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ABSTRACT

Automatic management of large-scale production systems re
quires a continuous monitoring service to keep track of thtes
of the managed system. However, it is challenging to actiete
scalability and high information precision while contimusty mon-
itoring a large amount oflistributed and time-varyingmetrics in
large-scale production systems. In this paper, we presaeta
self-correlating, predictive information tracking systealledIn-
foTrack which employs lightweight temporal and spatial correla-
tion discovery methods to minimize continuous monitorirgtc
InfoTrack combines both metric value prediction within iind-
ual nodes and adaptive clustering among distributed nadssg-
press remote information update in distributed system toong.
We have implemented a prototype of the InfoTrack system and
deployed the system on the PlanetLab. We evaluated therperfo
mance of the InfoTrack system using both real system tracds a
micro-benchmark prototype experiments. The experimeatallts
show that InfoTrack can reduce the continuous monitorirgj by
50-90% while maintaining high information precision (j.&ithin
0.01-0.05 error bound).

Categories and Subject Descriptors
C.4 [Performance of Systemp [Measurement techniques]

General Terms
Design, Experimentation

1. INTRODUCTION

Large-scale distributed computing infrastructures haseome
important platforms for many important real-world prodantsys-
tems such as enterprise data centers, virtualized congpitiras-
tructures, web service hosting centers, and online datarstpro-
cessing systems. As these distributed computing infretstress
continue to grow, how to efficiently manage those complex
frastructures has become a challenging problem. Inspiydubiy
human nervous system reacts to external changes, the aitono
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computing paradigm [24] has recently been proposed as &eviab
approach to building self-managed systems.

To achieve automatic management of a large-scale productio
system, the first step is to gain insightful understandinguaithe
managed system. Information tracking is one of the fundaahen
building blocks of autonomic systems, which can capturepiets,
time-varying system information (e.g., resource avaligbiser-
vice response time, virtual machine (VM) resource consionpt
application component states) and make it available vieesquery
interfaces to other system controllers. For example, agbbduler
may issue a multi-attribute range query such as “find tershbstt
have at least 10% free CPU time and 20MB memory and 10GB disk
space” or a top-k query such as “return the three hosts thattha
highest CPU load in the past one hour”. The anomaly predj8tigr
13] needs to acquire continuous runtime system measursrteent
build system state classification models.

A large-scale distributed computing infrastructure tgtliccon-
sists of i) hundreds of or thousands of distributedrker nodes
that execute different application tasks; and ii) a sehahagement
nodesthat monitor the conditions of all worker nodes and perform
various system management tasks. To perform automatierayst
management, the management node first needs to gain umdersta
ing about the managed systems. In many cases (e.g., gldbal jo
scheduling, resource optimizer, anomaly prediction aagmisis),
the management node needs to acquire complete, fine-graime:d
continuous monitoring about the whole system. For this psep
we need to deploy monitoring sensors on all worker nodes that
periodically sample various metric values (e.g., resounetrics,
performance metrics) about the local worker nodes and rmonti
ously report the metric values to the management nodes.

However, it is a challenging task to providealableand pre-
cisecontinuous system monitoring for large-scale productigst s
tems. On one hand, system controllers reside within the gena
ment nodes desire to get up-to-date, precise, and globainiaf
tion about the whole distributed infrastructure in orderbgdter
accomplish their management tasks. On the other hand, shensy
can include a large number of geographically disperseds)cuel
each node can be associated with tens of or hundreds of dynami
attributes [1, 2]. For example, the World Community Grid ¢&h-
sists of many thousands of nodes and IBM Tivoli Monitoring [2
can collect over 600 metrics on a host running Windows OS. Ob-
taining accurate information about all nodes with their ptete
information continuously would inevitably involve high mitoring
cost.

Existing production system monitoring solutions [1, 10pity
cally configure long information update interval (e.g.,es@ min-
utes) to tradeoff information precision for low monitorirgst.
However, many automatic system management tasks desie mor
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Figure 1: Suppressed Information tracking for large-scale
distributed systems.

fine-grained, up-to-date, monitoring data. Previous meseaork

on scalable distributed monitoring can be broadly claskiiigo
two categories: i) employing decentralized architectumesh as
hierarchical aggregation [27] or peer-to-peer struct@® R3] to
distribute monitoring workload; and ii) trading off infoation cov-
erage [21] or information precision [17] for lower monitagi cost.

In contrast, our research focuses on an orthogonal proktesm,
is how toexplore temporal and spatial correlation patterns among
distributed monitoring metrics to perform online suppieasover
continuous monitoring data so as to minimize system mangor
cost Our solution can be generally applied to any centralized or
decentralized monitoring architecture.

In this paper, we present the design and implementationeof th
InfoTrack system, a newself-correlating, predictiveanformation
tracking system to reduce monitoring cost without losirfgima-
tion coverage or precision. By suppressing remote infaonatp-
date, our approach not only reduces monitoring networki¢raéit
also lower the end-system resource consumption (e.g., GRRbh-
ory, disk storage, power) for processing monitoring datéoTrack
employs light-weight schemes to discover various metricata-
tion patterns on-the-fly within the monitored system. Welese
both temporal correlation within one node (e.g., self-&nity) and
spatial correlation among distributed nodes (e.g., gsioplarity)
to suppress unnecessary remote information update rdtest by
Figure 1.

e To leverage the temporal correlations, we install a metric
value predictorP; at both the monitoring node and the man-
agement node. If the attribute value at timedenoted by
a;,: can be predicted by; within a pre-defined error bound,
we can suppress the remote update abgutrom the mon-

itoring node to the management node since the management,

node can infer the attribute value using the same predictor.

e To leverage spatial correlation for a monitored attribute
we cluster all monitored nodes into different groups based
on the values ofi;. We elect one node in the group (e.g.,
cluster head) to report its measurement valueszfor The

notation meaning
N total number of monitored nodes
A set of all attributes
a; system state attribute
S size of attributex;

l; total number clusters far;

