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Abstract
In many real-world domains, undirected graphical models such as Markov random fields provide a
more natural representation of the statistical dependency structure than directed graphical models.
Unfortunately, structure learning of undirected graphs using likelihood-based scores remains difficult
because of the intractability of computing the partition function. We describe a new Markov random
field structure learning algorithm, motivated by canonical parameterization of Abbeel et al. We
provide computational improvements on their parameterization by learning per-variable canonical
factors, which makes our algorithm suitable for domains with hundreds of nodes. We compare our
algorithm against several algorithms for learning undirected and directed models on simulated and
real datasets from biology. Our algorithm frequently outperforms existing algorithms, producing
higher-quality structures, suggesting that enforcing consistency during structure learning is beneficial
for learning undirected graphs.

1. Introduction
Probabilistic graphical models (PGMs) representing real-world networks capture important
structural and functional aspects of the network by describing a joint probability distribution
of all node measurements. The structure encodes conditional independence assumptions
allowing the joint probability distribution to be tractably computed. When the structure is
unknown, likelihood-based structure learning algorithms are employed to infer the structure
from observed data.

Likelihood-based structure learning of directed acyclic graphs (DAGs), such as Bayesian
networks, is widely used because the likelihood score can be tractably computed for all
candidate DAGs. However, in many domains such as biology, causal implication of directed
edges is difficult to ascertain without perturbations, leaving only a correlation implication. In
such situations, undirected graphical models are a more natural representation of statistical
dependencies. Unfortunately, likelihood-based structure learning of these models is much
harder due to the intractability of the partition function (Abbeel et al., 2006).

To overcome this issue, researchers have opted several alternatives: learn graphical Gaussian
models where the likelihood can be computed tractably (Li & Yang, 2005); restrict to lower
order, often pairwise functions, (Margolin et al., 2005; Lee et al., 2007); use pseudolikelihood
as structure score instead of likelihood (Besag, 1977); learn dependency networks (Heckerman
et al., 2000; Schmidt et al., 2007); or learn Markov blanket canonical factors (Abbeel et al.,
2006). Pairwise models are scalable, but, approximate higher-order dependencies by pairwise
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functions, which is limiting for domains where higher-order dependencies occur commonly.
While dependency networks are scalable, each variable neighborhood is estimated
independently, resulting in inconsistent structures when the data sample size is small. This is
problematic for real-world data which often lack sufficient samples to guarantee a consistent
joint probability distribution for the learned structure. Finally, Markov blanket canonical
parameterization requires exhaustive enumeration of variable subsets up to a pre-specified size
l, which is not scalable for networks with hundreds of nodes.

We have developed a new algorithm for learning undirected graphical models, that produces
consistent structures and is scalable to be applicable for real-world domains. Our algorithm,
Markov blanket search (MBS) is inspired by Abbeel et al.'s Markov blanket canonical
parameterization, which established an equivalence between global canonical potentials and
local Markov blanket canonical factors (MBCFs) (Abbeel et al., 2006). We extend Abbeel et
al.'s result to establish further equivalence between MBCFs and per-variable canonical
factors. Because per-variable canonical factors require learning Markov blankets per-
variable, rather than all subsets up to size l, we save O(nl−1) computations during structure
learning, where n is the number of variables. The equivalence of per-variable canonical factors
and global canonical factors has been observed before (Paget, 1999). However, we are the first
to use per-variable canonical factors in the context of MRF structure learning to learn consistent
MRF structures. Enforcing structural consistency during search, guarantees the structure to be
a MRF, and also the existence of a joint distribution for the individual conditional distributions.
Thus we need not perform additional post-processing to guarantee consistent structures
(Schmidt et al., 2007).

We compare our algorithm against two existing algorithms for learning undirected models:
Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) (Margolin et al.,
2005), and a Lasso regression based dependency network algorithm (GGLAS) (Li & Yang,
2005). ARACNE learns pairwise dependencies, whereas GGLAS learns both pairwise and
higher-order dependencies. On simulated data from networks of known topology, MBS
captures the structure better than ARACNE for the majority of the datasets. Although GGLAS
and MBS are often tied in performance, GGLAS's assumption that variable ordering is
irrelevant, is true only for the Gaussian distribution. MBS uses a more general framework of
per-variable canonical factors, which can be used with any conditional probability distribution
family.

