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Abstract 
We present a new interpretation of Gaus­
sian belief (GaBP) based on 
the "zeta function" representation of the 
determinant as a product over orbits of a 

We show that GaBP captures back­
_ orbits of the graph and consider 

how to correct this estimate by account­
ing for orbits. We show 
that the product over non-backtracking or­
bits may be as the determinant 
of the adjacency matrix 
of the graph with weights based on 
the solution of GaBP. An efficient method 
is proposed to compute a truncated correc­
tion factor including all non-backtracking 
orbits up to a specified length. 

1. Introduction 

Belief Propagation is a widely used method for infer­
ence in graphical models, We study this algorithm in 
the context of a Gaussian graphical models, There 
have been several studies of the convergence of Gaus­
sian belief propagation (GaBP) (Weiss & Freeman, 
2001; Plarre & Kumar, 2004; Moallemi & Van Roy, 
2006) as well as numerous applications (Bickson et 
aL; 2008a, 2008b, 2009), The best known sufficient 
condition for its convergence is the walk-summable 
condition (Malioutov et aL, 2006; Cseke & Heskes, 

which also provides new insights into the al­
r.prnrpt.ina it. a..'i computing 

within the graph. Our 

Preliminary work. Under review by the International Con­
ference on Machine (ICML). Do not distribute. 

aim in this present paper is to extend this graphi­
cal/combinatorial view of GaBP to include estim/'l­
tion of the determinant (partition function) of the 
Gaussian graphical modeL This work is also in~ 

spired by the loop-series correction method for be­
lief proPMation (Chertkov & 2006) thf.\.t 

extended to Gaussian graphical modols 
& 

This study leads to a new on GaBP hav­
ing close ties to graphical zeta functions (Stark & 
Terras, 1996). We find that in walk-summable 
eis the determinant may be as a prUUUCL 
over all orbits (periodic walks) of the graph. 
estimate of the determinant provided by GaBP is 
equivalent to taking the product over only the back­
tracking orbits, that is, orbits that can be embed~ 
ded as orbits in the universal cover (computation 
tree) of the graph, The remaining orbits may then 
be grouped into topological equivalence classes cor­
responding to (strictly) non-backtracking orbits (or­
bits which never backtrack). The orbit-product over 
each such equivalence class may be simply eompute~ 
from the solution of GaBP, Also, the product over al~ 
non-backtracking orbits may be interpreted as the 
determinant of a non-backtracking adjacency ma­
trix of the graph (with appropriately defined edge 
weights based on the GaBP solution). Finally, we 
propose a simple, efficient method to compute trup­
cated orbit-products all orbits up to some 
specified length and an error-bound on 

estimates. In certain cla..'iSCS (e.g.',. 
this leads to an efficient method with corp­
linear in the number of nodes and the re­


quired precision of the determinant estimate. 

truncation method may also be extended to 

variance corrections and to design an efficient pre:. 

conditioner for iterative solution of linear systems, . 




2. Gaussian Belief Propagation 

A Gaussian graphical model is a probability distri­
bution 

p(X) exp { _~xT Jx + hTx} (1) 

of random variables x E lR,n where J is a sparse, sym­
metric, positive-definite matrix, The fill-pattern of 
J defines a graph G with vertices V = {I, ... , n} 
and edges (ij) for all t 0, This defines a Markov 
model over the graph G. The partition function is 
defined by Z(h, J) ~ f dx 
to normalize the distribution. Given such a 
we may compute the mean vector J1- ~ f 
J -1 h and certain elements of the covariance matrix 
K ~ f dp(x)(x - J1-)(x J1-)T = J-l. This gener­
ally requires O(n3 ) computation using the standard 
Gaussian elimination method, If only a subset of el­
ements of K are required, the complexity of sparse 
Ga.ussian elimination may be reduced to O(nw3

) 

where w is the tree-width of the graph. In planar 
graphs, the complexity is bounded by O(n3 / 2 ). 

