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ABSTRACT

Clustering data in high-dimensions is believed to be a hard problem in general. A number of efficient
clustering algorithms developed in recent years address this problem by projecting the data into a
lower-dimensional subspace, e.g. via Principal Components Analysis (PCA) or random projections,
before clustering. Such techniques typically require stringent requirements on the separation between
the cluster means (in order for the algorithm to be be successful).

Here, we show how using multiple views of the data can relax these stringent requirements. We
use Canonical Correlation Analysis (CCA) to project the data in each view to a lower-dimensional
subspace. Under the assumption that conditioned on the cluster label the views are uncorrelated,
we show that the separation conditions required for the algorithm to be successful are rather mild
(significantly weaker than those of prior results in the literature). We provide results for mixture of
Gaussians, mixtures of log concave distrubtions, and mixtures of product distrubtions.



1 Introduction

The multi-view approach to learning is one in which we have ‘views’ of the data (sometimes in
a rather abstract sense) and, if we understand the underlying relationship between these views,
the hope is that this relationship can be used to alleviate the difficulty of a learning problem of
interest [BM98, KF07, AZ07]. In this work, we explore how having ‘two views’ of the data makes
the clustering problem significantly more tractable.

Much recent work has gone into understanding under what conditions we can learn a mixture
model. The basic problem is as follows: we obtain iid samples from a mixture of k distributions and
our task is to either: 1) infer properties of the underlying mixture model (e.g. the mixing weights,
means, etc) or 2) classify a random sample according to which distribution it was generated from.

Under no restrictions on the underlying distribution, this problem is considered to be hard.
However, in many applications, we are only interested in clustering the data when the component
distribution are “well separated”. In fact, the focus of recent clustering algorithms [Das99, VW02,
AM05, BV08] is on efficiently learning with as little separation as possible. Typically, these sepa-
ration conditions are such that when given a random sample form the mixture model, the Bayes
optimal classifier is able to reliably (with high probability) recover which cluster generated that
point.

This work assumes a rather natural multi-view assumption: the assumption is that the views
are (conditionally) uncorrelated, if we condition on which mixture distribution generated the views.
There are many natural applications for which this assumption is applicable. For example, we can
consider multi-modal views, with one view being a video stream and the other an audio stream —
here conditioned on the speaker identity and maybe the phoneme (both of which could label the
generating cluster), the views may be uncorrelated.

Under this multi-view assumption, we provide a simple and efficient subspace learning method,
based on Canonical Correlation Analysis (CCA). This algorithm is affine invariant and is able to
learn with some of the weakest separation conditions to date. The intuitive reason for this is that
under our multi-view assumption, we are able to (approximately) find the subspace spanned by the
means of the component distributions. Furthermore, the number of samples we need scales as O(d),
where d is the ambient dimension.

This shows how the multi-view framework can provide substantial improvements to the clustering
problem, adding to the growing body of results which show how the multi-view framework can
alleviate the difficulty of learning problems.

1.1 Related Work

Most of the provably efficient clustering algorithms first project the data down to some low dimen-
sional space and then cluster the data in this lower dimensional space (typically, an algorithm such
as single linkage suffices here). This projection is typically achieved either randomly or by a spectral
method.

One of the first provably efficient algorithms for learning mixture models is due to Dasgupta
[Das99], who learns a mixture of spherical Gaussians by randomly projecting the mixture onto a
low-dimensional subspace. The separation requirement for the algorithm in [Das99] is σ

√
d, where

d is the dimension and σ is the maximal directional standard deviation (the maximum variance
in any direction of one of the component distributions). Vempala and Wang [VW02] removes the
dependence of the separation requirement on the dimension of the data: given a mixture of k spherical
Gaussians, they project the mixture down to the k-dimensional subspace of highest variance, and
as a result, they can learn such mixtures with a separation of σk1/4. [KSV05] and [AM05] extend
this result to a mixture of general Gaussians; however, for their algorithm to work correctly, they
require a separation of σ√

wmin
, where again σ is the maximum directional standard deviation in

any direction, and wmin is the minimum mixing weight. [CR08] use a canonical-correlations based
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algorithm to learn mixtures of axis-aligned Gaussians with a separation of about σ∗
√

k, where
σ∗ is the maximum directional standard deviation in the subspace containing the centers of the
distributions. However, their algorithm requires the coordinate-independence property, and requires
an additional “spreading” condition, which states that the separation between any two centers should
be spread along many coordinates. All these algorithms are not affine invariant (and one an show
that a linear transformation of the data could cause these algorithms to fail).