We also compare MBS to several algorithms for learning DAG structures. MBS not only
outperforms the algorithms performing DAG searches, but provides a better pruning of the
structure search space than the L1 regularization-based Markov blanket and sparse candidate
algorithms (Schmidt et al., 2007; Friedman et al., 1999). This suggests that learning consistent
structures during structure search is better than post-processing learned structures to enforce
consistency. We finally apply ARACNE, MBS and the sparse candidate algorithm to four real-
world microarray data sets. Subgraphs generated from MBS-inferred networks represent more
biologically meaningful dependencies than subgraphs from the other algorithms.

To summarize, MBS has the following advantages: (a) it captures both higher-order and
pairwise dependencies, (b) it learns consistent structures ensuring the existence of a joint
distribution, (c) it provides a tractable implementation of the theoretical framework of Abbeel
et al.. This final property allows MBS to scale to real-world domains with hundreds of nodes.

2. Markov random fields
A Markov random field (MRF) is an undirected, probabilistic graphical model that represents
statistical dependencies among a set of random variables (RVs), X = {X1, …, Xn}. A MRF
consists of a graph  and a set of potential functions ψ = {ψ1, …, ψm}, one for each clique in
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. The graph structure describes the statistical dependencies, and the potentials describe the
functional relationships between the RVs. The RVs encode the observed measurements for
each node, Xi ∈ . The joint probability distribution of the MRF is defined to be:

, where x is a joint assignment to X, Fi ⊆ X is the variable set in the
ith clique, associated with ψi; fi ⊆ x is a joint assignment to Fi. Z is the partition function and
is defined as a summation over all possible joint assignments of X.

Structure learning of MRFs using likelihood is difficult in general because of Z (Abbeel et al.,
2006). This is because estimating Z requires a sum of exponentially many joint configurations
of the RVs, making it intractable for real-world domains. To overcome this problem,
researchers have proposed approaches that use pseudolikelihood (Besag, 1977; Heckerman et
al., 2000), or, have used Markov blanket canonical parameterization (MBCP) (Abbeel et al.,
2006). We use an approach similar to MBCP, which requires the estimation of optimal Markov
blankets for RV subsets, Y ⊆ X, |Y| ≤ l, where l is a pre-specified, maximum subset size.
However, we learn local per-variable factors, requiring estimation of Markov blankets of only
individual RVs. Avoiding Markov blanket estimation of all subsets, makes our approach
scalable to domains with hundreds of nodes.

2.1. Hammersly-Clifford theorem and canonical potentials
The Hammersly-Clifford theorem establishes a one-to-one relationship between MRFs and
strictly positive distributions such as the Gibbs distributions. The canonical potentials (also
called -potentials (Paget, 1999)) are used together with the Möbius inversion theorem to
prove the Hammersly-Clifford theorem (Lauritzen, 1996). The canonical potential for a subset
D ⊆ X is defined using a default joint instantiation, x̄ = {x̄1, …, x̄|X|} to X as:

where σ(A, B, c) is an assignment function to variables Xk ∈ B such that σ(A, B, c)[k] = ck, if
Xk ∈ A and σ(A, B, c)[k] = x̄k if Xk ∉ A. σ returns an assignment for all variables in B.

The joint probability distribution for a MRF using canonical potentials is defined to be:

, where  is the set of maximal cliques in the graph. This is true by an
application of the Möbius inversion and setting  for all D ∉  (Lauritzen, 1996; Paget,
1999).

2.2. Markov blanket canonical parameterization
The computation of the canonical potentials is not feasible for real-world domains as they
require the estimation of the full joint distribution (Abbeel et al., 2006). Markov Blanket
canonical parameterization, developed by Abbeel et al., allows the computation of global
canonical potentials over X, using local conditional functions called Markov blanket canonical
factors (MBCFs).

The MBCF, ψ̃ for a set D ⊆ X is estimated using D and its Markov blanket (MB). The MB,
Mi of a variable Xi, is the set of immediate neighbors of Xi in  and renders Xi conditionally
independent of other variables, i.e., P(Xi∣X\{Xi}) = P(Xi∣Mi). The MB, MD of a set D, is (∪j
Mj) \ D for all Xj ∈ D. The MBCF, ψ̃ for D is also defined using the default joint instantiation,
x̄ = {x̄1, …, x̄|X|} as:
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(1)

For MRFs of unknown structure, MBCFs are identified by searching exhaustively among all
subsets Fi ⊂ X, up to size l and finding MBs for each Fi. Unfortunately, exhaustive enumeration
of variable subsets becomes impractical for moderately sized networks (Abbeel et al., 2006).
We show that the MBCFs can be further reduced to smaller per-variable canonical factors,
which are computed using an RV and its Markov blanket.