Gaussian belief propagation (GaBP) is a simple, dis­
tributed, iterative algorithm to es­
titnate the marginal distribution of each variable 
Xi ~ N(J1-i, Kii). It is by a set of 

~ '" '"' e +fJiJXJ defined on each 
directed arc (i, j) of the graph. The Gaussian belief 
propagation equations are: 

mij(Xj) ex: JdXi ('lj!i(Xi) II, mki(Xi)) 'l/Jij(Xi,Xj) 
kfJ 

... .,. " 
¢i\j ex;) 

1 
where 'l/Ji = e-'2 and e ·JiJXiXJ. In 

terms of (a, j3) this is equivalent to: 

aij 

where ai\j == I::k#J aki and == I::kh j3ki 
1 

(~"i\j= e-2""'i\j ). These equations are 
solved by iteratively recomputing each message 
from the other messages until convergence. The 
marginal distribution is then estimated as pbp(Xi) ex: 
'l/Ji(Xi) ilk mki(xi), which variance estimates 

K;P = (Jii + I::k aki and mean estimates J1-~P = 

K;P(hi + I::k j3ki) , In this method is equiva­
lent to Gaussian elimination, terminates after a fi­
nite number of steps and then provides the correct 

In loopy graphs, it may be viewed as 

performing Gaussian elimination in the computation 
tree (universal cover) of the graph (Plarre & Ku­
mar, 2004; Malioutov et al., 2006) for and 
may therefore fail to converge due to the infinite ex­
tent of the computation tree. If it does converge, the 
mean estimates are still correct but the variances are 
only approximate. We also obtain an estimate of the 
pairwise covariance matrix on edges {i,j} E G as 

Jii - ai\j Jij y'l
( Jij Jjj ­

In this paper, we are concerned with the BP estimate 
of the determinant Z = det K det (which is 

linked to computation of the partition func­
tion We obtain an estimate of Z from the BP 
solution as: 

Zbp 	 II Z:P II (2) 
iEV {i,j}E'G 

Z bp 	 K,bp d Zbp d Kbp N thhwere i i an ij = et (ij)'" ote at 
this only depends on the parameters a (for the re­
mainder of the paper we focus of the "zero-mean" 
version of GaBP, with h = 0, j3 = 0 and J1­
In the GaBP equations for a may be derived 

for a saddle point of the ~ 

...",,,,,",,,,,>t to a. The motivation for this form 
of estimate is that if G is a tree then there is a 

saddle-point and it then holds that Z. 
In loopy graphs, there may generally be no saddle 
point (over the real-valued messages) or multiple 
saddle-points. In walk-summable models, there ex­
ists at least one saddle-point based on the walk-sum 
fixed point of GaBP (to the best of our knowledge 
this is the only stable fIxed point of GaBP in walk­
summable models). The main objective ofthis paper 
is to this estimate and to suggest a method 
to correct it. 

Walk-Sum Interpretation Our approach in this 
paper may be considered B...'l as extension of the walk-
sum of GaBP (Malioutov et aL, 
Let J be normalized to have unit-diagonal, such 
that J I R with R having zeros along its di­
agonal. The walk-sum idea is based on the series 
K I::k Rk, which converges if peR) < 1 where 
pC R) denotes the spectral radius of the matrix R 
(the maximum modulus of the eigenvalues of R), 
This allows us to interpret Kij as a Sllm over all 
walks in the graph G which begin at node i and end 
at node j where the weight of a walk is defined as 

R 11J il(ij)EW (w) and nij(w) is a count of how 
2 many times the (in occurs in the walk. We 



write this walk-sum as Kij = Lw:i--;j RW. However, 
in order for the walk-sum to be well-defined, it must 
converge to the same value regardless of the order in 
which we add the walks. This is equivalent to requir­
ing that it converges absolutely. Thus, we say that 
R is walk-summable if Li--;j IRwl converges for all 
i,j E V. This is equivalent to the spectral condition 
that p(IRI) < 1. A number of other equivalent or 
sufficient conditions are given in (Malioutov et al., 
2006). 