T tracking interval
CR total compression ratio
€ error bound requirement far;
Di,1 % of nodes with temporal correlation far,
Di,2 % of nodes with spatial correlation far;
Pi,3 % of nodes with temporal&spatial correlation fey

Table 1: Notations.

sisting of several hundreds of hosts dispersed over wida-aet-
works, and Virtual Computing Lab [4], a virtualization-lealscom-
puting infrastructure consisting of several hundreds aflblservers.
The InfoTrack system is continuously running on the Plaietnd
VCL and the information tracking results can be accessed/iz a
web interface[3]. Our experiments used about 300 Planetbdbs
and collected more than three months real system attrilauize(66
attributes per node) on the PlanetLab. Our experimentailtees
show that InfoTrack can achieve 80-90% compression rato, (i
percentage of suppressed remote information updategpftking
highly dynamic attributes (e.g., CPU load, memory usagéhiwi
0.05 error bound, and more than 95% compression ratio foktra
ing relatively stable attribute values within 0.01 erroubd. We
also measured the overhead of our algorithms, which shoats th
our approach is light-weight and scalable.

The rest of the paper is organized as follows. Section 2 gives
an overview about our system model, approaches, and problem
formulation. Section 3 describes the design details ofrf&Track
system. Section 4 presents the prototype implementatidrean
perimental evaluation. Section 5 compares our work withtesl
work. Finally, the paper concludes in Section 7.

2. SYSTEM OVERVIEW

In this section, we give an overview of the InfoTrack system.
We first introduce the information management system madfel.
then describe our self-correlating predictive informatioacking
approach. Third, we derive the system cost model and present
the problem formulation. We summarize the notations usehisn
paper in Table 1.

2.1 System Model

We consider a networked system that hasodes{v1, ...vx }to
be monitored and a set of management nodes, illustratedjoye-i
1. Each node is associated with a set of attributes (e.qures
consumptions, performance metrics, system componeps$thiat
are denoted byd = {a1,...,a)4}. Each attribute:; is denoted

management node can infer the attribute values of the other by a name (e.g., CPU load) and a value (e.g., 10%, 20KB). Ynles

nodes in the group based on the spatial correlation function

e Our approach isntegrated which comprehensively consid-
ers both temporal and spatial correlations for reducincktra
ing cost. Our approach is alsmlaptive which dynamically
updates metric value predictors and clusters to adapt tmeha
ing correlation patterns.

specified otherwise, we usg to represent both name and value
of the attribute. On each node, there is a monitoring serfsr t
periodically samples the attribute values to produce a serées
{ai,...,aiz, ..., a;x } Wherea; ; denote the sampled value for the
attributea; at time t. The management nodes receives continuous
information update from distributed monitoring sensorpravide

the distributed information tracking service. The goal loé tin-

We have implemented a prototype of the InfoTrack system and formation tracking service is to gain insightful knowledgkout

tested it on both PlanetLab [25], a wide-area network teston-

the managed system. With continuous monitoring, the inétion



tracking service can capture not only snapshots of the nkéslo
system but also its evolving behavior.

2.2 Approach Overview

To achieve scalable distributed information tracking, we-p
pose to explore temporal and spatial correlations amorghiised
monitoring streams to compress tracking traffic. We sayifate
exhibits temporal correlation if we can infer its value aheit
denoted by, ; using previousn values{a;t—m, ..., a;,t—1}. We
can install a predictor at both monitoring site and the manant
node. If the attribute time serig;,1, ..., a;,« } can be inferred by
the predictor within the user-defined error bound, the nooimigy
sensor does not need to repdd; 1, ..., a;,. } to the management
node since the managed node can infer the attribute valuleg us
the same predictor.

We say a group of worker nodes exhibit spatial correlatiorafo
attributeq; if the nodes within the group possess correlated values
for a;. Two nodes are said to have correlated attribute valueif on
node has an attribute valug ; at timet then the other node has an
attribute valuef(a; +) where f denotes some correlation function.
The correlation function can take different forms suctf&s ;) =
ai, f(ait) = air +C or f(ast) = ais - K, where C and K are
constants. In this paper, we assume the correlation funtakes
the form of f(as;,t) = as+ to simplify explanations. To reduce
tracking cost, we elect one node in the group (e.g., clugtadhas
the representative to report its measurement values;foAll the
other nodes in the group do not need to report the values; foif
the management node can infer their attribute values baséaeo
correlation functionf (a;,:) within the user-defined error bound.

Our approach is based on the observation that real-world dis
tributed production systems often exhibit temporal andiapeor-
relations. For example, a host can remain at a certain resour
level during night when no new jobs are allocated to the node.
In distributed systems, a group of hosts (e.g., nearby beigh
within one administration domain) may exhibit similar beioa
when they are assigned to execute similar computing tasksveA
will show in Section 4, we collected several months of measur
ment traces on the PlanetLab and discovered significantaehp
and spatial correlation patterns. Thus, we can exploreeticos-
relation properties to reduce distributed informatiorcking cost
without losing information coverage or precision. Notetthar
approach can be applied to both centralized or decentdalimm-

temporal correlation. If the attribute value @f can be inferred at
timet within a certain error boune; (e.g.,|ai,: — Pi(t)|/ai,: < e;)

at one node, the monitoring sensor on that node does not need t
reporta,,; to the management node. Let us assume on average
the management node can infer attribute valuegfarpercent of
nodes fora;, the total tracking cost is reduced to

1

Cr ==
a; EA

@)

We now derive the cost reduction brought by exploring spatia
correlations to suppress remote information updates. $ assume
all monitored nodes can be clustered int@roups based on the
values ofa;. The nodes within one group possess similar values
for a;. To reduce tracking cost, we elect one node in the group
(e.g., cluster head) to report its measurement values;forhus,
the management node can infer the attribute values of ther oth
nodes in the group based on the spatial correlation functfome
assume on average we can infer attribute valuegforpercent of
nodes fora;, the total tracking cost consists of two parts: the cost
for cluster heads to report attribute values to the managenuale,
and the cost for cluster members whose attribute values @apen
inferred accurately to report their values, which can bengefias
follows,
1
Cs = .a§1i~si+(1—pi,2)-(N—zi).si ©)

In order to minimize the monitoring cost, we need to form good
clusters, in which more attribute values of cluster membarsbe
inferred from the value reported by the cluster head. Thebmuraf
clusters is also an important factor in the monitoring castfion.
With fewer clusters, the first cost compoment is smaller. How
ever, larger clusters tend to include heterogeneous clogmbers
and increases the second cost component. Hence, to mintingize
monitoring cost, we need to balance the two cost compomsnts b
forming proper number of clusters.

