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1. Introduction

It is well known in statistics and machine learning that
the combination of latent (or hidden) variables and
observed variables offer more expressive power than
models with observed variables alone. Latent variables
can be used to model explanatory factors that cannot
be measured in experiments, or to control the number
of degrees of freedom of a model that generates the
observed data. Well-known classic examples include
mixture models, factor analysis, K-means, and PCA.

In structured output prediction, there have been vari-
ous applications of latent variable models. For exam-
ple, it has been used for capturing interesting substruc-
tures or parts in object recognition [10], for automatic
refinement of grammars in parsing [6], and for dimen-
sionality reduction in people tracking [4]. Almost all of
these latent variable models are probabilistic in nature
and use EM or gradient-based methods to optimize the
non-convex objective in training.

The use of latent variables is less well-explored in the
case of large-margin structured output learning such
as Max-Margin Markov Networks or Structural SVMs
[7, 8]. These models are non-probabilistic and offer
excellent performance in many structured prediction
tasks in the fully observed case. Currently, they do
not support the use of latent variables, which excludes
many interesting applications. In this work we extend
Structural SVMs to include latent variables, and pro-
vide an efficient algorithm for solving the optimization
problem of our proposed formulation. We apply our
new algorithm to the problem of discriminative mo-
tif finding in yeast DNA and some initial results are
presented.

2. Structural SVMs

Suppose we are given a training set of input-output
structure pairs S={(x1, y1), . . . , (xn, yn)}∈(X ×Y)n.
We want to learn a linear prediction rule of the form

f~w(x) = argmaxy∈Y ~w · Φ(x, y), (1)

where Φ is a joint feature vector that describes the
relationship between input x and structured output y,
with ~w being the parameter vector.

In structured learning we are usually given a loss func-
tion ∆ to measure how much the predicted structured
output f~w(x) differs from the correct output. We want
to learn a prediction rule that incurs small average loss
on future inputs.

According to the Empirical Risk Minimization (ERM)
principle [9], we should search for a parameter vector
~w with low empirical risk

∑n
i=1 ∆(yi, f~w(xi)). But in

general this is very difficult due to non-convexity and
discontinuity of the loss function ∆ and the exponen-
tially many possible structures f~w(xi) in the output
space Y.

The Structural SVM formulation [8] overcomes these
difficult issues by replacing the loss function ∆ with
a piecewise linear convex upper bound (margin rescal-
ing)

∆(yi, ŷi(~w)) ≤ max
ŷ∈Y

[∆(yi, ŷ)+ ~w ·Φ(xi, ŷ)]− ~w ·Φ(xi, yi)

where ŷi(~w) = argmaxy∈Y ~w · Φ(xi, y).

Instead of minimizing the true empirical risk, struc-
tural SVMs solve an easier convex optimization prob-
lem:

min
~w

1
2
‖~w‖2+C

n∑
i=1

[
max
ŷ∈Y

[∆(yi, ŷ)+ ~w · Φ(xi, ŷ)]− ~w · Φ(xi, yi)
]

Minimizing this convex upper bound gives excellent
performance on many structured prediction tasks.

3. Structural SVMs with Latent
Variables

Generalizing structural SVMs, we are interested
in structured prediction problems where the input-
output relationship is not completely characterized by
the (x, y) ∈ X × Y pairs in the training set alone, but
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also depends on a set of unobserved latent variables
h ∈ H. To generalize the structural SVM formula-
tion, we extend our joint feature vector Φ(x, y) to ac-
cept three arguments Φ(x, y, h) describing the relation
among input x, output y, and latent variables h. We
want to learn a prediction rule of the form

f~w(x) = ȳ

where (ȳ, h̄) = argmax(y,h)∈Y×H ~w · Φ(x, y, h).

Ideally according to the ERM principle we would like
to minimize the empirical risk

n∑
i=1

∆((yi, h
∗
i (~w)), (ŷi(~w), ĥi(~w)))

where h∗i (~w) = argmaxh∈H ~w · Φ(xi, yi, h) and
(ŷi(~w), ĥi(~w)) = argmax(y,h)∈Y×H ~w · Φ(xi, y, h).

Note that the loss function ∆ is extended to take
into account the latent variables h ∈ H. Essen-
tially we want to minimize the loss between the pair
(ŷi(~w), ĥi(~w)) given by the prediction rule and the best
latent variable h∗i (~w) that explains the input-output
pair (xi, yi) in the training set.