In walk-summable models it then holds that vari­
ances correspond to closed walk-sums Kii 
LW:i--;i RWand means correspond to a (reweighted) 
walk-sum over all walks which end at a specific node 
Jli = LW:O--;i h*Rw (here * denotes the arbitrary 
starting point of the walk). Moreover, we may then 
interpret the GaBP message parameters (a, f3) as 
recursively computing these walk-sums within the 
computation tree (see (Malioutov et al., 2006) for 
details) I. This then implies that GaBP converges in 
walk-summable models and always converges to the 
same "walk-sum" solution independent of the order 
in which we update messages. This interpretation 
also shows that GaBP computes the correct walk­
sums for the means but only computes a subset of 
the closed walks needed for the variances. Specif­
ically, K:P only includes the backtracking walks of 
the graph, which are closed walks which may be em­
bedded as closed walks in the computation tree. The 
"missing" walks (e.g., walks which go around a cycle 
of the graph once and then stop) may be grouped 
into equivalence classes corresponding to paths of 
the computation tree connecting replicas of a node 
of the original graph. These paths of the compu­
tation tree correspond to strictly non-backtracking 
closed walks of the graph. 

3. Determinant as Orbit-Product 

Let Z(R) ~ det(I - R)-l. In walk-summable mod­
els, we may give this determinant another graphical 
interpretation as a product over orbits of a graph, 
one closely related to the so-called zeta function of a 
graph (Stark & Terras, 1996). Let G be a graph of n 
vertices and edges {i, j} for all r ij -=I- O. A walk is a 
sequence of adjacent nodes of G, or (equivalently) a 
sequence of directed edges such that the endpoint of 
each edge equals the starting point of the next edge 
in the sequence. Walks may visit the same node or 
cross the same edge multiple times and are also al­
lowed to backtrack (that is, it may step back to the 

IThis analysis assumes that the messages are initially 

preceding vertex). A walk is closed if it begins and 
ends at the same vertex. A closed walk is primiti've 
if it is not a multiple of some shorter walk. Two 
closed walks may be considered as equivalent if one 
is a periodic shift of the other. We define the or­
bits of a graph to be the set of equivalence classes of 
primitive closed walks. Thus, there is a one-to-one 
correspondence between orbits and (infinitely long) 
periodic walks. 

Theorem 1 If p(IRI) < 1 then it hold that Z(R) = 
TIe(l - Re)-l ~ TIe Ze where the product is taken 
over all orbits of G and R e = TI(i,j)Ee r~ij (f) where 
nij (f) is the number of times orbit f steps across 
edge (i, j) in one circuit of the orbit. 

Proof logdet(I - R)-l trlog(I ­
R)-l Rk R W 

tr Lk k Lclosed W TWT 
00 (RW)"" I 

Lprimitivew Lm=l mlwl = Lprimitivew TWT log(l ...., 
RW)-l = Lorbitselog(l-Re)-1 = logTIe(1-Re)-I. 
We have used the identity log det A = tr log A and 

the series expansion log(I - A)-l = L~l A:. 
Each closed walk is expressed as a multiple of a 
primitive walk. Every primitive walk w has exactly 
Iwl distinct periodic shifts. 0 

4. Zbp as Backtracking Orbit-Product 

Backtracking walks play an important role in the 
walk-sum interpretation of Gaussian belief propaga­
tion. We now derive an analogous interpretation of 
ZbP. We say that an orbit is backtracking if it may 
be embedded as an orbit of the computation tree. 

Theorem 2 If p(IRI) < 1 then Gaussian belief 
propagation converges and Zbp = TIeE£0 Ze where 
.c(fJ is the set of backtracking orbits of G. 

Before proving the theorem, we derive several useful 
lemmas. Let A = (AnAI2; A2IA22)' The Schur: 
complement of block All is A;2 = A22 - A21 AlII A 21 . 
The determinant is det A = det An det A;2' Also', 
(A;2)-1 = (A-I)22' Using these facts, it is simple 
to show: 

Lemma 1 Let R = (RnRI2; R2I R22 ), K = (I­

R)-l = (Kn K I2 ; K 2I K 22 ). Then det Kll = z~k~~). 

Then, for p(IRI) < 1, we have 

det Kn = TIe Ze II Ze 
TIeEG 1 Ze e intersects G 1 

where the resulting orbit-product is over all orbit~ 
set to zero. 3 of G which intersect the subgraph G I corresponding 



to submatrix . We may then apply this 
to interpret and Z~p as orbit-products in the 
computation tree. Let li denote the computation 
tree of the graph G with one particular copy of node 
i tnarked. Let Tij denote the computation tree with 
one copy of edge {i, j} E G marked. Then, 

Lemma 2 TIiET;:iEi Ze where the product is 
over all orbits ofTi which intersect the marked node 
i. Also, Z~f iiEivjEe Ze where the product 
is over all orbits which intersect either end­
point of the marked {i, j}. 