Finally, [BV08] provides an affine-invariant algorithm for learning mixtures of general Gaussians,
so long as the mixture has a suitably low Fisher coefficient when in isotropic position. Their result
is stronger than the results of [KSV05, AM05, Das99], and more general than [CR08]; however, their
implied separation condition involves a rather large polynomial dependence on 1

wmin
. Other than

these, there are also some provably efficient algorithms which do not use projections – such as [DS00]
and [AK05].

The two results most closely related to ours are the work of [VW02] and [CR08].

1. [VW02] shows that it is sufficient to find the subspace spanned by the means of the distributions
in the mixture for effective clustering.

2. [CR08] is related to ours, because they use a projection onto the top k singular value decompo-
sition subspace of the canonical correlations matrix. They also provide a spreading condition,
which is related to the requirement on the rank in our work.

We borrow techniques from both of these papers.

1.2 This Work

In this paper, we study the problem of multi-view clustering. In our setting, we have data on a fixed
set of objects from two separate sources, which we call the two views, and our goal is to use this
data to cluster more effectively than with data from a single source.

The conditions required by our algorithm are as follows. In the sequel, we assume that the
mixture is in an isotropic position in each view individually. First, we require that conditioned on
the source distribution in the mixture, the two views are uncorrelated. Notice that this condition
allows the distributions in the mixture within each view to be completely general, so long as they
are uncorrelated across views. Second, we require the rank of the CCA matrix across the views to be
at least k, and the k-th singular value of this matrix to be at least λmin. This condition ensures that
there is sufficient correlation between the views, and if this condition holds, then, we can recover
the subspace containing the means of the distributions in both views.

In addition, for the case of mixture of Gaussians, if in at least one view, say view 1, we have that
for every pair of distributions i and j in the mixture,

||µ1
i − µ1

j || > Cσ∗k1/4
√

log(n/δ)

for some constant C, where µ1
i is the mean of the i-th component distribution in view one and

σ∗ is the maximum directional standard deviation in the subspace containing the means of the
distributions in view 1, then our algorithm can also cluster correctly, which means that it can
determine which distribution each sample came from.

This separation condition is considerably weaker than previous results in that σ∗ only depends on
the directional variance in the subspace spanned by the means — as opposed to directional variance
over all directions. Also, the only other affine invariant algorithm is that in [BV08] — while this
result does not explicitly state results in terms of separation between the means (it uses a Fisher
coefficient concept), the implied separation is rather large.

We stress that our improved results are really due the multi-view condition. We also emphasize
that for our algorithm to cluster successfully, it is sufficient for the distributions in the mixture to
obey the separation condition in one view; so long as our rank condition holds, and the separation

2



condition holds in one view, our algorithm produces a correct clustering of the input data in that
view.

2 The Setting

We assume that our data is generated by a mixture of k distributions. In particular, we assume we
obtain samples x = (x(1), x(2)), where x(1) and x(2) are the two views of the data, which live in the
vector spaces V1 of dimension d1 and V2 of dimension d2, respectively. We let d = d1 + d2. Let µj

i ,
for i = 1, . . . , k and j = 1, 2 be the center of distribution i in view j, and let wi be the mixing weight
for distribution i. Let wi be the probability of cluster i.

For simplicity, assume that data have mean 0. We denote the covariance matrix of the data as:

Σ = E[xx>], Σ11 = E[x(1)(x(1))>], Σ22 = E[x(2)(x(2))>], Σ12 = E[x(1)(x(2))>]

Hence, we have:

Σ =
[

Σ11 Σ21

Σ12 Σ22

]
. (1)

The multi-view assumption we work with is as follows:

Assumption 1 (Multi-View Condition) We assume that conditioned on the source distribution s
in the mixture (where s = i with probability wi), the two views are uncorrelated. More precisely, we
assume that:

E[x(1)(x(2))>|s = i] = E[x(1)|s = i]E[(x(2))>|s = i]

for all i ∈ [k].