As already discussed above, minimizing the empirical
risk directly is in general very difficult and we seek an
upper bound on the loss:

∆((yi, h
∗
i (~w)), (ŷi(~w), ĥi(~w)))

≤ ∆((yi, h
∗
i (~w)), (ŷi(~w), ĥi(~w)))

− [~w · Φ(xi, yi, h
∗
i (~w))− ~w · Φ(xi, ŷi(~w), ĥi(~w))]

= ~w · Φ(xi, ŷi(~w), ĥi(~w)) + ∆((yi, h
∗
i (~w)), (ŷi(~w), ĥi(~w)))

− ~w · Φ(xi, yi, h
∗
i (~w))

=

(
max

(ŷ,ĥ)∈Y×H
~w · Φ(xi, ŷ, ĥ)

)
+∆((yi, h

∗
i (~w)), (ŷi(~w), ĥi(~w)))

−
(

max
h∈H

~w · Φ(xi, yi, h)
)

(2)

In the case of structural SVMs without latent vari-
ables, the complex dependence on ~w within the loss ∆
can be got rid of with the following inequality:(
max
ŷ∈Y

~w · Φ(x, ŷ)
)

+∆(yi, ŷi(~w))≤max
ŷ∈Y

[~w·Φ(xi, ŷi)+∆(yi, ŷ)]

(3)
The right hand side of (3) is commonly referred to as
loss-augmented inference in structural SVM training.
However in the case with latent variables the depen-
dence of ∆ on the latent variables h∗i (~w) of the correct

label yi prevents us from using loss-augmented infer-
ence to remove the dependence on ~w within the loss in
(2).

To circumvent this difficulty, we assume that the loss
function ∆ does not depend on the latent variables:

∆((yi, h
∗
i (~w)), (ŷi(~w), ĥi(~w))) = ∆(yi, ŷi(~w))

The bound in (2) then becomes

∆((yi, h
∗
i (~w)), (ŷi(~w), ĥi(~w)))

≤

(
max

(ŷ,ĥ)∈Y×H
[~w · Φ(xi, ŷ, ĥ) + ∆(yi, ŷ)]

)
−
(

max
h∈H

~w · Φ(xi, yi, h)
)
.

This gives rise to the following optimization problem
for structural SVMs with latent variables:

min
~w

1
2
‖~w‖2 + C

n∑
i=1

(
max

(ŷ,ĥ)∈Y×H
[~w · Φ(xi, ŷ, ĥ) + ∆(yi, ŷ)]

)

− C
n∑

i=1

(
max
h∈H

~w · Φ(xi, yi, h)
)

(4)

It is easy to observe that the above formulation reduces
to the usual structural SVM formulation in the absence
of latent variables.

The assumption on the loss ∆ is important because:

(i) it allows us to decompose the bound on the loss
into the sum of a convex and concave part, allow-
ing efficient algorithms such as CCCP to be used
for its solution

(ii) the assumption is naturally satisfied by many
structured prediction tasks with latent variables.
In many real world applications such as parsing
and object recognition mentioned in the introduc-
tion, the latent variables serve as indicator for
mixture components or intermediate representa-
tions and are not part of the output. The loss
that we are interested in for these tasks do not
depend on the latent variables.

(iii) it distinguishes our approach from transductive
structured output learning [12]. When the loss
function ∆ depends only on the fully observed
label yi, it rules out the possibility of transduc-
tive learning, but the restriction also results in
simpler optimization problems compared to the
transductive cases (for example, the approach in
[12] involves constraint removals to deal with de-
pendence on h∗i (~w) within the loss ∆).
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4. Solving the Optimization Problem

The objective of the optimization problem (4) from
the last section can be written as the difference of two
convex functions:

min
~w

[
1
2
‖~w‖2 + C

n∑
i=1

max
(ŷ,ĥ)∈Y×H

[~w · Φ(xi, ŷ, ĥ) + ∆(yi, ŷ)]

]

−

[
C

n∑
i=1

max
h∈H

~w · Φ(xi, yi, h)

]

This allows us to solve the optimization problem using
the Constrained Concave-Convex Procedure (CCCP)
[11]. The general template for a CCCP algorithm for
minimizing a function f(~w)− g(~w), where f and g are
convex, works as follows:

Algorithm 1 Constrained Concave-Convex Proce-
dure (CCCP)
1: Set t = 0 and initialize ~w0

2: repeat
3: Find hyperplane ~vt such that −g(~w) ≤ −g(~wt)+

(~w − ~wt) · ~vt for all ~w
4: Solve ~wt+1 = argmin~w f(~w) + ~w · ~vt

5: Set t = t+ 1
6: until decrease of objective [f(~wt) − g(~wt)] −

[f(~wt−1)− g(~wt−1)] < ε

The CCCP algorithm is guaranteed to decrease the
objective function at every iteration and to converge to
a local minimum [11]. Line 3 constructs a hyperplane
that upper bounds the concave part of the objective
−g, so that the optimization problem solved at line 4
is convex.

In terms of the optimization problem for structural
SVMs with latent variables, the step of computing the
upper bound for the concave part in line 3 involves
computing

h∗i = argmaxh∈H ~wt · Φ(xi, yi, h)

for each i, and the hyperplane constructed is ~vt =∑n
i=1 Φ(xi, yi, h

∗
i ).