Pro0101 Theorem 2 Now Zbp" TI. Zbp TI.·• ., t z tJ 

can be expressed entirely in terms of orbits 
computation tree which correspond to backtracking 
orbits of the graph: 

= II zI" 
R:E£.0 

is an that gives the number of times 
£ appears in the orbit-product. It remains to show 
that Ne = 1 for each backtracking orbit. Each back­
tracking orbit traces out a subtree Te within the 
computation tree T. Let v denote the number of 
vertices in this subtree and let e denote the number 
of edges. Also, let c denote the number of cut edges 
along the boundary of the subtree. First, we count 
!:lOW many powers of appear in the orbit productni Z;p. For each vertex of we may pick this as 
the marked node in the computation tree and this 
shows one way that £ can be embedded in the com­

tree Ti of the corresponding node i of the 
original graph. Thus, the total number of multiples 
of Ze in TIi Z~P is v. Similarly, we could 
mark any edge of or of its cut edges and this 
one way to embed £ into the corresponding computa­
tion tree Tij . Thus, the product TIij Zi] contributes 

e + c powers of Ze. Lastly, the product Ilj Z;p ZJp 
(:ontains 2e + c powers of Ze. This represents the 
number of ways we may pick an ordered edge (i, j) 
in the computation tree such that the first endpoint 
i is a node of Te. The total count is then 

= v + (e + c) + c) v - e = 1 

because e = v-I for the tree 1 f;. ¢ 

Combining Theorems 1 and 2, we obtain: 

Corollary 1 Z = Zbp X TIell£.0 Ze. 

This implies that Z Zbp for trees since all orbits 
of trees are backtracking. 

Let 9 denote the girth of the graph G, defined as the 
length of the shortest of G. Then, we derive 
the GaBP error bound: 

Corollary 2 ~ Ilog I ::; """;-~e'fn;" 

Proof We use the inequality: IlogZel 

IL~o (R:)kl ::; (i1r)k £ logZe. Then, 

z~,,1 ILell£.0 Zel::; Liei~gllogZI!I ::; 

Llei~g log Ze tr ::; .¢ 

5. Non-Backtracking Orbit-Product 

In this section we show that the set of orbits omit­
ted in the BP estimate can be grouped into topo­
logical equivalence classes corresponding to non­
backtracking orbits (orbits which never backtrack) 
and that the orbit-product over each such equiva­
lence class is simply with the aid of the 
BP solution. Our ultimate goal in this section is to 
demonstrate: 

Theorem 3 Z Zbp X TI"! Z~ where the product 1"9 
over aU non-backtracking orbits of G and we define 

Z~ .... (1 - II (r:j)nij("t))-l 

(i.i)E"! 

{/:; r'
where r ij = l_~li\j and O!ki is computed 

from the solution of GaBP. 

of orbits into 
classes based on non-backtracking or­

bits. We define a map ¢ from the set of all orbits to 
the subset of non-backtracking orbits. This map is 
called the backtrack-deletion operator. Given an or­
bit £, the backtrack-deleted orbit ¢(£) is obtained by 
iteratively deleting backtracking sub-orbits within 
the orbit £. Let £ be expressed in terms of its steps: 
[(£1£2)(£2£e)'" (£L£l)]' The backtrack-deletion op­
erator removes pairs of of the form (ij) (ji) un­
til there are no more such backtracking steps. The 

irreducible orbit is then 
It can be seen that the result of the procedure is in­
variant to the order in which we delete backtracking 
sub-orbits. Thus, each non-backtracking orbit "I de­
fines an equivalence class of orbits C,,! {£I¢(£)= "I} 
which are topologically equivalent in that any or­
bit of this class may be transformed to any other 
orbit of the same class through a series of inser­
tions/deletions of backtracking orbits. Also note 
that the set of backtracking orbits CIlJ correspond 
to one such equivalence class. the set of all orbits 

4 



which reduce to the orbit 0 under the back­
track deletion procedure. The remaining orbits 
then be naturally grouped according to 
non-backtracking orbits. 