This assumption implies that:
Σ12 =

∑
i

wiµ
1
i · (µ2

i )
T .

To see this, observe that

E[x(1)(x(2))>] =
∑

i

EDi [x
(1)(x(2))>] Pr[Di]

=
∑

i

wiEDi
[x(1)] · EDi [(x

(2))>]

=
∑

i

wiµ
1
i · (µ2

i )
T (2)

As the distributions are in isotropic position, we observe that
∑

i wiµ
1
i =

∑
i wiµ

2
i = 0. Therefore,

the above equation shows that the rank of Σ12 is at most k − 1. We now assume that it has rank
precisely k − 1.

Assumption 2 (Non-Degeneracy Condition) We assume that Σ12 has rank k − 1 and that the
minimal non-zero singular value of Σ12 is λmin > 0 (where we are working in a coordinate system
where Σ11 and Σ22 are identity matrices).

For clarity of exposition, we also work in a isotropic coordinate system, in each view. Specifically,
the expected covariance matrix of the data, in each view, is the identity matrix, i.e.

Σ11 = Id1 , Σ22 = Id2

As our analysis shows, our algorithm is robust to errors, so we assume that data is whitened as a
pre-processing step.
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One way to view the Non-Degeneracy Assumption is in terms of correlation coefficients. Recall
that for two directions u ∈ V1 and v ∈ V2, the correlation coefficient is defined as:

ρ(u, v) =
E[(u · x(1))(v · x(2))]√

E[(u · x(1))2]E[(v · x(2))2]
.

An alternative definition of λmin is just the minimal non-zero, correlation coefficient i.e.

λmin = min
u,v:ρ(u,v) 6=0

ρ(u, v) .

Note 1 ≥ λmin > 0.
We use Σ̂11 and Σ̂22 to denote the sample covariance matrix in views 1 and 2 respectively. We

use Σ̂12 to denote the sample covariance matrix combined across views 1 and 2. We assumed these
are obtained through empirical averages from i.i.d. samples from the underlying distribution.

For any matrix A, we use ||A|| to denote the L2 norm or maximum singular value of A.

2.1 A Summary of Our Results

The following lemma provide the intuition for our algorithm:

Lemma 1 Under Assumption 2, if U,D, V is the ‘thin’ SVD of Σ12 (where the thin SVD removes
all zero entries from the diagonal), then the subspace spanned by the means in view 1 is precisely the
column span of U (and we have the analogous statement for view 2).

This follows directly from Equation 2 and the rank assumption. Essentially, our algorithm uses
a CCA to (approximately) project the data down to the subspace spanned by the means.

Our main theorem can be stated as follows.

Theorem 1 (Gaussians) Suppose the source distribution is a mixture of Gaussians, and suppose
Assumptions 1 and 2 hold. Let σ∗ be the maximum directional standard deviation of any distribution
in the subspace spanned by {µ1

i }k
i=1. If, for each pair i and j and for a fixed constant C,

||µ1
i − µ1

j || ≥ Cσ∗k1/4

√
log(

kn

δ
)

then, with probability 1− δ, Algorithm 1 correctly classifies the examples if the number of examples
used is

c · d

(σ∗)2λ2
minw2

min

log2(
d

σ∗λminwmin
) log2(1/δ)

for some constant c.

Here we assume that a separation condition holds in View 1, but a similar theorem also applies to
View 2.

Our next theorem is for mixtures of log-concave distributions, with a different separation con-
dition, which is larger in terms of k (due to the different concentration properties of log-concave
distributions).

Theorem 2 (Log-concave Distributions) Suppose the source distribution is a mixture of log-
concave distributions, and suppose Assumptions 1 and 2 hold. Let σ∗ be the maximum directional
standard deviation of any distribution in the subspace spanned by {µ1

i }k
i=1. If, for each pair i and j

and for a fixed constant C,

||µ1
i − µ1

j || ≥ Cσ∗
√

k log(
kn

δ
)
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then, with probability 1− δ, Algorithm 1 correctly classifies the examples if the number of examples
used is

c · d

(σ∗)2λ2
minw2

min

log3(
d

σ∗λminwmin
) log2(1/δ)

for some constant c.