Computing the new iterate ~wt+1 in line 1 involves solv-
ing the standard structural SVM optimization problem
by completing yi with the latent variables h∗i as if they
were completely observed:

min
~w

1
2
‖~w‖2 + C

n∑
i=1

max
(ŷ,ĥ)∈Y×H

[~w · Φ(xi, ŷ, ĥ) + ∆(yi, ŷ)]

− C
n∑

i=1

~w · Φ(xi, yi, h
∗
i )

Thus the CCCP algorithm applied to structural SVM
with latent variables gives rise to a very intuitive al-
gorithm that alternates between inputing the latent
variables h∗i that best explain the training pair (xi, yi)
and solving the structural SVM optimization prob-
lem while treating the latent variables as completely
observed. This is similar to the iterative process of
Expectation Maximization (EM) [2]. But unlike EM
which maximizes the expected log likelihood under the
marginal distribution of the latent variables, we are
minimizing the loss against a single latent variable h∗i
that best explains (xi, yi).

In our implementation, we used the cutting plane algo-
rithm to solve the standard structural SVM problem
of line 1 in Algorithm 1 to a fixed precision Cε. The
outer loop is also stopped when the decrease in objec-
tive is less than Cε. In practice the algorithm could
be sped up by solving the inner convex QP to a lower
precision, and re-using cutting planes generated in one
iteration for the next. However, in this workshop pa-
per we leave these options as future exploration.

5. Experiments

Our development of the structural SVM with latent
variables was motivated by a motif finding problem
in yeast DNA through collaboration with computa-
tional biologists. Motifs are repeated patterns in
DNA sequences that have or are believed to have bi-
ological significance. Our dataset consists of ARSs
(autonomously replicating sequences) screened in two
yeast species S. kluyveri and S. cerevisiae. Our task is
to predict whether a particular sequence is functional
in S. cerevisiae and to find out the motif responsible.
All the native ARSs in S. cerevisiae are labeled as posi-
tive. The ones that showed ARS activity in S. kluyveri
were then further tested to see whether they consist a
functional ARS in S. cerevisiae. If they did they are
labeled as positive, otherwise they are labeled as neg-
ative. Altogether we have 124 positive examples and
75 negative examples.

Popular methods for motif finding includes methods
based on EM [1] and Gibbs-sampling [3]. For this par-
ticular yeast dataset we believe a discriminative ap-
proach, especially one incorporating large-margin sep-
aration, is beneficial because of the close relationship
and DNA sequence similarity among the different yeast
species in the dataset.

For a motif of length l, the weight vector contains a
position-specific weight matrix with 4 × l parameters
(for the 4 bases A, C, G, T), and parameters for the
background model (we use a Markov model of order
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Table 1. Classification Error on Yeast DNA (10CV)

Algorithm Error rate
Gibbs sampler (l = 11) 37.97%
Gibbs sampler (l = 17) 35.06%
Latent Variable Structural SVM (l = 11) 35.85%
Latent Variable Structural SVM (l = 17) 33.12%

3). Because the positions of the motif in the positive
sequences are not observed, we model them as hid-
den variables h in the feature vector. For a negative
sequence, its feature vector representation Φ(x, y, h)
consists of background counts only, while for a positive
sequence it consists of counts from the position-specific
weight matrix at position h to h + l, and background
counts in all other positions.

For the positive sequences, we randomly initialized the
motif position h uniformly over the whole length of the
sequence for the CCCP algorithm. We optimized over
the zero-one loss ∆ for classification and performed
a 10-fold cross validation. We trained models using
regularization constant C from {0.1, 1, 10, 100, 1000}
times the size of the training set (197), and each model
is re-trained 5 times using 5 different random seeds.
We picked models having the best accuracy on the
validation fold and report its accuracy on the test fold.

As control we ran a Gibbs sampler [5] on the same
dataset. It reports good results on motif lengths l = 11
and l = 17, which we compare our algorithm against.
The Gibbs sampler is given the unfair advantage that
it has access to a separate set of about 6400 intergenic
sequences for estimating background probabilities, and
it is trained using the same cross validation procedure
as our algorithm. We can see in Table 1 that our
latent variable structural SVM algorithm is showing
comparable or even better classification accuracy than
the Gibbs sampler using much less data.

Our algorithm typically converges within 20 iterations
of the CCCP algorithm. The 5 different random seeds
can lead to solutions at different local minima, and
this is more evident for larger values of C. We are
currently analyzing the motifs and the weight matrix
found by our algorithm. We are also working on im-
provements to the algorithm, such as better starting
positions and methods for incorporating the large set
of intergenic sequences for weight estimation of the
background model.

6. Conclusions and Future Work

We have presented an algorithm for learning Struc-
tural SVMs with latent variables and discussed some

preliminary results on its application to the problem
of motif finding in yeast DNA. We are planning to ex-
plore further applications of the algorithm to tasks in
natural language processing and vision involving la-
tent variables. On the algorithmic side there are also
many interesting questions such as latent variable ini-
tialization and the tradeoff between time spent on the
inner optimization problem and the number of outer
loop iterations required for convergence in the CCCP
algorithm, which we are currently investigating.
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