It remains to unden,tand how to efficiently compute 
the orbit-product over an equivalence class. As a 
first step toward this goal, we map all orbits of an 
equivalence class £"{ into an associated cover G"{ 
of the graph G, defined to be the unique cover of 
the graph G which contains exactly one directed cy­
cle based on the non-backtracking orbit "f. This is 
equi valent to the following construction. we 
start with a single directed graph comprised of the 
cycle I ... ILl (any duplicated nodes of the 
orbit map to distinct nodes in this directed cycle). 

for each node Ik of this graph, we attach 
a copy to the computation tree 1~k\"{k+l' obtained 
by taking the full computation tree T"{k rooted at 
node Ik and deleting the subtree beneath the branch 
(,k, Ik+ d incident to the root. This construction is 
illustrated in Figure I(a,b) for the graph G = K4 
and orbit I 1(12)(23)(31 )l. Note that edges of the 
cycle are "one-way" and those within each subtree 
are "two-way". This defines a cover of G in the sense 
that the set of outward edges at each node of G"{ is 
isomorphic to the outward edges at the correspond­
ing node of G. The importance of this is based 
on the following topological lemma: 

Lemma 3 Let I be a non-backtracking orbit of G. 
Then, there is a one-to-one correspondence between 
the class of orbits £"{ = {l!4>(l)· ,} of G and the 
non-trivial orbits of the graph G"{. 

Proof. We aim to show that each orbit l E £"{ 
may be embedded in the graph G"{ in exactly one 
way. We use the equivalence between orbits and 
infinitely long periodic walks. We trace the peri­
odic walk w described by l in the computation tree 
(universal l' of G. This walk reduces to an 
infinitely long path Wi = 4>(w) of the computation 
tree. This path Wi is also the periodic walk corre­
sponding to the non-backtracking orbit I 4>(l). 
Now, we break up the walk w into backtracking seg­
ments as follows. For each edge of the path Wi in 
the computation tree, the walk w crosses this edge 
some number of times (once more in the forward 
direction than in the reverse direction). We mark 
the step of w corresponding to the first time that it 
crosses this edge. After doing this for every of 
Wi, we will have broken up the walk w into segments 
as w = ... (,n2 (,2'Y3)W3 . . . )Wl ... (where 
this pattern is repeating). It is simple to observe 
that each walk Wk may be embedded as a closed-walk 

G K4 

4~\-o2 

(a) 

G[(12)(23)(3Ill T3] 

JF. ". ,'-Jlr:O.: '" ,"~"'\ 
,4\. 

. 2".I. , 
... .... __ "' ... "'tI...... ~-- ..-........... .. 


'FI \2 T 2\3 'Fa\1 

T31 

O::=·6~ 
(c) A1\2 co ASI A41 A2\3 AI2 + A42 A3\1 A23 A43 

rf =~ 
31 1-).3\1lr::= .. g ~3 

r' -~ r' ~ 
12 - 1-).1\2 23 1-"2\3 

Figure 1. Illustration of construction to combine topo­
logically equivalent orbits. (a) The graph G K 4 • 

The computation graph G-y for I = [(12) 
Finite graph with self-loops at each node to capture 

backtracking walks. Cd) Equivalent with modified 
weights to capture backtracking walks. 

at the root node of 1~k \"{k+ I' Thus, this decomp£)-; 
sition of the periodic walk w also determines how 
l may be embedded into G"{' This defines a map T 

from £"{ to the non-trivial orbits of G"{' One can ver­
ify that this mapping is bijective. The inverse m1:l.p 
is defined by Tl (l') = [v(£Dv(l~) ... v(lLl where 
v is map from (di."ltinct) vertices of G"{ back to 
corresponding vertices of G. <> 

Next, we demonstrate how to compute all of the Qr­
bits within an equivalence class as a simple deter­
minant calculation based on the non-backtracking 
orbit I and the BP solution. Let R~ be defined ~ 
the edge-weight matrix a simple single~loop 
based on I with edge-weights defined by < 'V

Jk, ,Ie 

''Yk,'Yk t I • This construction is illustrated in Fig­
-U'Yk \'Yk+1 

ure l(d). Then, 

Lemma 4 Z~ ~ det(I R~)l I1pu", Zp. 