An analogous theorem also holds for mixtures of product distributions, with the same k depen-
dence as the case for mixtures of log-concave distributions.

Theorem 3 (Product Distributions) Suppose Assumptions 1 and 2 hold, and suppose that the
distributions Di in the mixture are product distributions, in which each coordinate has range at most
R. If, for each pair i and j and for a fixed constant C,

||µ1
i − µ1

j || ≥ CR

√
k log(

kn

δ
)

then, with probability 1− δ, Algorithm 1 correctly classifies the examples if the number of examples
used is

c · d

λ2
minwmin

log2(
d

σ∗λminwmin
) log2(1/δ)

were c is a constant.

3 Clustering Algorithms

In this section, we present our clustering algorithm, which clusters correctly with high probabil-
ity, when the data in at least one of the views obeys a separation condition, in addition to our
assumptions.

Our clustering algorithm is as follows. The input to the algorithm is a set of samples S, and
a number k, and the output is a clustering of these samples into k clusters. For this algorithm,
we assume that the data obeys the separation condition in View 1; an analogous algorithm can be
applied when the data obeys the separation condition in View 2 as well.

Algorithm 1.

1. Randomly partition S into two subsets of equal size A and B.

2. Let Σ̂12(A) (Σ̂12(B) respectively) denote the empirical covariance matrix between views 1 and
2, computed from the sample set A (B respectively). Compute the top k − 1 left singular
vectors of Σ̂12(A) (Σ̂12(B) respectively), and project the samples in B (A respectively) on the
subspace spanned by these vectors.

3. Apply single linkage clustering (for mixtures of product distributions and log-concave distribu-
tions), or the algorithm in Section 3.5 of [AK05] (for mixtures of Gaussians) on the projected
examples in View 1.

4 Proofs

In this section, we present the proofs of our main Theorem. First, the following two lemmas are
useful, whose proofs follow directly from our assumptions.

We use S1 (resp. S2) to denote the subspace of V1 (resp. V2) spanned by {µ1
i }k

i=1 (resp. {µ2
i }k

i=1).
We use S′1 (resp. S′2) to denote the orthogonal complement of S1 (resp. S2) in V1 (resp. V2).
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Lemma 2 Let v1 and v2 be any vectors in S1 and S2 respectively. Then,

|(v1)T Σ12v
2| > λmin

Lemma 3 Let v1 (resp. v2) be any vector in S′1 (resp. S′2). Then, for any u1 ∈ V1 and u2 ∈ V2,

(v1)T Σ12u
2 = (u1)T Σ12v

2 = 0

Lemma 4 (Sample Complexity Lemma) If the number of samples

n > c · d

ε2wmin
log2(

d

εwmin
) log2(

1
δ
)

for some constant c, then, with probability at least 1− δ,

||Σ̂12 − Σ12|| ≤ ε

where || · || denotes the L2-norm of a matrix (equivalent to the maximum singular value).

Proof: To prove this lemma, we apply Lemma 5. Observe the block representation of Σ in Equa-
tion 1. Moreover, with Σ11 and Σ22 in isotropic position, we have that the L2 norm of Σ12 is at
most 1. Using the triangle inequality, we can write:

||Σ̂12 − Σ12|| ≤
1
2
(||Σ̂− Σ||+ ||Σ̂11 − Σ11||+ ||Σ̂22 − Σ22||)

(where we have applied the triangle inequality to the 2x2 block matrix with off-diagonal entries
Σ̂12 − Σ12 and with 0 diagonal entries). We now apply Lemma 5 three times, on Σ̂11 − Σ11, on
Σ̂22 − Σ22 and a scaled version of Σ̂− Σ. The first two applications follow directly.

For the third application, we observe that Lemma 5 is rotation invariant, and that scaling each
covariance value by some factor s scales the norm of the matrix by at most s. We claim that we
can apply Lemma 5 on Σ̂ − Σ with s = 4. Since the covariance of any two random variables is at
most the product of their standard deviations, and since Σ11 and Σ22 are Id1 and Id2 respectively,
the maximum singular value of Σ12 is at most 1; the maximum singular value of Σ is therefore at
most 4. Our claim follows.

