of main memory; all measurements include garbage col-

lection time.
Figure 6 shows the self-relative speedup curves for five

applications:

● allpairs: Floyd’s algorithm for computing all shortest
paths between two nodes of a 75 node graph [27].

● rest: Computes the minimum spanning tree on 200 ran-

domly distributed points using Prim’s algorithm [27].

● abisort: An adaptive bitonic sorting algorithm [9] run
on an input of 212 integers [27].

● simple: The Simple hydrodynamics benchmark [14],

which solves a set of differential equations across a grid
of size 100 x 100, run for one time step.

● mm: Matrix multiply of two 100 x 100 integer matrices.

One armlication. mm, shows excellent self-relative. . ,,
speedup, which appears to be limited primarily by main-
memory bus contention due to SML/NJ’s heap allocation.
Separate measurements indicate that the bus has a maxi-
mum achievable bandwidth of about 25 MB/see; with 16

processors mm generates about 20 MB/see of bus traffic in

allocation aJone. Evidence that lock contention and other
parallelism issues are not at fault is given by the curve la-

beled seq, which represents the speedup obtained on p pro-

cessors by running p independent copies of a simple SML/N J

application; mm does almost as well.
Speedup for the other benchmarks is limited by other

factors, especially our sequential garbage collection strat-

egy; if garbage collection time were omitted, the maximum
speedups for abisort and allpairs would be considerably
higher, although the rough shape of their curves would be
the same. The applications with the poorest speedups lack

enough available parallelism; they leave processors idle much
of the time. For example, simple, the worst case, has av-

erage processor idle rates above 50~o for 10 processors or

more. simple also displays moderate contention for access

to the run queues and data locks; none of the other appli-
cations showed any significant lock contention. Sequential

garbage collection, idle time and Iock contention were not
significant factors in earlier experiments we conducted on the

SGI 4D/380S machine, which has much faster processors but
only slightly larger bus bandwidth;4 on that machine, main-
memory contention problems swamped all other effects.

7 Related Work and Conclusions

Although multi-threaded extensions to symbolic computing

languages already exist on several multiprocessors, our ap-
proach is distinctive because we continue to rely on first-

class continuations to represent thread state (a la Wand),

and because we stress portability of the multiprocessor plat-
form. The former aspect of our approach is attractive for
SML/NJ because continuations play a central role in the ex-

isting SML/NJ implementation; the latter aspect is consis-
tent with SML/NJ’s commitment to supporting multiple tar-
get architectures. Using continuations allows us to describe
imDortant asDects of the thread svstem. such as scheduling
poficies and ~ynchronization mec~anisrns, within M L itsefi

rather than burying them in the runtime system. Machine

portability allows us to take advantage of a wide variety of
hardware, to compare platform performance, and to make

the system more readily available for others to use.

Most existing multiprocessor implementations of sym-
bolic languages have been based on Lisp. Multihsp [19] and
Qlisp [17] provide concurrency extensions to Lisp and have

been implemented for various multiprocessors [18, 22, 25,
32]. These systems have served as the basis for substan-
tial research on uroblems such as efficient thread scheduling. L,

and avoiding excess parallelism. However, they tend to sup-
port only one primary synchronization model (e.g., futures

4 Approximately 30 MB/see. To illustrate the difference in proces-

sor speed, locking and unlocking an MP mutex takes only 6psec on

the SG1 versus 46psec on the Sequent.

205

in M ultilisp) and rely on sophistical ed run time system sup-
port; they don’t attempt to be extensible or portable.

The Lisp-based system most closely resembling ours is
STING [20, 21], a concurrent dialect of Scheme specifi-

cally intended as a substrate for building higher-level par-

allel computing environments. STING’s basic data types
are threads and virtual processors; the system provides flex-
ibility in scheduling, storage allocation and thread migra-

tion policies while attempting not to compromise efficiency.
The thread data type is simultaneously lower-level and more

complex than an SML/NJ continuation; for example, it in-
cludes a thread control block with associated stack, heap

segment, saved registers, genealogy information, and other
state. Threads are therefore expensive to create, and STING

includes several optimizations, such as “thread stealing,”
to avoid creating new threads when possible. In SML/NJ,
threads are represented by simple continuations, which cost
almost nothing until they begin executing, so there is no need

or opportunity for such optimizations. Similarly, MP has
no processor data type; clients can emulate any of STING’s

scheduling options by explicitly varying queuing disciplines.
By using an explicitly stack-based thread model, STING im-

plementations may be able to offer better performance than
our continuation-based approach. However, we believe MP

presents a simpler view of the multiprocessing environment,
which will be easier to port to new hardware and operating

system platforms.
Matthews [24] describes severaJ implementations of a

concurrent extension to Poly/ML using CS P-st yle communi-
cation operators [8]. He describes several implementations,

including one for the D EC Firefly multiprocessor. Support

for the thread and communication model is hard-wired into

the Poly/ML runtime system, and is not designed for easy
porting to different thread models or hardware platforms.