Proof. Using Lemma 3, we see that the orbjt­
product Zp is equal to the product over aU 
non-trivial of the graph , that is, the prod-:­
uct over all orbits in G"{ which intersect the 
graph corresponding to I' Using Lemma 1, this is 

5 equivalent to computing the determinant of the cor­



.3 

32 
=PUllUlllg submatrix of KGe (I - where j)", j) 

RGe is the edge-weight matrix of the infinite eom­
putation graph. This is equivalent to first elimi­
nating the subtrees (by Gaussian elimination/belief 
propagation) beneath each root node along the loop 
I of G,,(, to obtain the reduced graphical model 
I R"( and then computing det(1 R"() -1. Using 
the GaBP solution, the effect of eliminating each 
subtree is to add a "self-loop" (diagonal element) 
to with edge-weight a"(k \"(HI = av,"(~, 
obtained summing the incoming messages to 
node lk from each of its neighbors in the subtree 

. This elimination step is illustrated if _ 
ure l\.b,c), We may use the orbit-product formula 
to compute the determinant. there are 

many orbits in this graph due to the pres­
ence of a self-loop at each of the nodes. 
At each node, an orbit may execute any number 
of steps m around this self-loop each with edge-

Summing these up, we obtain 
(1 - a"(k \"(~+J-l, The conver­

gence of this series (la"(k\"(kH I < 1) is assured by 
the walk-summable condition. Thus, it is equiv­
alent (preserves the determinant) to deleting each 

_ and multiply the weight of the 
(1 

illustrated in Figure l(c,d). Then, the 
I1eEL:-y Ze is equal to the determinant 
(e.g., based on the graph seen in HdlJ. <> 

It is straight-forward to compute this determinant. 

Lllmma 5 Z~ = (1 ­
rl(ij)E"((r~j)niJ ("() and r;j 

Proof of Theorem .1. 
is now simple to show ZbP 

11"(1'0 TICE£-y Ze = 


(R'F) 1, which proves the theorem. <> 


6. Non-Backtracking Determinant 

Next, we show that the correction factor 

Z 
Zbp = IT Z~ IT det(1 R~)-l 

"(1'0 "(1'0 

may also be computed as a single determinant calcu­
lation based on the following non-backtracking 
trix of the graph. We define R' E R.2IGlx2IG, as 
follows. Let the rows and columns of R' be indexed 
by directed arcs (ij) of the G 
edge {i,j} EGis split into two directed edges (ij) 

(R'P)-l where (R'P 

rij (1 ai\j) 

Using it 
z 

1 2 3 
0-0--0 

I. Is 16 
0-0--0 

.6 

(a) l-Ll (b; 78 

Figure 2. (a) 3 x 3 grid G. (b) Graph G' representing 
the non-backtracking adjacency matrix R'. Each node ij 
represents a directed of G, arcs are drawn between 
nodes ij and ji whieh are non-backtracking (k 0 i). 

and the elements of R' are defined 

r~l' j = k and iJ l 
{ 0, otherwise. 

This construction is illustrated in Figure 2. Note 
that the walks generated by taking powers R' cor­
respond to non-backtracking walks of the graph G. 
The weight of an arc (( ij) (jk)) in R' is defined as 
the (modified) edge-weight rjk of the endpoint (jk), 
The weight of an orbit in R' may then be equiv­

defined as the product of node weights 
'taken over the orbit in R', which is equal to 

of the non-backtrackinl! orbit 
the modified 

Let Z' det(1 . We will prove the 

Theorem 4 Z x Z', that det(1 -
Zbp x det(1 - R')-l. 

Before providing the proof, we present two useful 
lemmas. First, we establish that walk-summability 
with respect to R implies walk-summability with re­
spect to R'. 