2.3. Per-variable MB canonical factors
We now show that the MBCFs can be replaced by smaller, local functions: per-variable MB
canonical factors, which does not require enumeration of all subsets up to size l. Specifically,
for every MB canonical factor ψ̃ there exists an equivalent per-variable canonical factor ψ+.
To illustrate how the per-variable factors are derived from MBCFs, we first consider a specific
case of D = {Xi, Xj} in Eq 1 (Section 2.3.1), followed by a proof for the general case (Section
2.3.2).

2.3.1. Special Case of Two Variables—Let D = {Xi, Xj} and d = {xi, xj}. Note, because
D ∩ MD = Ø, σ(U, MD, d) = m ̄d, the default instantiation to MD from x̄. We first expand the
sum inside the exponential of Eq 1 with D = {Xi, Xj}:

(2)

where the first term corresponds to U = Ø, the second term corresponds to U = {Xi} and so on.
Applying the chain rule to every term in the RHS:

We find that all logP(Xj∣MD) terms cancel producing:

(3)

This allows ψ̃ to be rewritten as:
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(4)

We assert further independence in Eq 4 because Xi is independent of all variables other than
Mi. This allows us to write the original MBCF for {Xi,Xj} as the per-variable canonical factor:

(5)

Thus we have equivalent the per-variable canonical factor, ψ+ from the original MBCF ψ̃ in
Eq 1.

2.3.2. General Case—We now state the equivalence between per-variable and MB
canonical factors more formally:

Theorem 2.1 Every MBCP, ψ̃D, of the form in Eq 1 possesses an equivalent per-variable factor,

, where Xi ∈ D.

Proof The proof of this equivalence involves two steps: (a) deriving ψ+ from ψ̃ for any general
D, and (b) identifying neighbors of an RV and making independence assertions described by
the graph structure.

To prove (a) we select an arbitrary Xi ∈ D. We replace each logP(D∣MD) in ψ̃ by log(P(Xi∣D
\ {Xi} ∪ MD)P(D \ {Xi}∣MD)). We have 2|D| number of logP(D \ {Xi}∣MD) terms, one for each
U ⊆ D. Xi does not occur in these terms, as we have conditioned on it. These terms can be
grouped into two sets, Sod and Sev, where Sod and Sev correspond to subsets of D with odd and
even number of elements, respectively. Assuming |D| is even, all elements in Sod have a −ve
sign and all elements in Sev have a +ve sign. Further, for every t ∈ Sev corresponding to U ⊆
D there exists t′ ∈ Sod corresponding to U′ ⊆ D, such that U and U′ differ only in Xi. Because
Xi does not occur in either t or t′, these two terms cancel. Applying this to all elements of Sod
and Sev, the two subsets cancel each other, thus proving (a). If |D| is odd, elements of Sod and
Sev have +ve and −ve signs, respectively, and the rest of the argument follows.

The final step is to identify the neighbors of Xi and using the local Markov property, P(Xi∣D \
{Xi} ∪ MD) = P(Xi∣Mi), for strictly positive distributions (Lauritzen, 1996).

The equivalence of the per-variable factors and MBCFs implies that, instead of searching over
all size l subsets of X, we can estimate canonical factors by searching for MBs of individual
RVs. Assuming that the MBs are estimated correctly, Eq 5 will produce the same canonical
factors as Eq 1. Our structure learning algorithm therefore requires the estimation of MBs of
each RV. We only need to ensure structural consistency (Section 2.4). Searching for n MBs,
as opposed to nl MBs in MBCF, saves us O(nl−1) computations.

The per-variable canonical factors and MBCFs do not deny the hardness of computing
likelihood in MRFs (Abbeel et al., 2006). This is because computing P(X = x̄) is equivalent to

computing .
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Algorithm 1 Markov Blanket Search

Input:

 Random variable set, X = {X1, …, X|X|}

 maximum neighborhood sizes, kmax, khard

Output:

 Inferred graph structure 

for k = 1; k ≤ kmax; k + + do

 for Xi ∈ X do {Add stage}

  Find best new MB variable Xj that maximizes ΔSij

  s.t. |Mi| ≤ k (Eq 6)

 end for

 for Xi ∈ X do {Swap stage}

  for Xi ∈ M̂i
k do

   for Xq ∈ X \ (M̂i
k ∪ {Xi}) and |M̂q

k| ≤ khard and Xq ∉ tabulist(Xi) do

    Delete {Xi, Xj}, add {Xi, Xq}, add Xj to tabulist(Xi) if swapping Xq for Xj gives maximal score
improvement.