We now derive the tracking cost of an integrated approach con
sidering both temporal and spatial correlations. Assumavenage
the management node can infer attribute valuegfarpercent of
cluster heads or cluster members based on the temporaiatimmne
Assume also the management node can ipifgrpercent of cluster
members whose attribute values cannot be inferred by thederh

itoring system where the system can consist of one managemen correlations but can be inferred based on the reported oligbeel

node or multiple collaborative management nodes. For syl

we will use the case of single management node to explain our

algorithm. However, our approach can be extended to theafase
multiple management nodes straightforwardly.

2.3 Information Tracking Cost Analysis

Without exploring temporal or spatial correlations, a lstted
information tracking system will configure all monitoringrssors
to periodically report all attribute values to the managenmode.
Let us assume the networked system consist® afiodes, each
of which is associated with4| attributesA = {ax, ..., a4}, the
update interval i§”, and the message size for reporting the attribute
a; is S;. We define the distributed information tracking cost as the
amount of total measurement data delivered from all moinigor
sensors to the management node every second. The origiok tr
ing cost without suppression is

1
Corig =7 »_ N5
a; EA

@)

Our approach first reduces the tracking cost by exploring the

values of the cluster heads. The total tracking cost becomes

1 /
Cr= T 'G;Ali(l —pi)Si+(1=pix—pi2) (N—1)-Si (4)

Compared to the original information tracking service, apr
proach reduce the information tracking cost by suppressingte
updates of those attribute values that can inferred fronpteat
or spatial correlations. We ugg,, to define the overhead of up-
dating temporal predictors on the management node; W&use
to denote the dynamic cluster update cost. We will quardify
andCs, when we describe specific temporal and spatial correlation
discovery schemes in Section 3. We define the total trackisg c
of the InfoTrack system &€’ rorrack = Cr + Cto + Cso. We
define the information tracking compression ratitR) as follows:

COT'ig - (CI + Cto + Cso)
COrig

CO'r‘ig - CInfoTrack _
COrig

CR= ®)

The various cost functions derived in this section do ndite
the cost of initializing the tracking system, which inclsdée cost
of building the initial predictors and clusters for eachibttte value.



Such initial cost depends on the actual algorithms emplay¢ide from timet — 1 to time ¢ through the state transition matri,

system, and we give a detailed analysis in Section 4.5. and the measurements are determined by a linear combirattion
Different from the static, offline compression scheme (gzp) internal states through(an x n) matrix H. For simplicity,A, H, Q

that can only be applied after the data have been reportdieto t andR are assumed to be constant and we assume the internal states

management node, our approach perfodysamic, onlinecom- are observable measurements. The Kalman filter estimagesdte

pression over live monitoring data streams during momitprun- vector in two steps:prediction and correction The prediction

time. Thus, our approach can reduce end-system resourageénd  of x; is made by following Equation 6 and then corrected by the
work bandwidth consumption on both monitored worker nodes a  weighted difference of the true measurement and the predit
management node, which cannot be achieved by previouseofflin a true measurement is available. The correction weighttesimdd
compression techniques. by applying the least squares method to minimize error tanvee
[8]. The process noise covarian€econtrols the smoothing power
of the Kalman filter.
3. SYSTEM DESIGN AND ALGORITHMS The Kalman filter works in the following way in our informatio

In this section, we present the design and algorithm detdils  tracking system. At the beginning, for each monitored afiea;,
the InfoTrack system. We first describe the approach of eéxglo  the Kalman filter is initialized using the sam&H,Q,and R on

temporal correlations to reduce information tracking casext, both the monitoring site and the management node, and tee tru
we present how to suppress information tracking cost byoeim attribute value is pushed from the monitoring sensor to ta@-m
spatial correlations. Finally, we present the integratepraach agement node to start the Kalman filter on both sides. Theanwh
exploring both temporal and spatial correlations. the Kalman filter makes a predictian ; at timet, the monitoring
. . sensor checks whethes ; is within a certain error bound. H; .

3.1 Exploring Temporal Correlation is close enough to the true valug,, the sensor does not report

To explore temporal correlation of an attribute for reducing a;,: to the management site. The Kalman filter installed on the
tracking cost, we install a predictd?; at both the monitored site  management node predicts the sa@img and the management node
and the management node. If the attribute value at tickenoted uses this predicted value as the observation value at#inB®th

by a; : can be predicted by; within a certain error bound (e.g., Kalman filters make steps of predictions without correcfiam
laie — Pi(t)]/ai,e < e;), the monitoring sensor does not need to true observations until; ; exceeds the predefined error bound, in
reporta; ; to the management node since the management nodewhich case the sensor pushes the observatiom; @b the man-
can infer the attribute value using;. If the monitoring sensor agement node, and both Kalman filters correct their premisti

detects that prediction error exceeds the pre-definedhbicddy accordingly.
comparing the inferred value with the real measuremenev@lg., From Equation 5 and 2, we can see that we need to have a
laie — Pi(t)|/ais > e;), the monitoring sensor performs normal  tradeoff between the predictor update cost (i&. in Equation
information update by sending the measurement valug tf the 5) and the prediction accuracy, which determines the p&agerof
management node. If the monitoring sensor detects thatéuécp nodes that need to send attribute values to the managemeat no
tor makes frequent errors, it constructs a new predictiowctfan (i.e., p;,1 in Equation 2). In InfoTrack, both the last value based
P! and transfersP] to the management node to replace the old method and Kalman filter method only require the observedeval
prediction function. of a; for updating the predictors on the management node. Hence,