Lemma 6 If < 1 then p(IR'1) ::; 

Proof Sketch, We note that once the YUa,Uu:.tCIC 

rameters a converge in GaBP, the 
parameters f3 follow a linear systems 
(here, we consider the "parallel" update scheme, 
where all messages at step k + 1 are independently 
computed from the messages at step k). Thus, the 
asymptotic convergence rate of GaBP is peR'), We 
compare this to the simpler Gauss-Jacobi (GJ) it­
eration ILk+! ILk + (h - JILk), which has conver­
gence rate peR). From the walk-sum interpretation 
of both it is clear that the GaBP iter­

I'''T,t.llr",,,, a superset of those walks computed 
each iteration). Hence, for no.n-Ile.e:a 
2: °and h 2: 0) it must hold that the 

6 error in the GaBP estimate of IL is less than or 



I 

to the error of GJ (at every iteration). This im­
plies p(R') ::; p(R) if R ~ O. Even if R is not non­
negative, it still holds p(IR'I) ::; p(IRI). This is seen 
as we could run GaBP/GJ on the model J' = I -IRI 
instead and then apply the same error bounds. 0 

'We also note: 

Lemma 7 There is a one-to-one correspondence 
between the set of all orbits of G' and the non­
backtracking orbits of G. 

Proof of Theorem 4. Then, we may again apply the 
orbit-product representation of Z' as a product over 
orbits of G', which is equivalent to a product over 
non-backtracking orbits of G: 

Z' = II (1 - II (r~j)niJCI)) -1 (4) 
TPlJ (ij)E, 

Lastly, we note that the weight of each of the or­
bits above is exactly equal to the determinant Z~, = 

det(J - R~) corresponding to the previously defined 
single-orbi t matrices R~. Thus, Z' = I1,#0 Z~. 0 

"1 ­ p(lRI) 
0,' - p(lR'1) 

(a) 

_ 	 n-' 10gZ
1 true 

0" _ 	 n- log Zbp 
n-' log ZB (L~2,4 ,8,) 

c', 

I 	 ~ 
Co om 0 \ ole e Z!I 

(b) 
\0·:,< 	 9 iO~. ii-I log -true 

-	 n-'Iog~ , ,," 

n-' 10 r' 7 - g ~~o <l 
_ n-, log Z;uo 'l,p z:B 

02' - n-' Iog ZbpX Z B 

". 

". 
,,-'1 

o! =nr== ~~ 1 0-1~ 	 2! 31 I'J 

(C) 	 (d) 

Figure 3. Demonstration of determinant approximation 
method for 256 x 256 periodic gTid with uniform edge 
weights r E [0, .25]. Plots of (a) p(]RJ) and p(IR'I) vs r; 
(b) (~log of) Z, Zbp and Z6 (with L = 2,4,8,16,312) 

vs r; (c) ~ log(ZbpZ~) vs r; and (d) ~ log(Z-l Z6) and 
~ log(Z-l Zbp Z~) vs L = 2,4,8,16 for r = .2. 

Note that the error bound of Corollary 2 can now be 
improved to l Ilog Zbp I = lilog Z'I < p( !R' !)9 . 

n Z n - g(l - p( !R' !)) 

Of course it is impractical to actually compute the 
complete correction factor Z' = det(J - R')-l, as 
this is not easier than directly computing Z = 

det(J _R)-l. However, this representation does sug­
gest a useful approximation based on the method of 
the next section. 

'7. 	Efficient Truncation Method 

Next, we consider an efficient method to approxi­
mate Z(A) = det(J - A) - l for walk-summable ma­
trices p(IAI) < 1. This method be used to either 
directly approximate Z(R) or to approximate the 
GaBP correction Z(R'). 

Given a graph G based on vertices V, we specify a 
set of blocks B = (Bk C V, k = 1, ... , IBI) chosen 
such that: (1) Every short orbit 11'1 < L is covered 
by some block B E B , a,nd (2) If B, B' E B then 
B n B' E B. We also define block weights WB as fol­
lows: Let WB = 1 for maximal blocks (not contained 
by any other block) and define WB = 1-LE'~B WB' 

for non-maximal blocks (these weights may be neg­
ative). This definition insures that LB'~B WE' 

for each BE B. Then, we define our estimate 
= 1 

Z/3 £ II Z'jjB £ II(det(J ­
B B 

AB)-l)WB (5) 

where AB denotes the IBI x IBI principle submatrix 
of A corresponding to B. This estimate computes a. 
truncated orbit-product: 

Theorem 5 Let p(IRI) < 1. Then, Z6 = I1CEL:a Z, 
where £.13 = UBE6£'B and £.B is the set of all orbit,9 
covered by B. 