Some existing concurrent systems do stress portabil-
ity at the runtime-system level. The Portable Common
Runtime system (PCR) [37] offers portable and language-
independent facilities for threads, storage management, and
other runtime-system features. PCR’S implementation of
threads is similar to ours: user-level threads are multiplexed
on top of kernel threads. However, PCR does not allow the
thread package or its scheduling policy to be customized,

Although we have stressed simplicity and portability in

our MP implementation, better performance is also im-
portant. One critical task for the future is to improve
the present system’s poor locality of reference and conse-

quent memory bus contention. One cause of this problem
is SML/NJ’s heap-based allocation strategy for procedure

frames, which makes callcc and throw cheap relative to or-

dinary computation but re-uses memory only after garbage
collections. When the size of the collector’s ~rorn and to
spaces exceed the size of a processor’s cache, this strategy
insures a cache-miss on almost every allocation. Potentially

better strategies include using a multi-generational collec-
tor with very small young generations that can fit in the
cache, or using a stack to allocate “non-escaping” proce-
dure frames. We SJSOneed to provide more efficient access

to hardware locking facilities, though doing so will unfor-
tunately make the code generator sensitive to the target’s

operating system as well as its architecture.
Other important areas to address include concurrent

garbage collection, compiler-level support for different mem-
ory consistency models, and improved 1/0 interfaces and

processor utihzation using an operating system based on
scheduler activations [2]. Finally, some progress has recently
been made in the exploration of a semantics for a multipro-

cess SML [8, 31]. We hope to to use these results to give a
more formal semantics for MP, which would reinforce the
advantages of using Standard ML as a base language for
multiprocessing.

Acknowledgements

Lorenz Huelsbergen made the initial port of MP to the Se-

quent. Suresh Jagannathan and Jim Philbin of the NEC

Research Institute, Princeton, NJ, graciously provided ac-

cess to their SGI machine for benchmarking and profiling.
The allpairs, rest, and abisort benchmarks were adapted

from Scheme originals written by Eric Mohr; the simple
benchmark was translated into ML by Lal George.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

T. Anderson. The performance of spin lock alterna-
tives for shared memory multiprocessors. IEEE Trans-

actions on Parallel and Distributed Systems, 1(1):6–16,

Jan. 1990.

T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler activations: Effective kernel

support for the user-level management of parallelism.
In Proc. 13th ACM Symposium on Operating Systems

Principles, pages 95–109, Oct. 1991.

A. W, AppeL Garbage collection can be faster

than stack allocation. Information Processing Letters,

25(4):275-279, June 1987.

A. W. Appel. Simple generational garbage collection

and fast allocation. So@ware—Practice & Experience,

19(2):171–183, Feb. 1989.

A. W. Appel. A runtime system. Journal of Lisp and

Symbolic Computation, 3(4):343–380, Nov. 1990.

A. W. Appel. Compiling with Continuations. Cam-
bridge University Press, 1992.

A. W. Appel and D. B. MacQueen. Standard ML of
New Jersey. In M. Wirsing, editor, Third Znt’1 Symp. on

Prog. Lang. Implementation and Logic Programming,

pages 1–13, New York, Aug. 1991. Springer-Verlag.

D. Berry, R. Milner, and D. Turner. A semantics for
ML concurrency primitives. In Proceedings of the Nine-

teenth ACM Symposium on Principles of Programming

Languages, pages 119–129, Jan. 1992.

G. Bilardi and A. Nicolau. Adaptive bitonic sorting:
An optimal parallel algorithm for shared-memory ma-

chines. SIAM Journal of Computing, 18(2):216-228,
Apr. 1989.

W. Clinger and J. Rees. Revised* report on the algo-
rithmic language Scheme. LISP Pointers, IV(3) :1-55,

July-Sep. 1991.

E. Cooper, R. Harper, and P. Lee. The Fox project:
Advanced development of systems software. Technical
Report CMU-CS-91-178, School of Computer Science,
Carnegie Mellon University, Aug. 1991.

E. C. Cooper and R. P. Draves. C Threads. Tech-
nicaJ Report CM U- CS-88-154, Computer Science De-

partment, Carnegie Mellon University, June 1988.

206

[13] E. C. Cooper and J. G. Morrisett. Adding threads
to Standard ML. Technical Report CM U-CS-90-1 86,

School of Computer Science, Carnegie Mellon Univer-
sity, Dec. 1990.

[14] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy.

The SIMPLE code. Technical Report UCID 17715,
Lawrence Livermore Laboratory, Livermore, CA, Feb.
1978.

[15] T. W. Doeppner Jr. Threads: A system for the support
of concurrent programming. Technical Report CS-87-
11, Department of Computer Science, Brown Univer-

sity, June 1987.

[16] B. F. Duba, R. W. Harper, and D. B. MacQueen.

Typing first-class continuations in ML. In Conference
Record of the 18th Annual ACM Symposium on Prin-

ciples oj Programming Languages, pages 163–173, Jan.
1991.