Our InfoTrack system is a generic framework, in which any pre there is no extra predictor update cost (i(&., = 0 in Equation 5)
diction approach can be used to explore temporal correlatiow- for both approaches, and Equation 5 can be simplified asifsilo
ever, to ensure low tracking cost, we need to keep the piedict
overhead low. In this paper, we consider two such light-Wweig —p1). S,

. . Z (1 pz,l) S’L

predictors, a last-value based simple method and KalmanffLi8]. a; €A
The last value based method uses the value atttime as the pre- CE=1- S s ®)
dicted value for time. Thus, if the attribute value does not fluctuate a;€A

frequently, the last value predictor can accurately ptedEmetric
value most of time. The advantage of this simple approachait t
the new predictoP; is the measurement valag, itself. Hence, no
additional traffic is generated for updating the new preti¢? at 3.2 Exp|oring Spatia| Correlation

the management node since the monitoring sensor alreadytsep To explore spatial correlations for a monitored attributewe

@i 10 the management node based on our predictive monitoring cluster all monitored nodes into different groups basechenval-
protocol. ues ofa;. The nodes within one group possess similar values for

. fWe at|$0 f:pplskl_ the '}lfr?lmlfnl fllterf.[lf, 16] to aCht'ﬁV?tEred'Ct've a;. To reduce information tracking overhead, we elect one mode
Ihn Om?at'on Ira;: tlng. ndze ba marl;l liter assumes ¢ aTh e:_pfs | the group (e.g., cluster head) to report its measuremenesdbr
asn Internal states ana observable measurements. The interat -, - “rpq management node can infer the attribute values of ke ot

states and megsurgments attime 1 andt are governed by the y\ster members based on the spatial correlation functibos, we

following equations: can reduce the tracking cost when the management node @an inf
Ty = Axi—1 + w1 (6) the attribute values of the cluster members within a certaior

) bound using the spatial correlation function and the attelvalue

of the cluster head.

wherez and z are the state and measurement vectors of the pro- To form closely corelated clusters, we use Bearson correla-

cess, respectively. The random variablesand v, represent the tion coefficients the similarity measure for clustering algorithms.

process and measurement noise, which follows normal pilitpab ~ Given a window sizev, we can form a vectoju, ¢, .., as,¢+w] for

distributions with process noise covarian@eand measurement  each monitored node. The similarity between two such vector

noise covarianceR, respectively. The internal states propagate V = [v1,...,v,] andU = [uq, ..., ux] is defined as follows:

wheresS; is the message size for reporting the attribute

2zt = Hay + vt



> iy (vi — 0)(ui — @)
VI i =02/ (i~ w)?
wherev andu are the mean of the values of theandU vectors,
respectively. Note that we need to push all these valueseo th
management node to initiate clustering process, we prefierafier
value ofw that can also lead to reasonable clustering results.

We employ two widely used clustering algorithms for our pur-
pose: atypical partitional clustering algorithirmeans [22], and a
typical agglomerative algorithitf PG M A [15].

Thek-means [22] algorithm computescavay clustering of a set
of objects as follows. Initially, a set df objects is selected from
the datasets to act as teeedf the k clusters and each object is
assigned to the cluster corresponding to its most simik.s€hen,
the centroid of each cluster is computed and objects are drmwve
responding to their most similar centroids. This processpgsated
until it converges to produce the finalklusters. The UPGMAI (g,
Unweighted Pair Group Method with Arithmetic mean) aldgumit
[15] finds the clusters by initially assigning each objecttsoown
cluster and then repeatedly merging pairs of clusters ardrtain
stopping criteria is met. The UPGMA scheme measures the sim-
ilarity of two clusters as the average of the pairwise sirtifeof
the objects from each cluster. The agglomerative clugjealgo-
rithms produce a hierarchical tree at the end, akehay clustering
soluction can be obtained by cutting the tree using varioitsria.

Comparing these two algorithmk;means has lower computa-
tional complexity, but may suffer from bad initial seed ates. In
addition, k-means requires the number of clusters as an explicite
input parameter, whereas UPGMA produces a hierarchicabine
we can cut the tree to form natural clusters.

After clustering different monitored nodes into groups,seéect
the one with the median value of attribute as the cluster head.
There are several ways for the management node to infer the at
tribute values of cluster members from the values reporyetthdir
cluster heads. For simplicity, we record the differenceveen the
last reported values of the monitored node and its clustzd,bend
add this difference to the newly reported value as the iatevalue.

During runtime, we need to dynamically update the cluster to
maintain efficiency. We consider two types of changes intehgs
First, a monitored node may not exhibit the similar measam@m
value for attributea; as its cluster head after a certain period of
time. In this case, we want to regroup the monitored sitestmibst
similar cluster. We maintain a credit value for each moseitbnode
on the management node. If the monitored node can be repedsen
by the cluster head, the credit value is incremented. Otiserwhe
credit value is decremented. The monitored node is re{aagitp
another cluster when its credit value is below a certainsthotl
(denoted a®-). Second, a cluster head may not be the best repre-
sentative of the cluster after a period of time, in which casaeed
to select a new cluster head. A new cluster head is selected wh
the fraction of nodes that need to updates their attribulieegais
above a certain threshold (denotedasfor a cluster. The manage-
ment node needs to send control messages to monitoringrsenso
when changing cluster membership of a node or changing teclus
head, which forms the spatial correlation discovery ovadhg.e.,
Cso in Equation 5). This cluster adaptation cost is closelytegla
to the number of re-assignments per tracking interval. Aswille
show in Section 4, the cluster adaptation cost is very small.

Note that since the re-assignment of cluster head requeras s
ing cluster information to the newly selected cluster heasineed
to avoid frequent cluster head re-assignment by settingla i
value. Similarly, re-assigning a monitored site back arthfean

sim(V,U) = 9)

Input:

a;,¢: the observation value @f; at timet

a;,:: the predicted value af; by Kalman filter at timef
a;,¢: thea,; value recieved from the cluster head at titn
e;: error bound fom;

SensorRepoft;, ¢, Gi,¢, Git, €:)
1. if the node is a cluster head

2. if (|a7;7t — di,t|/ai,t) > e; )
3. reporta; ; to the management node
4. pusha; ; to its cluster members
5. else
6. pusha; ; to its cluster members
7. else
8. if (|ai,t — &i,t|/ai,t) > e; )
9. if (|CL7;7,5 — di,t|/ai,t) > e )
10. reporta; ; to the management node
16.return
Figure 2: Integrated information update algorithm on the

worker node.

be eliminated by setting a lo#, value.