   end for

  end for

 end for

end for

2.4. Markov blanket search (MBS) algorithm
The MBS algorithm learns the structure of a MRF by finding the best neighborhood or Markov
blanket (MB) for each RV. To identify the best MB, we need to optimize a score, S(Xi∣Mi) per
RV Xi, which quantifies dependence between a RV and its MB. Examples of such scores
include pseudolikelihood (dependency networks) or conditional entropy (MBCP) (Cover &
Thomas, 1991). For example, the best MB identified via conditional entropy, H(Xi∣Mi) is:
Mi = arg minM̂i H(Xi∣M̂i). Best MB via pseudolikelihood, PLL(Xi∣Mi), is: Mi = arg maxM̂i PLL
(Xi∣M̂i)

Dependency networks and MBCP identify the best MB per RV by optimizing S(Xi∣Mi) per
RV1. However, optimizing S(Xi∣Mi) per RV independently, may result in inconsistent MBs.
In particular, we cannot guarantee that if Xj ∈ Mi, then Xi ∈ Mj. This inconsistency can be
handled as a post-processing of the learned MBs (Schmidt et al., 2007). However, our
experiments suggest that a post-processing approach produces lower quality MBs (Section
3.2).

We propose a different approach that finds consistent MBs during the search process. To find
consistent MBs, we search MBs, not only using the improvement in S(Xi∣Mi) on adding Xj, but
also the score change in S(Xj∣Mj) if Xi was added to Mj. This is done by computing the net
score gain per candidate MB for Xi. Let M̂i

k−1 denote the best MB for Xi obtained so far. Then
the score gain is:

1In MBCP estimation, MBs of variable sets are identified independently. MBCP requires an additional subset consistency check: if X
⊂ Y, then MX ⊂ (MY ∪ (Y \ X))
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(6)

Our approach is similar to Hofmann & Tresp's edge-based score for guaranteeing consistency
(Hofmann & Tresp, 1998). However, their search strategy starts from a fully connected network
and removes edges, whereas we add and replace edges starting with a completely disconnected
network. For real-world domains, growing larger neighborhoods from smaller neighborhoods
is more feasible than shrinking large neighborhoods, because we may not have enough data
for reliably learning large neighborhoods.

The MBS structure learning algorithm uses Eq 6 to greedily identify the best MB for each
variable (Algo. 1). Each iteration uses a combination of add and swap operations to learn the
best structure. In the add stage of the kth iteration, we make one variable extensions to the
current M̂i

k−1 of each Xi, restricting to at most k ≤ kmax RVs per MB.

In the swap stage, we revisit all variables Xj ∈ M̂i
k−1 for each Xi, and consider other RVs, Xq

∉ ({Xi} ∪ M̂i
k), which if swapped in instead of Xj, gives a score improvement. If so, we replace

Xj by Xq with the maximal score improvement, in M̂i
k, and store Xj in the tabu list of Xi. This

prevents Xj from being included in Xi's MB in subsequent iterations. In the swap stage, a
variable can be present in > kmax MBs. However, no variable can be in more than khard = 20
MBs. Thus, nodes in our inferred networks have degrees ≥ khard, which reasonably models
hub nodes in most domains.

The per-variable canonical factor equivalence exploited by MBS to identify the MRF structure
does not make any specific assumptions of the parametric form of the conditional probability
distributions. MBS only requires that the candidate MBs be scored using the conditional
probability distributions. So MBS can potentially be instantiated with any probability
distribution and choice of score. For empirical evaluation of our framework, we selected P
(Xi∣Mi) to be conditional Gaussians and S(Xi∣Mi) to be the regularized conditional entropy for
each Xi: S(Xi∣Mi) = H(Xi∣Mi) + λlog(|Mi|). λlog(|Mi|) penalizes large MBs and 0 ≤ λ ≤ 1 is a
regularization coefficient.

3. Results
We compared our Markov Blanket Search (MBS) algorithm against existing algorithms for
undirected and directed graphs on both simulated and real data. Our test data is from biology.
The simulated data are from networks of known structure, enabling a direct validation of the
inferred structures. The real data is from microarray experiments. However, as the true network
for the real data is not known, we use biological literature to validate the inferred structures.
This test framework is common in bioinformatics (Margolin et al., 2005; Li & Yang, 2005).