The lemma now follows by plugging in n as a function of ε, d and wmin 2

Lemma 5 Let X be a set of n points generated by a mixture of k Gaussians over Rd, scaled such
that E[x · xT ] = Id. If M is the sample covariance matrix of X, then, for n large enough, with
probability at least 1− δ,

||M −E[M ]|| ≤ C ·

√
d log n log( 2n

δ ) log(1/δ)
√

wminn

where C is any constant, and wmin is the minimum mixing weight of any Gaussian in the mixture.

Proof: To prove this lemma, we use a concentration result on the L2-norms of matrices due
to [RV07]. We observe that each vector xi in the scaled space is generated by a Gaussian with
some mean µ and maximum directional variance σ2. As the total variance of the mixture along any
direction is at most 1,

wmin(µ2 + σ2) ≤ 1 (3)
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Therefore, for all samples xi, with probability at least 1− δ/2,

||xi|| ≤ ||µ||+ σ

√
d log(

2n

δ
) (4)

We condition on the fact that the event ||xi|| ≤ ||µ||+ σ
√

d log( 2n
δ ) happens for all i = 1, . . . , n.

The probability of this event is at least 1− δ/2.
Conditioned on this event, the distributions of the vectors xi are independent. Therefore, we can

apply Theorem 3.1 in [RV07] on these conditional distributions, to conclude that:

Pr[||M −E[M ]|| > t] ≤ 2e−cnt2/Λ2 log n

where c is a constant, and Λ is an upper bound on the norm of any vector ||xi||. Plugging in

t =
√

Λ2 log(4/δ) log n
cn , we get that conditioned on the event ||xi|| ≤ Λ, with probability 1 − δ/2,

||M −E[M ]|| ≤
√

Λ2 log(4/δ) log n
cn . From Equations 3 and 4, we get that with probability 1− δ/2, for

all the samples, Λ ≤ 2
√

d log(2n/δ)
√

wmin
. Therefore, with probability 1− δ,

||M −E[M ]|| ≤ C

√
d log n log(2n/δ) log(4/δ)

√
nwmin

which completes the proof. 2

Lemma 6 (Projection Subspace Lemma) Let v1 (resp. v2) be any vector in S1 (resp. S2).
If the number of samples n > c d

τ2λ2
minwmin

log2( d
τλminwmin

) log2( 1
δ ) for some constant c, then, with

probability 1 − δ, the length of the projection of v1 (resp. v2 ) in the subspace spanned by the top
k − 1 left (resp. right) singular vectors of Σ̂12 is at least

√
1− τ2||v1|| (resp.

√
1− τ2||v2||).

Proof: For the sake of contradiction, suppose there exists a vector v1 ∈ S1 such that the projection
of v1 on the top k − 1 left singular vectors of Σ̂12 is equal to

√
1− τ̃2||v1||, where τ̃ > τ . Then,

there exists some unit vector u1 in V1 in the orthogonal complement of the space spanned by the top
k − 1 left singular vectors of Σ̂12 such that the projection of v1 on u1 is equal to τ̃ ||v1||. Since the
projection of v1 on u1 is at least τ̃ , and u1 and v1 are both unit vectors, u1 can be written as: u1 =
τ̃ v1+(1−τ̃2)1/2y1, where y1 is in the orthogonal complement of S1. From Lemma 2, there exists some
vector u2 in S2, such that (v1)>Σ12u

2 ≥ λmin; from Lemma 3, as y1 is in the orthogonal complement
of S1, for this vector u2, (u1)>Σ12u

2 ≥ τ̃λmin. If n > c d
τ̃2λ2

minwmin
log2( d

τ̃λminwmin
) log2( 1

δ ), for some

constant c, then, from Lemma 7, (u1)T Σ̂12u
2 ≥ τ̃

2λmin.
Now, since u1 is in the orthogonal complement of the subspace spanned by the top k − 1 left

singular vectors of Σ̂12, for any vector y2 in the subspace spanned by the top k − 1 right singular
vectors of Σ̂12, (u1)>Σ̂12y

2 = 0. This follows from the properties of the singular space of any matrix.
This, in turn, means that there exists a vector z2 in V2 in the orthogonal complement of the subspace
spanned by the top k − 1 right singular vectors of Σ̂12 such that (u1)T Σ̂12z

2 ≥ τ̃
2λmin. This implies

that the k-th singular value of Σ̂12 is at least τ̃
2λmin.