3.3 Integrated Approach

We now present the integrated approach exploring both teshpo
and spatial correlations, which is shown in Figure 2. To exhi
compressed information tracking, each monitoring sensdppms
selective information report. The sensor reports the tisen
vation value for an attribute; only when the management node
cannot infer the value ofi; based on either temporal or spatial
correlation functions within a certain error bound. If themitored
node is a cluster head, its monitoring sensor decides whéthe
report its observation value based on the accuracy of ttaiqbeel
value given by the metric value predictor. Note that bothrtton-
itored node and the management node run the same predictor to
predict the value of:;. The monitoring sensor only reports the
observation value of; to the management node if the prediction
error exceeds a certain error bound.

For non-cluster-head monitored site, its monitoring sep&s-
forms selective information report based on both tempardispa-
tial correlations. First, the monitoring sensor checksptelicted
value of an attribute,; given by its own metric value predictor. If
the predicted value is within the error bound, the monigsensor
will not report the observation value af to the management node.
Otherwise, the monitoring sensor checksdhealue received from
the cluster head, denoted lay, which is either the observation
value ofa; reported to the management node by the cluster head
or the predicted value. If the cluster head valyeean be used by
the management node to infer the attribute value of the rocadt
site within the error bound, the monitoring sensor will report its
observation value to the management node. The monitorimgpse
needs to report the observation valueagfto the management
node only when both the predicted value given by the mettizeva
predictor and the attribute value of the cluster head caacioeve
desired accuracy. One complication is that the managenuetg n
needs to know which value (e.g., metric value predictor ostelr
head) to use if only one of the two values is usable. Underethos
cases, either the cluster head or the monitoring sensos nesend
a flag to the management node to indicate which correlatien (i
temporal or spatial) should be used to infer the remotebatti
value.



Monitored Attributes
LOAD1 LOADS5 AVAILCPU
UPTIME FREEMEM FREEDISK
DISKUSAGE | DISKSIZE MYFREEDISK
NUMSLICE LIVESLICE VMSTAT1-17
CPUUSE RWFS LOAD11
LOAD12 LOAD13 SERVTEST1
SERVTEST2 | MEMINFO1 MEMINFO2
MEMINFO3 BURP CPUHOG
MEMHOG TXHOG RXHOG
PROCHOG TXRATE RXRATE
PURKS1-10 | PUKPUKS1-10

Table 2: Monitored metrics on Planetlab.

When a new node arrives in the system, the management node

assigns the node to a cluster based upon the attribute stgnila
between the node and cluster heads, and predictors ardiddsta

on both the worker node and management node. Worker nodes

send signals to the management node periodically if theyado n
need to report their metric values for a long period. In this/\the
management node knows that a node leaves or becomes unreac
able if it does not receive any metric report or life signatioa
certain period. When a non-cluster-head node leaves, thagea
ment node simply removes the node from its cluster. Whetbas,
management node needs to select a hew cluster head if arcluste
head node leaves.

The analysis of the cost model for the integrated approasimis
ilar to the separated ones. The information tracking cosgioa
ratio (C R) can be determined by Equation 5 and 4. As discussed
above, our light-weight temporal and spatial approachesirena
zeroC%, and very smallCs,. Hence, Equation 5 can be simplified
as follows:

ZaieAli(l —pi)Si+ (1 —pix—pi2) - (N—1UL)-S;
N- Y S ’

a;€EA

(10)
where S; is the message size for reporting the attribwigel; is
the number of clusters for attribute, p; 1 is the percent of nodes
whose values can be inferred by temporal metric value piadic
andp; , is the percent of cluster members whose attribute values
cannot be inferred by the temporal correlations but can tegred
based on the reported or predicted values of the clusteshead

CR=1-

4. SYSTEM EVALUATION

4.1 Prototype Implementation

We have implemented a prototype of the InfoTrack system and
deployed the system on the Planetlab [25] and VCL [4]. Thektra
ing results of InfoTrack can be accessed live via the webr-inte
face mentioned in the Introduction. The monitoring sensdlects
about 66 attributes (e.g., available CPU, free memory, dssge,
loadl, load5, load10, number of live slices, uptime, etm)tle
PlanetLab, shown by Table 2. Each complete informationntepo
has about 2000 bytes.

We perform temporal correlation inference by using the &mp
last value approach or by running Kalman filters on both naonit

Trace Data| Mean | Avg. Std. | Avg. SV
CPU-10 | 80.2 5.65 1.34
CPU-30 80.2 5.65 2.58
MEM-10 78.2 11.29 2.29
MEM-30 78.2 11.29 3.11

Load5 8.85 2.71 -

Table 3: Statistics of Data Sets

algorithm shown by Figure 2, which periodically collectswarce
attribute values and only reports the collected attribuatieies to
the management when the correlation-based inference isrooit
of bound.

4.2 Traces and Their Characteristics

Our experiments used about 300 PlanetLab nodes and cdllecte
several months real system attribute data on the Planetitabwy
interrupting normal workload on each node. We track about 66
system attributes and set the report interval to be 10 or Gongks.
Our system can easily achieve high compression ratio fokitng
relatively stable attributes such as uptime, disk usageldpload10
within 0.01 error bound. Thus, our experiments focus onuatalg

our algorithms on tracking most challenging attributessas CPU
load and free memory. To this end, we extracted four setsaoétr
data starting from March 20, 2008 for more than a week: CPU loa
observed every 10 secondSRU-10, CPU load observed every
30 seconds@GPU-30, memory usage observed every 10 seconds
(MEM-10), and memory usage observed every 30 secodM-

30).