3.1. Comparison on simulated datasets
We compared MBS to two undirected algorithms: Algorithm for the Reconstruction of
Accurate Cellular Networks (ARACNE) (Margolin et al., 2005), and a Lasso regression-based
Graphical Gaussian model (GGLAS) (Li & Yang, 2005). We also compared MBS against
several directed models provided in the DAGLearn software2: full DAG search (FULLDAG),
LARs based order search (ORDLAS), DAG search using Sparse candidate for pruning
(SPCAND), and DAG search using L1 regularization based Markov blanket estimation
(L1MB) (Schmidt et al., 2007). Because L1MB does not learn consistent Markov blankets, a

2http://www.cs.ubc.ca/∼murphyk/Software/DAGlearn/
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post-processing step is required to make the structures consistent. The AND post-processing
removes Xi from Mj if Xj ∉ Mi, where Mi and Mj are Xi's and Xj's MB, respectively. The OR
post-processing includes Xi in Mj if Xj ∈ Mi. We refer to L1MB with AND and OR post-
processing as MBAND and MBOR, respectively. We also included an implementation of order
MCMC (ORDMC) for Bayes net search.3

The simulated datasets were generated by a gene regulatory network simulator using
differential equations for describing gene and protein expression dynamics (Roy et al., 2008).
We generated four datasets: G50, G75, ECOLI1 and ECOLI2 with n = 100, 150, 188 and 188
nodes, respectively. Each sample consists of steady-state expressions reached after perturbing
the kinetic constants of the genes. Networks for G50 and G75 were generated de novo by the
simulator. The network for both ECOLI1 and 2 belong to the bacteria, E. coli. In ECOLI2 only
a subset of the genes (regulators) are perturbed, whereas in ECOLI1, G50 and G75 all genes
are perturbed.

As the true network topologies for these data are known, we compared the algorithms using
the match between the inferred and true network structures. Because we are interested in higher-
order dependencies, we matched subgraphs rather than edges. Briefly we extracted subgraphs
of different types (e.g. cycles, neighborhood) from the true network and used an F-score
measure to match the vertex neighborhood and edge set per subgraph. We refer to the scores
for vertex neighborhood as V-scores and for edge set as E-scores. We use shortest path
neighborhoods (SPN), r-radius neighborhoods comprising a vertex and its neighbors ≤ r steps
away (r ∈ {1, 2}, denoted by 1N and 2N), and cycles of size r (r ∈ {3, 4}, denoted by 3C and
4C). ECOLI1 and 2 did not have any cycles. We moralize the inferred DAGs prior to
comparison.

Our comparison used E and V-scores averaged over four runs per algorithm corresponding to
different settings of an algorithm-specific parameter. This parameter is λ in MBS (Section 2.4),
data processing inequality d in ARACNE, and hyper-prior parameter for the variance in
GGLAS. For all DAG searches other than ORDMC, we used different random restart
probabilities to generate different candidate graphs. In our experiments, λ ∈ {1e − 5, 3e − 5,
5e − 5, 7e − 5} and d ∈ {0, 0.3, 0.5, 0.7}. All simulated experiments used 1 ≤ kmax ≤ 11. For
ORDMC, we varied the edge posterior probability. For each parameter setting, the graph with
the highest average of E and V score is used. We compare the best graph per algorithm across
different parameter settings.

We show results on two of the four datasets, G50 and ECOLI1 (Table 1). Our complete results
are summarized in Table 2. For all datasets other than ECOLI1, MBS significantly beats all
algorithms at least as often as it is beaten (Student's t-test, p-value ≤ 0.05). On ECOLI1,
ARACNE outperforms all algorithms, suggesting that ECOLI1 likely does not contain many
higher-order dependencies. There is no significant difference between MBS and ARACNE on
ECOLI2, which is generated from the same network as ECOLI1 using different perturbations.

We find that the performance margin between MBS and the DAG learning models is greater
than undirected learning algorithms, suggesting undirected graphs may be better
representations for this domain. Overall, MBS does a better job of learning the network
structures compared to both directed and undirected algorithms for majority of the datasets.

3.2. Structural consistency for pruning DAGs
To assess the value of enforcing consistency during learning, rather than as a post-processing
step, we used the MBS-learned Markov blankets as family constraints in DAG search

3http://www.bioss.ac.uk/staff/.adriano/comparison/comparison.html
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algorithms. We compared the DAG structures constrained using MBS Markov blankets against
those constrained by Sparse candidate (SPCAND) and L1 MB regularization (L1MB). L1MB
uses either an OR or AND of the Markov blankets to generate consistent Markov blankets.