However, if n > c d
τ2λ2

minwmin
log2( d

τλminwmin
) log2( 1

δ ), for some constant c, then, from Lemma 7,

all except the top k − 1 singular values of Σ̂12 are at most τ
3λmin, which is a contradiction. 2

Lemma 7 Let n > C d
ε2wmin

log2( d
εwmin

) log2( 1
δ ), for some constant C. Then, with probability 1− δ,

the top k− 1 singular values of Σ̂12 have value at least λmin − ε. The remaining min(d1, d2)− k + 1
singular values of Σ̂12 have value at most ε.
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Proof: From Lemmas 2 and 3, Σ12 has rank exactly k − 1, and the k − 1-th singular value of Σ12

is at least λmin. Let e1, . . . , ek−1 and g1, . . . , gk−1 be the top k − 1 left and right singular vectors of
Σ12. Then, using Lemma 2, for any vectors e and g in the subspaces spanned by e1, . . . , ek−1 and
g1, . . . , gk−1 respectively, eT Σ̂12g ≥ eT Σ12g − |eT (Σ̂12 − Σ12)g| ≥ λmin − ε. Therefore, there is a
subspace of rank k− 1 with singular values at least λmin − ε from which the first part of the lemma
follows.

The second part of the lemma follows similarly from the fact that Σ12 has a min(d1, d2)− k + 1
dimensional subspace with singular value 0. 2

Now we are ready to prove our main theorem.
Proof:(Of Theorem 1) From Lemma 6, if n > C · d

τ2λ2
minwmin

log2( d
τλminwmin

) log2(1/δ), for some
constant C, then, with probability at least 1 − δ, for any vector v in the subspace containing the
centers, the projection of v onto the subspace returned by Step 2 of Algorithm 1 has length at least√

1− τ2||v||. Therefore, the directional maximum variance of any distribution Di in the mixture
along any direction in this subspace is at most (1 − τ2)(σ∗)2 + τ2σ2, where σ2 is the maximum
directional variance of any distribution Di in the mixture. When τ ≤ σ∗/σ, this variance is at most
2(σ∗)2. Since the directional variance of the entire mixture is 1 in any direction, wminσ2 ≤ 1 which
means that σ ≤ 1√

wmin
. Therefore, when n > C · d

(σ∗)2λ2
minw2

min
log2( d

σ∗λminwmin
) log2(1/δ), for some

constant C, the maximum directional variance of any distribution Di in the mixture in the space
output by Step 2 of the Algorithm is at most 2(σ∗)2.

Since A and B are random partitions of the sample set S, the subspace produced by the action
of Step 2 of Algorithm 1 on the set A is independent of B, and vice versa. Therefore, when
projected onto the top k − 1 singular value decomposition subspace of Σ̂12(A), the samples from
B are distributed as a mixture of (k − 1)-dimensional Gaussians. From the previous paragraph, in
this subspace, the separation between the centers of any two distributions in the mixture is at least

c′σ∗ · k1/4
√

log(kn
δ ), for some constant c′, and the maximum directional standard deviation of any

distribution in the mixture is at most 2σ∗. The theorem now follows from Theorem 1 of [AK05]. 2

Similar theorems with slightly worse bounds holds when the distributions in the mixture are not
Gaussian, but possess certain distance concentration properties.

The following lemma is useful for the proof of Theorem 2.