[17] R. Gabriel and J. McCarthy. Qlisp. In J. Kowalik, edi-

tor, Parallel Computation and Computers for Artificial

Intelligence, pages 63–89. Kluwer Academic Publishers,
Boston, 1988.

[18] R. Goldman and R. P. Gabriel. Preliminary results with
the initial implementation of Qlisp. In Proceedings of

the 1988 ACM Conference on Lisp and Functional Pro-

gramming, pages 143–152, July 1988.

[19] R. H. Halstead, Jr. Multilisp: A language for concurrent

symbolic computation. ACM Trans. Prog. Lang. Syst.,

7(4):501-538, oct. 1985.

[20] S. Jagannathan and J. Philbin. A customizable sub-

strate for concurrent languages. In Proc. ACM SIG-

PLAN ’92 Conference on Programming Language De-

sign and Implementation, pages 55–67, June 1992. Pub-
lished as SIGPLAN Notices, 27(7), July 1992.

[21] S. Jagannathan and J. Philbin. A foundation for an

efficient multi-threaded Scheme system. In Pro.. 1992
ACM Conference on Lisp and Functional Programming,

pages 345–357, June 1992.

[22] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mu1-T:

A high-performance paraJlel Lisp. In ACM SIGPLA N

’89 Conference on Programming Language Design and

Implementation, pages 81–90, June 1989. Published as
SIGPLAN Notices, 24(7), July 1989.

[23] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.

Markatos. First-class user-level threads. In Proc.

1$’th ACM Symposium on Operating Systems Princi-

ples, pages I1o–121, Oct. 1991. Published as Operating

Systems Review, 25(5), Oct. 1991.

[24] D. C, J. Matthews. A distributed concurrent implemen-

tation of Standard ML. Technical Report ECS-LFCS-
91-174, Laboratory for Foundations of Computer Sci-

ence, Dept. of Computer Science, University of Edin-
burgh, Aug. 1991.

[25] J. Miller. MultiScheme: A parallel processing system

based on MIT Scheme. PhD thesis, Massachusetts In-
stitute of Technology, Aug. 1987.

[26] R. Milner, M. Tofte, and R. Harper. The Definition of

Standard ML. MIT Press, 1990.

[27] E. Mohr. Dynamic Partitioning of Parallel Lisp Pro-

grams. PhD thesis, Yale University, Aug. 1991.

[28] N. Ramsey. Concurrent programming in ML. Tech-

nical Report CS-TR-262-90, Department of Computer

Science, Princeton University, Apr. 1990.

[29] J. H. Reppy. Asynchronous signals in Standard ML.
Technical Report TR 90-1144, Department of Com-
puter Science, Cornell University, Aug. 1990.

[30] J. H. Reppy. CML: A higher-order concurrent language.
In Proceedings of the ACM SIGPLAN ’91 Conference

on Programming Language Design and Irnpiementataon,

pages 293–305, June 1991.

[31] J. H. Reppy. High-order Concurrency. PhD the-

sis, Computer Science Department, Cornell IJniversity,

Ithaca, NY, Jan. 1992. Also Cornell Univ. Computer
Science Dept. Tech. Report 92-1285.

[32] M. R. Swanson, R. R. Kessler, and G. Lindstrom. An

implementation of Portable Standard Lisp orn the BBN
Butterfly. In Proceedings of the 1988 ACM Conference

on Lisp and Functional Programming, pages 132–141,
July 1988.

[33] D. Tarditi, A. Acharya, and P. Lee. No assembly re-
quired: Compiling Standard ML to C. Technical Report

CMU-CS-90-187, School of Computer Science, Carnegie

Mellon University, Nov. 1990.

[34] A. P. Tolmach. Debugging Standard ML. PhD thesis,

Princeton University, Oct. 1992. Also Princeton Univ.
Dept. of Computer Science Tech. Rep. CS-TR-378-92.

[35] A. P. Tolmach and A. W. Appel. Debuggable concur-
rency extensions for Standard ML. In Proc. A CM/ONR

Workshop on Parallel and Distributed Debugging, pages
120-131, May 1991. Published as SIGPLA N Notices

26(12), December 1991. Also Princeton Univ. Dept. of

Computer Science Tech. Rep. CS-TR-352-91.

[36] M. Wand. Continuation-based multiprocessing. In Pro-

ceedings of the 1980 LISP Conference, pages 19–28,

Aug. 1980.

[37] M. Weiser, A. Demers, and C. Hauser. The portable
common runtime approach to interoperability. In Pro-

ceedings of the 12th ACM Symposium on Operating Sys-

tems Principles, pages 114–122, Dec. 1989.

[38] J. M. Wing, M. Faehndrich, J. G. Morrisett, and S. Net-

tles. Extensions to Standard ML to support transac-

tions. In Proceedings of the ACM SIGPLA N Workshop

on ML and its Applications, San Francisco, pages 104–

118, June 1992.

207