We use these trace data sets to evaluate our various temporal
correlation, spatial correlation, and integrated modelslifferent
system state attributes, as well as different trackingwaie. Some
statistics of the data sets are shown in Table 3. We include th
average and average standard deviation of Load5 (i.e.o#uedv-
erage for the past 5 minutes in terms of how many active pseses
are competing for the CPU) in Table 3 as well to demonstrage th
workload and conditions when the traces were acquired. ditiad
to the mean CPU load (in percentage) and mean memory usage
(in percentage), we also calculated average standardtidev{ta-
belled as “Avg. Std") along time intervals averaged ovemnaliles
and average step variance (labelled as “Avg. SV”). The aeera
step variance is the absolute difference between two catigec
measurements averaged over all time intervals and all nottes
average standard deviation indicates the range of the merasuts
varying along time intervals, whereas the average stemvegi
indicates how rapidly each measurement changes. As shown in
Table 3, memory usage exhibits larger variance than CPU. load
Hence, we expect that the two memory usage data sets area harde
for compression. Varying report intervals from 10 secor@8Q
seconds increases the average step variance. Since ousoaae
press data based on past measurements, we expect that als mod
perform better on trace data with smaller average stepnee@a

4.3 Evaluation Methodology

We evaluate our correlation-aware information trackingdeie
using randomized test on the four trace data sets. For a aes,
we randomly select a starting point in the trace and standtue
our models for the next 9000 samples (for CPU-10 and MEM-10)

ing sites and the management node. The management node disand 3000 samples (for CPU-30 and MEM-30), respectively. The

covers spatial correlations using k-meané/d?G M A algorithms.
The management node initializes the tracking process,gsuste
error bound to each sensor, and invokes temporal correlatie-
dictors on both sides. Each sensor executes the attribptetre

number of tested samples is chosen to be 9000 and 300 so¢hat th
evaluation period covers one day.

For our temporal correlation aware tracking model with tfa-K
man filter, we set the process noise covaria@cequal to10 and



-

SseeEE
08 e 008
T T
14 o
c 0.6 < 0.6
S S
n I3
" 13
so04t soat &7
g ¢ -A-CPU-10 KA g™ o -A-MEM-10 KR
S —~CPU-10L S —MEM-10 L

o
[N}

MEM-30 KH
O MEM-30 L

CPU-30 KA
O CPU-30L

o

0 0.02 0.04 0.06

Error Bound

0.08 0.1 0.02 0.04 0.06

Error Bound

0.08 01

Figure 3: Mean tracking cost reduction based on the temporal
correlation.

4
©
4
o

o
=
=3
=

o
~
o
~

Compression Ratio
Compression Ratio

-A- Adaptive UPGMA

—k-Adaptive K-meang
K-means

G UPGMA

-A- Adaptive UPGMA

-¥-Adaptive K-mean:
K-means

O UPGMA

o
N}
oS
N

o

o

0 0.02 0.04 0.06

Error Bound

0.08 0.1 0.02 0.04 0.06

Error Bound

(b) CPU-30

0.08 0.1

(a) CPU-10

Figure 4: Mean CPU metric tracking cost reduction based on
the spatial correlation.

measurement noise covarianBeequal to 1, as discussed in Sec-
tion 3.1. For our spatial correlation-aware tracking moded test
both k-means and/ PGM A clustering algorithms. We empiri-
cally chose to use a window size of 12 for calculating correla
tion coefficient (Equation 9). The number of clusters pralic
by UPGM A is controlled to be between 10 to 20, as the values
in this range tend to perform well. This is done by varying the
inconsistency coefficient cutoff value. We use the same urob
clusters as the input to themeans clustering algorithm.

The temporal correlation-aware, spatial correlationfaywand
integrated information tracking models are evaluted witheeror
bound value ranging from 0.01 to 0.1. The performance obvari
models are assessed usibgmpression Rati@Equation 5). Each
experiment is repeated 200 times, and the average conqgmessi
ratio is reported.

4.4 Results and Analysis

We first present the results for our temporal correlatiomrawv
model, which uses the last value based approach or Kalman filt
to infer dynamic attribute values. Figure 3 shows the cosgion
ratio achieved by the last value model and Kalman filter muuil
various error bound values for CPU-10, CPU-30, MEM-10, and
MEM-30. From the figure, we can clearly see that the benefit of
employing the temporal correlation-aware model to achimm-
pressed information tracking. The larger the error bouadidsved,
the higher the compression ratio can be achieved by ourrayste
The two temporal correlation-aware models perform siryiland
can achieve compression ratio over 90%, with error boundrato
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Figure 6: Average overhead of adaptive clustering algoritims.

Figure 4 and Figure 5 show the compression ratio achieved by
different clustering algorithms on CPU-10, CPU-30, MEM-&fd
MEM-30. We run our experiments using four clustering altjoris

in total, namelyU PGM A, k-means, and their adaptive versions
with dynamic cluster adjustments.

There are a number of observations we can make from those
figures. First, we observe that our spatial correlation awracking
model can reduce the tracking cost significantly. The twgada
tive clustering algorithms can achieve a compression odtimore
than 50% with tight error bounds of less than 0.05 for all ¢ésac
Second, similar to the results of our temporal correlatiomra
tracking model, the results here also show the trace datdeviger
report intervals are harder to compress than the trace ditita w
shorter report intervals. Third, the adaptive clusteriechhiques
improve the compression ratio in most cases. On averageltye a
tive U PG M A clustering algorithm outperforms tiéPG M A al-
gorithm by more than 10% on CPU-10 and CPU-30, and around
20% on MEM-10 and MEM-30. The adaptivemeans clustering
algorithm also outperforms the-means clustering algorithm by
5% to 7% on average on four trace data sets. Finally, the two
adaptive clustering algorithms perform similarly for aditd sets.