Lemma 8 Let Di be a log-concave distribution over Rd, and let S be a fixed r-dimensional subspace,
such that the maximum directional variance of Di along S is at most σ∗. If x is a point sampled
from Di, and if PS(x) denotes the projection of x onto S, then, with probability 1− δ,

||PS(x− µ1
i )|| ≤ σ∗

√
r log(

r

δ
)

Proof: From Lemma 2 in [KSV05], if v is a unit vector, and Di is a log-concave distribution, then,
for x sampled from Di,

Pr[|v>(x− µ1
i )| > σ∗t] ≤ e−t

Let v1, . . . , vr be a basis of S. Plugging in t = log( r
δ ), for all vl in this basis, with probability 1− δ

r ,
|v>l (x−µ1

i )| ≤ σ∗ log( r
δ ). The lemma now follows by observing that ||x−µ1

i ||2 =
∑

l ||v>l (x−µ1
i )||2.

2

Now the proof of Theorem 2 follows.
Proof:(Of Theorem 2) We can use Lemma 8 along with an argument similar to the first part of
the proof in Theorem 1 to show that if the number of samples

n > c · d

(σ∗)2λ2
minw2

min

log3(
d

σ∗λminwmin
) log2(1/δ)
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then, one can find a subspace such that for any vector v in the subspace containing the centers, (1)
the projection of v onto this subspace has norm at least c′.||v||, where c′ is a constant, and (2) the
maximum directional standard deviation of any Di in the mixture along v is at most 2σ∗.

We now apply Lemma 8 on the subspace returned by our Algorithm in View 1. We remark that
we can do this, because, due to the independence between the sample sets A and B, the top k − 1
singular value decomposition subspace of the covariance matrix of A across the views is independent
of B and vice versa.

Applying this Lemma and a triangle inequality, if Di is a log-concave distribution such that the
maximum directional variance of Di in S1 is σ∗, then, the distance between all pairs of points from
Di when projected onto the (k − 1)-dimensional subspace returned by Step 2 of Algorithm 1 is at
most O(σ∗

√
k log(nk

δ )) with probability at least 1 − δ. This statement implies that single linkage
will succeed (due to that the interclass distances are larger than the intraclass distances), which
concludes the proof of the theorem. 2

Finally, we prove Theorem 3. The following lemma is useful for the proof of Theorem 3.

Lemma 9 Let Di be a product distribution over Rd, in which each coordinate has range R, and let
S be a fixed r-dimensional subspace. Let x be a point drawn from Di, and let PS(x) be the projection
of x onto S. Then, with probability at least 1− δ,

||PS(x− µ1
i )|| ≤ R

√
2r log(

2r

δ
)

Proof: Let v1, . . . , vr be an orthonormal basis of S. For any vector vl, and any x drawn from
distribution Di,

Pr[|v>l (x− µ1
i )| > Rt] ≤ 2e−t2/2

Plugging in t =
√

2 log( 2r
δ ), we get that with probability at least 1− δ

r , |v>l (x−µ1
i )| ≤ R

√
2 log( 2r

δ ).
The rest follows by the observation that in the subspace returned by our algorithm, ||x − µ1

i ||2 =∑r
l=1(v

>
l (x− µ1

i ))
2, and a union bound over all r vectors in this basis. 2

Proof: (Of Theorem 3) Since the distribution of each coordinate has range R, and the coordinates
are distributed independently, for any distribution Di in the mixture, the maximum directional
variance is at most R. We can now use Lemma 9 and an argument similar to the first part of the
proof in Theorem 1 to show that if the number of samples n > c · d

λ2
minwmin

log2( d
σ∗λminwmin

) log2(1/δ),
then, one can find a subspace such that for any vector v in the subspace containing the centers, the
projection of v onto this subspace has norm at least c′.||v||, where c′ is a constant.

We now apply Lemma 9 on the subspace returned by our Algorithm in View 1. We remark that
we can do this, because, due to the independence between the sample sets A and B, the top k − 1
singular value decomposition subspace of the covariance matrix of A across the views, is independent
of B and vice versa. Applying Lemma 9 and a triangle inequality, if Di is a product distribution
where each coordinate has range R, then, the distance between all pairs of points from Di when

projected onto a specific (k − 1)-dimensional subspace is at most O(R
√

k log(nk
δ )) with probability

at least 1 − δ. This statement implies that single linkage will succeed (due to that the interclass
distances are larger than the intraclass distances), which concludes the proof of the theorem. 2
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