We used the maximum size of L1MB AND and OR Markov blankets as the neighborhood size,
k, for MBS and SPCAND. We first compared L1MB with OR post-processing (MBOR) using
k = 11 for both G50 and G75 (Table 3). We found the DAGs constrained by MBS-learned
Markov blankets to significantly outperform both SPCAND or L1MB-constrained DAGs more
often than being outperformed. Using L1MB AND (k = 4, 6 for G50 and G75, respectively)
MBS outperformed SPCAND or L1MB with a greater margin. This indicates that enforcing
consistency, during structure learning produces higher-quality Markov blankets, than as a post-
processing step.

3.3. Comparison on real biological data
We compared MBS against ARACNE and SPCAND on real-world biological data. GGLAS
did not complete within 48 hrs on this data, so is omitted. Each dataset measures the gene
expression response of two different populations of yeast cells, Quiescent (Q) and Non-
quiescent (NQ), to genetic perturbations (Aragon et al., 2008). Each dataset had a biological
replicate, resulting in four datasets: Q1, Q2, NQ1 and NQ2. We pre-processed these data to
include n = 1808 genes with < 80% missing data. We used MBS with λ = 10−4, kmax = 4,
ARACNE with dpi = 0.3 and SPCAND with 4 parents. A relatively large value of λ, compared
to that in simulated networks was used because of the large number of nodes in this data.

As the true network is not known, we used statistical enrichment of subgraphs generated from
the inferred networks, in biological processes from Gene ontology (GO), to assess the quality
of the networks. For each inferred network, we generated neighborhood subgraphs of radius
r = 1. For each subgraph g and term t, we computed a hyper-geometric p-value, assessing the
statistical significance of observing g's genes to be annotated with t. The lower the p-value the
better is the statistical enrichment. We first computed the number of GO terms MBS had better
(lower p-value) or worse enrichment compared to other algorithms (Table 4). We found that
MBS had more terms with better enrichment in all except one case (ARACNE, NQ2). This
suggests that networks identified via MBS capture more significant biological dependencies.

We also compared the algorithms using two other measures (Fig 1). Enrichment sensitivity is
the ratio of the min(no. of subgraphs, no. of enriched terms) to the total number of subgraphs.
Enrichment locality is the correlation between average p-value of a term and the number of
subgraphs enriched in that term. A positive correlation suggests that terms with higher p-values
(less enriched) are associated with many subgraphs, whereas terms with lower p-values (more
enriched) are associated with fewer subgraphs. Ideally, an algorithm should identify good
enrichment for the majority of subgraphs (high sensitivity), and also associate highly enriched
terms with a few subgraphs (high locality).

We used different stringency levels of enrichment (p-value ∈ {10−3, 10−4, 10−5, 10−6}) to
assess the enrichment sensitivity and locality of the algorithms on all four datasets (Fig. 3.2
shows the sensitivity and locality for p-value< 10−3). At p-value < 10−3 and < 10−4, ARACNE
and SPCAND had significantly higher sensitivity, but significantly lower locality than MBS
(Wilcoxon rank sum, p < 0.05). However, there was no statistical difference for higher
stringency of enrichment. These results suggest that there is a trade off between different
algorithms for biological data. MBS identifies subgraphs that are locally coherent at the cost
of having fewer subgraphs that are enriched in a term. On the other hand, ARACNE and
SPCAND identify more subgraphs with enrichment, but may overly fragment coherent gene
groups. Finally, there is no significant difference between algorithms at higher stringency,
suggesting that the algorithms agree on the GO terms that are the most significant.
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4. Conclusion
We have described a new algorithm for inferring undirected graphs that yields structurally
consistent graphs, guaranteeing a joint probability distribution for the RVs. We compared our
algorithm to several algorithms for learning undirected and directed models. On simulated data,
we show that enforcing consistency during structure learning more accurately captures the
graph structure. Our approach also produces higher-quality Markov blankets, that when used
to prune DAG searches, yields better structures. On real data, MBS identifies more significant
ontology terms associated with functionally coherent gene groups.
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Figure 1.
Enrichment sensitivity and locality for significance p < 10−3. Higher values are better.
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Table 4

Number of GO terms MBS has worse/better enrichment than other algorithms.

Q1 Q2 NQ1 NQ2

ARACNE 556/641 471/734 409/685 518/487

SPCAND 434/570 278/784 325/809 567/762
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