Figure 6 shows the cluster adaptation cost introduced by the
adaptive technigues on CPU-10 and MEM-10. The average over-
head shown in Figure 6 is defined as the number of re-assigamen
of either cluster heads or cluster members per report iatekye
observe that the number of re-assignments quickly reaches t
small number as the error bound increases. Hence, the aglapti
techniques improve our tracking compression ratios witlelad-

0.1. As we expected, our model performs better on CPU load ditional cost.
data than on memory usage data since the former data set shows We now present the results of the integrated self-supprgssi

bigger step variances than the latter data set. The conipness

information tracking approaches. The two temporal apgresc

ratios achieved on CPU-10 and MEM-10 is better than those on and two spatial approaches can have four combinations. e sh

CPU-30 and MEM-30.
We conduct the second set of experiments to study the eféecti
ness of our spatial correlation aware information trackimadel.

the results of combining Kalman filter with adaptitePGM A,
and other combinations show similiar trends as well. Figuaad
Figure 8 show the compression ratio achieved by the intedrat
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Figure 7: Mean CPU metric tracking cost reduction of the
integrated approach.

Figure 9: Mean CPU metric tracking cost reduction of the
integrated approach.

1 1
that we collected real system attribute data on the PlabetBath
28 L 28 traces contain CPU load values with the report interval o6&6-
ﬂ"ﬁoe i - ﬂ"ﬁo_e onds for 24 hours. Some statistics of the two traces are skrown
% o § Table 4. We show the mean CPU metric tracking cost reduction
504 504 of the integrated approach in Figure 9. We can observe thht wi
8 T nfoTrack 8 ot higher variations on metric values, InfoTrack can still iagk si-
0‘2 0‘2 mﬁiar improvements over the change-based approach asné® o
i 00z _ 003 oo 005 o 002 o003 oo oos shown in Figure 7, and achieve more than 50% compressian rati
Ertor Bound Ertor Bound with an error bound of 0.01, and more than 80% with an error
(a) MEM-10 (b) MEM-30

bound of 0.05. Other system metrics show similar trend§ranel

. . . . andTrace2 and the results are omitted due to space limitation.
Figure 8: Mean memory metric tracking cost reduction of the

integrated approach.

model (labelled as InfoTrack in all figures) on CPU-10, CRYJ-3 g e e
MEM-10, and MEM-30, and the results of a simple change based Eo.ss
model as a baseline. The change based model performs informa $

update when the attribute value change exceeds the errodbou 3 o N

We observe that the tracking models exploring both tempamell o045 /,/‘ \ )
spatial correlations can consistently improve the congioesratio o o -

further than the tracking models exploring only temporadjoatial 0 5 20 2

correlations. The integrated approach can achieve more6b%
compression ratio on _CPl_J-lO with a tight error bound of 00 Figure 10: Continuous CPU metric tracking cost reduction
90% compression ratio with an error bound of 0.05. On MEM-10, with error bound = 0.01.
the integrated approach can achieve 48% to 85% of compressio
ratio. The improvement achieved by InfoTrack over the cleang
based approach can be as high as 40% for CPU-10 and 25% - s1s - 52
MEM-10, especially under a tight error bound. Note that te p A, eyt
formance of our intergrated approach can be further impurdye
plugging in more advanced or application tailored tempaurzd
spatial correlation models. However, the focus of this pape
not to find the best single temporal or spatial correlatiordets,
but to present a generic framework which allows the intégnanf
exploring both spatial and temporal correlations. %
To evaluate InfoTrack with more dynamic systems, i.e., whel ™o Ao (holusr) 20 25 o
system metric values have bigger average standard dengaiod
and bigger average step variances, we selected the Plartesicas
of two days (denoted aBraceland Trace? with the highest av-
erage standard deviations of CPU load during the entireogeri
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Figure 11: Average CPU load and standard deviation of CPU-
10.

In the experiment results we have shown so far, the compres-
sion ratio is calculated by averaging over the entire tragkieriod

Table 4: Statistics of Tracel and Trace2

Trace Data] CPULoad| CPULoad]| Load5| Load5 (which is about 24 hours). We also want to see how the compres-
Mean Avg. Std. | Mean | Avg. Std. sion ratio changes over time. To do so, we evalute the pedocm
Tracel 77.1 6.92 6.72 2.23 of a tracking model by calculating the compression ratiaedbr
Trace2 72.5 7.03 6.49 1.96 each hour. Figure 10 shows such compression ratios achimved

Info-Track and a simple change-based model on CPU-10 with an
error bound of 0.01. We observe that there is a clear “day and
night” pattern in the results. To explain this performanegtgrn,



190 software on a desktop machine with 1.2GHz CPU and 1G memory
to track M attributes onV nodes, wheré/ varies from 20 to 100
and N varies from 500 to 5000. For 5000 nodes, the k-means
170 ——Inforack algorithm creates clusters for one feature under one miaatethe
UPGAM algorithm under five minutes. The memory consumption
for creating clusters is under 2MB fdrmeans, and 100MB for
150 UPGMA. Note that the cluster creation is rarely invoked. ©nc
'N\”w\—r\,ﬂ,/\//*’/ - the clusters are created, maintaining and updating chistdight-
20 25 weight. With 5000 nodes and 100 attributes, the clustertaditae
is under 2ms, and the memory consumption of the management
node is under 10MB. For metric value prediction, the last®al
approach consumes 2MB memory to store last values. With 5000
nodes and 100 attributes, the prediction time using Kalnitan s
under 50ms, and the memory consumption is under 50MB.

Total Updates per Second

,_\
s
S

5 10 15
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Figure 12: Continuous total tracking cost reduction on all 6
metrics with error bound = 0.01.