ZWB I1 zL:B::le WBProo.1 Z13 = I1B I1REB ClE = EE La E = 
I1EE L13 Ze where L B~e W B = 1 follows from the def" 
inition of the block weights. 0 

Next, we use the fact that £.6 includes all short or­
bits to bound the weight of the missing orbits: 

1 I Za I p( [AI) LCorollary 3 n log Z ::; L(l-p(l A !))' 

Thus, for the class of models with p < 1, we ob­
tain an approximation scheme which converges to 
the correct determinant as the parameter L is mad~ 

large with error decaying exponentially in L. The 
estimate Z6(R) includes all orbits that are covered 
by some block. The improved BP-based estimate 
Zbp Z13(R') includes all orbits which are topologi­
cally equivalent to any orbit covered by a block. 
Thus, the BP-based correction includes a much 
larger subset of orbits. We also note that the error 
bound pL generally decays faster using the BP-bas~d 
estimate as it holds that p(IR'I) ::; p(IRI).

7 



Construction of B for Grids To achieve an error 
bound Ilog If I ::; I': we must choose L '" log 1':-1. 

Then, computation needed to achieve this pre­
cision will depend on both the number of blocks 
and the block size needed to cover all orbits up 
to this size. In certain classes of sparse graphs, it 
should be possible to control the complexity of the 
method. As an example, we demonstrate how to 
choose blocks for 2D grids. Consider the yin x yin 
square grid in which each vertex is connected to it 
four nearest neighbors. We may cover this graph by 
L x L blocks shifted (both vertically and horizon-

in increments of ~ (let L be It can be 
seen that this set of blocks covers all 
than L. To include all intersections of blOCKs, we 
add L x ~ x L and ~ x ~ blocks. The block 
weights are WLxL = 1, WLxL/2 WL/2xL = -1 and 
WL/2X [,/2 1. The complexity of computing the 
determinant of an L x L block is 0(L3) and the to­
tal number of blocks is O(n/L2). Hence, the total 
complexity is O(nL) = O(n log 

square 
\Ve set all edge weights to r and test the 
of approximation using both estimates ZB(R) and 
Zbp Zt3(R') for r E [0, .25] (.1 = I R becomes sin­
gular /indefinite for larger values of r) and block sizes 
L = 2,4,8,16, :32. The results are shown in Figure 
3. As expected, accuracy rapidly improves with in­
creasing L in both methods and the BP-correction 
is the more accurate method. 

8. Conclusion and Future Work 

We have demonstrated an orbit-product (zeta func­
tion) representation of the determinant (the parti­
tion function of the Gaussian model) and interpreted 
the estimate obtained by Gaussian belief propaga­
tion as corresponding to backtracking orbits. Fur­
ther, we have shown how to compute the remain­

orbits as a determinant cal­
cUlation of the non-backtracking walk matrix and 
demonstrated an efficient approach to compute trun­
cated orbit-products in sparse graphs (demonstrated 
for grids). This method also extends to approxi­
mate the matrix inverse (the covariance matrix of 
the Gaussian model), which may in turn be used as 
an efficient preconditioner for iterative solution of 
linear systems. Due to space limitations. we leave 
tltese extensions for a 

In future work, we plan to extend the method of 
constructing an efficient set of blocks to other classes 
of sparse graphs besides grids (e.g., planar graphs, 

graphs oflocally-bounded treewidth and graphs with 
low doubling-dimension). In another direction, we 
plan to explore multiscale extensions of the trun­
cation scheme. The basic idea is to estimate the 
contribution of longer orbits using a coarse-grained 
version of the Gaussian graphical model. A related 
idea is to explore methods to "bootstrap" GaBP 
to capture longer orbits, based on the factorization 
Z(R) (Ilf=ol Z(_R2k))-lZ(R'2K). Thus, by ap­
plying GaBP to powers of R we may capture some of 
the non-backtracking orbits of the graph. Another 
research direction is to investigate integral represen­
tations of the formula Z Zbp Z' for any fixed 
of GaBP (using methods more along the lines of 
(Chernyak & Chertkov, 2008)), which could prove 
useful beyond the class of walk-summable models. 
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