Managemerll\:?]%ii;y?c?uster creation)anOeOmI\(/I)g con;pmuitstlon . The Ir!foTracK software running on each monitored workerenod
Management node (cluster update) 10 MB ms is very Ilght-\_/velght. Wz_e run the softwa}re_ on _the same desktop
— “ machine. With 100 attributes, the prediction time usingrifa
Management node (prediction) | 50 MB 50 ms filter is under 0.01ms, and the memory consumption is und€B10
Worker node 10 KB 0.01lms

Table 5: Total InfoTrack overhead for tracking 100 metrics on >. ] RELATED WORK o _
5000 nodes. Distributed information management is critical for mamapi

large-scale networked systems. For example, both the CéNéom
p etLab monitoring service [1] and the Grid Monitoring/Diseoy
Service (MDS [10]) have proven extremely useful for theieus
communities. However, for practical purposes, both systane
statically configured with long update interval (e.g., fivenotes
for the CoMon infrastructure). Previous work (e.g., Asitzd [27],
SDIMS [30], Mercury [7], SWORD [23],NodeWiz [6] and PIER
[14]) has proposed to leverage decentralized structureshimve

4.5 Micro-benchmark Experiments scalable information management. Other research work (afg-
Now we show the results of micro-benchmark experiments of Eye [21.]’ STAR.[17]) hafs p roposed to trade. offlinformatiom:o
our InfoTrack system on PlanetLab. This set of experiments i age or information precision for lower monitoring cost. fBrent

from the above work, the focus of our research is on exploring
volves 276 PlanetLab nodes and we use InfoTrack to track the . ' . . .
whole set of 66 features in every 10 seconds over 24 houtingfar correlation patterns to achieve self-compressing coatiatnfor-

from August 26, 2008, and the average CPU load and average.matlon tracking, which can be used to not only answer various

Load5 are 79.5% and 6.87, respectively, during that peritd. |nf9rmation queries but also extract important systemepast to
Figure 12, we show the total tracking cost in terms of totalatps gU|d_e s_ystem management de_C|S|_ons. .
per second of InfoTrack with an error bound value of 0.01 and Distributed information monitoring has been recognizeddy

- ; . : e cent work as an important component for system managemignt. S
the original tracking cost without any compression dividgd10 h | developed a declarati for diswib
over 24 hours Note that in this set of experiments the Kalman ghetal. developed a declarative query system for disttbeys-
Filter and adaptive UPGMA are used as the temporal and §patia tem monitoring and problem diagnosis [26]. AjaxScope [E9i
correlation a proach respectivelv. As shown ioni ure dmp distributed Web application monitoring platform using iasl in-
system signiﬁ(?antly r’educF:es the )tll.'acking cost by m%re thw’] o strumentation of JavaScript code. FDR [28] is an onlineesyst
order of magnitude with a tight error boundb1. By suppressing call tracing tool used for misconfiguration troubleshogtirF-DR
remote information update, our approach can .reduce botlitonon focuses on system call compression while our work focuses on
ing network traffic and end,-system resource consumptiorpata compressing numerical value metric tracking traffic by expg
. L : spatial and temporal correlations.
ticular, InfoTrack reduced monitoring network traffic to tneder 5 . . .
Kbps. More importantly, fewer updates also reduce database Exploring cor.relanon pat.terns among distributed datarcmsi
on the management node and save system resource consumptioﬂave. be_en studied under ‘?"ff‘?re“t context such_as senswomket
(e.g., CPU, memory, database capacity, disk storage, pdwser monitoring [29, 20, 11], distributed event tracking [16hdare-
pr;)c”essing,or storiné monitoring data ! ' source discovery [9]. Although the general idea of explpiiem-

oral and spatial correlations is not new, we shall empkasjz
In many real-world large-scale networked systems such as en P2" ; - - S :
terprise d);ta centers th% number of nodes c)e/m casily grew ov plying the idea to distributed information tracking overge-scale

. X .~ networked systems requires non-trivial system analysisiasign.
thousands or even tens of thousands, in which case the alrigin : ; . - .
monitoring network traffic can exceed tens of Mbps. Infokrean In our case, it means discovering dynamic spatial and teahpor-
lonitoring . ; ps. . relation patterns among distributed information sourcsasgilight-
significantly reduce the tracking cost and is well suitedtfacking - . . e =)
L S weight methods instead of assuming a specific probabilistidel
dynamic information in large-scale networked systems.

(e.g., Gaussians) as in wireless sensor networks. To th@besr
We now evaluate the resource overh_ead of the InfoTrackrsy_ste knowledge, our work makes the first step to combine tempaicl a
to verify that our approach is light-weight. Table 5 sumrnesi

the overhead measurement results. We run the managemet nodspatial correlation discovery for reducing distributefbimation
' 9 tracking cost in large-scale distributed production syste

we also plot the average CPU load and standard deviation bf C
load for each hour averaged over days in Figure 11. The perfor
mance pattern can be well explained by the same pattern in the
average CPU load and average standard deviation. Theatiorel
aware tracking models can achieve higher compressiorsnatien
average CPU load is high and average standard deviatiow.is lo

9'Showing 1/10 of original tracking cost allows us to see the
varying compression performance achieved by InfoTrack. 6. ACKNOWLEDGEMENT
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7. CONCLUSION

In this paper, we have presented InfoTrack, a new self-lziimeg
predictive information tracking system for managing lasgale
distributed production systems. InfoTrack explores betmgo-
ral and spatial correlations in the distributed system fopsess
remote information update while preserving informationerage
and precision. InfoTrack integrates both metric value jotemhs
and adaptive clustering algorithms to reduce informatiacking
cost. We have implemented the InfoTrack system and testad it
the PlanetLab tracking 66 dynamic attributes on more thands®
tributed hosts. We learned the following lessons from oatqiype
implementation and experiments: 1) spatial and temporakeo
lation patterns exist in real-world production systems ead be
efficiently discovered using light-weight schemes; 2) elation-
aware information tracking can easily achieve more than 86f#t-
pression ratio (e.g., percentage of reduced remote intiwmap-
dates) for tracking relatively stable attribute valueshinit0.01 er-
ror bound; 3) for highly dynamic metrics, our system can ewohi
more than 50% compression ratio within a tight error bound of
0.01, and more than 90% compression ratio within an erronthou
of 0.05. As part of our on-going work, we are deploying andines
the InfoTrack system on more complicated commercial monito
ing system such as IBM Tivoli running on large-scale distréal
production systems such as VCL [4] at NCSU and enterprisg dat
centers, and explore more advanced data modeling techsifpre
example, the Minimum Description Length data modeling tech
nigue [12], to achieve better prediction of data variations
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